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A brain-computer interface (BCI) decodes the brain signals representing a desire to do something and transforms those signals
into a control command. However, only a limited number of mental tasks have been previously investigated and classified. )is
study aimed to investigate two motor imagery (MI) commands, moving forward and moving backward, using a small number of
EEG channels, to be used in a neurofeedback context. )is study also aimed to simulate a BCI and investigate the offline
classification betweenMImovements in forward and backward directions, using different features and classificationmethods. Ten
healthy people participated in a two-session (48min each) experiment. )is experiment investigated neurofeedback of navigation
in a virtual tunnel. Each session consisted of 320 trials where subjects were asked to imagine themselves moving in the tunnel in a
forward or backward motion after a randomly presented (forward versus backward) command on the screen. )ree electrodes
were mounted bilaterally over the motor cortex. Trials were conducted with feedback. Data from session 1 were analyzed offline to
train classifiers and to calculate thresholds for both tasks. )ese thresholds were used to form control signals that were later used
online in session 2 in neurofeedback training to trigger the virtual tunnel to move in the direction requested by the user’s brain
signals. After 96min of training, the online band-power neurofeedback training achieved an average classification of 76%, while
the offline BCI simulation using power spectral density asymmetrical ratio and AR-modeled band power as features, and using
LDA and SVM as classifiers, achieved an average classification of 80%.

1. Introduction

A BCI is a communication system that bypasses the body’s
neuromuscular pathways, measures brain activity associated
with the user’s intent, and translates it into corresponding
control signals to an electronic device, only by means of
voluntary variations of brain activity. Such a system appears
as a particularly promising communication channel for
persons suffering from severe paralysis, like those with the
“locked-in” syndrome, and, as such, is locked into their own
body without any residual muscle control [1, 2].

Studies to date show that humans can learn to use
electroencephalographic (EEG) activity to control the
movements of a cursor [3, 4, 5, 6] in one or two dimensions,
or to control other devices such as spellers [7, 8]. Both actual
movement and movement imagery are accompanied by

changes in the amplitudes of certain EEG rhythms, spe-
cifically 8–12Hz mu rhythms and 18–30Hz beta rhythms
[9, 10]. )ese power changes, named “event-related syn-
chronization/desynchronization (ERS/ERD)” [10], are fo-
cused over the sensorimotor cortex in a manner consistent
with the homuncular organization of this cortical region [2].

In the 1980s, Krusienski et al. started on EEG-based
cursor control in normal adults using band power centered
at 9Hz. )ey used an autoregressive model to compute
power in a specific frequency band, where the sum power
was used in a linear function to control the cursor’s direction
of movements [11]. Nowadays, the world of the BCI is
expanding very rapidly. One new field involves BCIs to
control virtual reality (VR), including BCIs for games
[12, 13, 14, 15] and for computer applications such as a
virtual keyboard [16]. )e virtual environment (VE) can
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provide an excellent testing ground for procedures that
could be adapted to real-world scenarios, especially for
patients with disabilities. If people can learn to control their
movements or perform specific tasks in a VE, this could
justify the much greater expense of building physical devices
such as a wheelchair or robot arm that is controlled by a BCI.
One of the main goals of implementing the BCI in VR is to
understand how humans process dynamic visual scenes and
how well they can interact with these natural environments.

)e first efforts to combine VR and BCI technologies
were in years 2000 and 2003 by Bayliss and Ballard who
introduced a VR smart home in which users could control
different things using a P300 BCI [17, 18].

)en in 2003, researchers showed that immersive
feedback based on a computer game can help people learn to
control a BCI based on imaginary movement more quickly
than mundane feedback [19]. Researchers in [20] used the
BCI for walking in a virtual street in 2005, for visiting and
navigating in a virtual reality representation of the Austrian
National Library in 2007 [21], and for exploring a smart
virtual apartment in 2010 [22, 23].

In [24], researchers used the BCI to navigate in virtual
reality with only beta waves, where a 35-year-old tetraplegic
male subject learned to control a BCI, where the midcentral
focused beta oscillations with a dominant frequency of
approximately 17Hz allowed the BCI to control the VE.
Only one single EEG channel was recorded bipolarly at Cz
(foot representation area). One single logarithmic band-
power feature was estimated from the ongoing EEG. A
simple threshold (TH) was used to distinguish between foot
movement imagination (IC) and rest (INC). )is study,
which was based only on beta waves, has classified two
different mental states: one directional movement (forward)
and a rest state but not for backward movement.

Brosseau-Lachine et al. in [25, 26] psychophysically
studied infants and made electrophysiological recordings of
brain cells in cats’ response to radial optic flow fields and
found superior sensitivity to expansion versus contraction
direction of motion in both studies.)is is further supported
by an imaging study with adults where the researchers have
found a bias for expanding motion stimuli [27]. )is dis-
sociation may suggest that sensitivity to direction corre-
sponding to forward locomotion (expansion) develops at a
faster rate than that to opposite direction encountered when
moving backward (contraction) [28].

Researchers in [27] found with PETscan that several loci
of activation were observed for contraction and expansion
conditions in the same areas of the human brain, but the
increase in rCBF in contraction was much lower than that in
the expansion condition in the right brain. Since researchers
found that imagining a movement activates the brain the
same way as watching or doing that movement does, then
MI of navigation in a virtual reality scene with a strong optic
flow feedback might activate the brain the same way the real
navigation would do.

)ere is ample physiological and behavioral evidence
that perceiving forward and backward movements are quite
different in nature and therefore cannot be considered
equivalent. Given that one of the BCI system’s aims is

developing brain-controlled movements, it is therefore
important to address the distinction between efficiency of
BCI-driven movements for these two critical direction
controls.

So, we wanted to see in the present study if we could
classify those two-directional movements in virtual reality
from only 1, 2, or 3 EEG channels.

)erefore, the main goal of the present project was to
enhance navigation in virtual reality with the brainwaves by
using beta ERS obtained from a small number of channels.
Furthermore, we wanted to see if we could classify two-
directional movements (forward or backward) in virtual
reality from these channels so that in the future, a subject
could efficiently navigate by altering the brain waves and
freeing the limbs for other activities.

2. Methodologies

2.1. Equipment

2.1.1. Virtual Reality Equipment. To generate virtual envi-
ronments, we used)e EON Icube™, a PC-based multisided
immersive environment in which participants are sur-
rounded by virtual imagery and 3D sound (Figure 1).

Stimuli were generated on four synchronized HP Z800
workstations and were rear-projected onto four Da-Lite
Fast-Fold 10′ wide ×7.5′ length/long wall screens (one
frontal, two lateral, and one ground), from a distance of
4.10m. )e image was projected on the screens using 4
InFocus LP725 projectors that scan at 75Hz with a reso-
lution of 3,072× 768,2500 ANSI lumen brightness and 2400 :
1 contrast ratio. Stereoscopic active lightweight shutter
glasses and 12-DOF electromagnetic camera position
trackers were also installed, and the result was complete
immersion of the user in a virtual world [28].

2.1.2. Virtual Reality Tunnel. As a virtual environment, we
had chosen 3D Tunnel that can move in the anterior-pos-
terior direction. )e virtual tunnel respected all the aspects
of a real physical tunnel (i.e., stereoscopy and size increase
with proximity).

To program the tunnel, C++, OpenGL, and VR Juggler
were used. )e tunnel, depicted in Figure 2, was 3m in
diameter and 91m long. Its front extremity was closed with a
wall (subtending 2°) to reduce aliasing. Its back extremity
was virtually located 7m behind the subject [28]. A red
fixation point (subtending 0.2°) was placed at the end of the
tunnel at equal distance from the lateral wall.

Stimuli were either static or dynamic moving at a speed
of 1.1m/s. )is velocity was perceived corresponding to
normal gait. Proximal parts of the tunnel remained, while
central parts were truncated and replaced by a black uniform
field.

)e texture was a pattern of alternating black and white
squares. )e association of shape (cylinder), texture, and
perspective provided a radial flow to the central visual field
and a lamellar flow to the peripheral visual field. )is optic
flow structure is the one for which the visual system is very
sensitive and consequently quite responsive with respect to
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the control of stance [28]. )e squares were all of the same
size in the virtual world (corresponding to real-world
conditions) but appeared smaller at distance due to
perspective.

Consequently, sensitivity of the visual system for spatial
frequencies and cortical magnification were essentially
accounted for by this naturalistic stimulation [28].

2.1.3. EEG Recordings. )e acquisition was performed with
the FlexComp Infiniti™ wireless EEG system by )ought
Technology Ltd.

)e EEG was recorded with Ag-Ag/Cl electrodes from 3
channels over the motor cortex and close to the brain area
responsible to generate foot movements. )ese channels
were C3, C4, and CZ (according to the international 10/20
system of EEG electrode positions). )ese channels were
referenced to both ears.

2.2. Experimental Paradigm. )e experimental task was to
imagine either forward or backward movement depending
on a written command. 10 naı̈ve subjects (mean age
25.6± 3.92), 9 males and 1 female, participated in this ex-
periment. )ey all signed a consent and received a com-
pensation of 25$ each session.

)e experiment included two sessions for one and a half
hour each, where data of session 1 were used in session 2 for
online neurofeedback and for offline analysis.

Session 2 was performed in 2 days to avoid fatigue and to
allow learning. Each session contained 4 runs, and each run
was 80 trials (Table 1), which resulted in 320 trials in total, 160
trials for moving backward and 160 trials for moving forward.
)e number of trials was based on the Graz BCI paradigm,
and to obtain enough trials for the averaging step.)e subject
stood in the Icube 50 cm away from the front screen, where
then we started the built-up 3D environment.

Each trial was 9 seconds long and started with 3 sec-
onds of a static tunnel, in order to acquire a baseline EEG,
and then comes the presentation of a written command
“Move Forward” or “Move Backward” randomly at the

center of the screen for 2 seconds, followed by 0.5 seconds
of a static tunnel and then 3.5 seconds of a dynamic tunnel
(Figure 3).

)e instructions the participants received were the fol-
lowing: If the written command was “Move Forward,” the
subject had to imagine moving in the tunnel in a forward
movement. However, if the written command was “Move
Backward,” the subject had to imagine moving in the tunnel
in a backward movement. )e participant was instructed to
stop the imagination once the tunnel started to move.

In session 1, the tunnel moved after the display of the
written instruction, and at the same direction of this in-
struction, independently and regardless of the motor im-
agery results. However, in session 2, the tunnel moved as a
neurofeedback of the participant’s online real-time brain
activity of motor imagery. )e main part that distinguishes
neurofeedback from the BCI is the BCI machine learning
phase.

BioGraph (the software provided by the EEG device
manufacturer )ought Technology Ltd.) was used for data
acquisition and display and was synchronized with the
virtual reality computers (Figure 4).

2.3. Offline Signal Processing. After running subjects in
session 1, data were processed offline, as depicted in Figure 5.
)e results were then used for the following:

(1) To perform session 2 with online real-time
neurofeedback

(2) To build a classifier that used session 2 data as test
data in an offline BCI simulation

2.3.1. Offline Signal Processing: EEG Cleaning and Filtering.
)e EEG signals were amplified and bandpass filtered (18th
order Butterworth IIR filter) between 8 and 30Hz and
sampled at 256Hz and then bandpass filtered into four
frequency bands: 8–12Hz (alpha), 12–15Hz (SMR), 16–
24Hz (beta), and 25–30Hz (high beta).

Artifacts were autorejected within BioGraph, by auto-
matically removing the parts of the recorded signal where
the amplitude exceeds 20 μv. Signals were then detrended,
and clean data were used for offline analysis.

2.3.2. Offline Signal Processing: Feature Extraction

(1) Time-Frequency Representation (TFR). Performing a
short-time Fourier transform (STFT) permits an insight into
the ERD/ERS by analyzing the power variation with respect
to time [29]. )e STFT was estimated at a high spectrogram
resolution of 1-second Hanning windows in time with a 50%
overlap and 64 frequency bins.

Figure 1: Icube.

Figure 2: Virtual reality tunnel.

Table 1: Methodology and protocol.

1 session� 4 runs
1 run� 80 trials

1 run� 12min 10min pause
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)e TFR (time-frequency representation) was mainly
used for both online and offline visualization to define the
most active frequencies and their strengths during the
mental task achieved by the participant in every single trial.

(2) Power Spectral Density (PSD) Features. )ey inform on
the distribution of the power of a signal between different
frequencies [2]. A 1-secondHanningwindowwas chosen to give
a frequency resolution of 1Hertz/bin within the periodogram,
which computes PSD by squaring the signal Fourier transform.

(3) Power Asymmetrical Ratio. )is method is especially
useful in tasks that involve interhemispheric differences,
where the power asymmetrical ratio is defined as

Ra �
R − L

R + L
, (1)

where R is the PSD or power of a specific band in the right
electrode and L is the PSD or power of a specific band in the
left electrode [2].

0 1 2 3 4 5 6 7 8 9s

Move
backward

Move
forward

Static
tunnel

(baseline)

Dynamic
tunnel

Figure 3: One trial paradigm.
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Figure 4: )e overall system flow chart.
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(4) Band-Power (ERD/ERS) Calculation. For EEG data,
bandpass filtering of each trial, squaring of samples, and
averaging of N trials result in a time course of instantaneous
band power [30].

)en, the ERD is quantified as the percentage change of
the power at each sample point or an average of some
samples relative to the average power in a reference interval:

ERD%(j) �
A(j) − R

R
× 100%, (2)

where R� average power in the reference interval, averaged
over k samples, and A(j) � power at the j-th sample [10]. )e
best two ERS/ERD values that distinguished between two
tasks can then be selected.

2.3.3. Offline Signal Processing: Feature Modeling

(1) Autoregressive (AR) Parametric Models. In this study, we
used the autoregressive (AR) Burg method and its extension
ARX [31], which are generally used as features for the BCI to
distinguish one time series from another [4]. For ARXmodel
order selection, the Akaike information criterion (AIC) was
applied in this study [32]. In this method, the input was
assumed to have Gaussian statistics.

We set the exogenous input to be the template of av-
eraged backward trials when modeling backward trials and
the template of averaged forward trials when modeling
forward trials because averaging across trials assists in
extracting the event-related potential hidden within the
noise.

2.3.4. Offline Signal Processing: Feature Epoching. )e
previously mentioned extracted features and their models
were divided into 4 epochs, in order to investigate the
optimum time slot (and thus feature points) that the imagery
signal achieved the best classification accuracy [33], thus
decreasing the computation time. Various epochs were

experimented based on a 0.5 s shift. )ese epochs were as
follows:

(1) Epoch 1: 3.5–4.5 s
(2) Epoch 2: 4–5 s
(3) Epoch 3: 4.5–5.5 s
(4) Epoch 4: 5–6 s

2.3.5. Offline Signal Processing: Classification Models. )e
previously mentioned extracted features and their AR
models and epochs were used to train the following
classifiers:

(1) Linear Discriminant Analysis (LDA). )e aim of LDA is
to find a linear combination of features which separates two
or more classes with k, n-space hyperplanes [2, 34]. In this
study, we used the diagonal LDA, which computes the di-
agonal covariance matrix estimates.

(2) Support Vector Machine (SVM). In this study, we used a
linear SVM algorithm. See [2, 7, 35] for further details.

(3) Classification Validation. A 10-fold cross-validation was
used. )is algorithm breaks data into 10 sets of size n/10,
trains on 9 datasets, and tests on 1 dataset; it repeats this
process 10 times and finally takes a mean accuracy.

3. Results

3.1. Session 1: Visualization of TFR. Figure 6 displays four
online TFRs for subject 3. Almost the same patterns were
generated by the rest of the participants. )ese TFRs were
calculated within epoch 4, where the first half second of the
TFR represents half a second before MI termination and the
second half second of the TFR represents half a second after
the MI termination.

)e first column displays TFR for electrode C3, and the
second column displays the TFR for electrode C4.

Cleaning and
filtering

Feature
extraction

Feature
epoching

Feature
modelling

Session 1

Raw EEG
Classification

Test dataCleaning and
filtering

Feature
extraction NeurofeedbackSession 2

Raw EEG

Feature 
threshold

Online processing

Offline processing

Figure 5: Signal processing flowchart. )e bottom panel shows different stages of the offline signal processing for session 1, and the upper
panel shows different stages of the offline signal processing for session 2.
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)e first row refers to the TFR when the subjects were
instructed to imagine a forward movement, and the second
row refers to the TFR when the subjects were instructed to
imagine a backward movement.

During the forward movement, we can clearly see the
α-ERD, but almost at the end of the MI, a large and re-
markably strong β ERS appeared over C3 and lasted for
few milliseconds. On the contrary, the α-ERD appeared
also during the backward movement over C3, however,
and right after the end of the backward MI, a smaller yet
strong β ERS appeared over C4 and lasted for few
milliseconds.

)is suggested that we had a lateralization of signals for
MI forward and backward movements, where the right
motor cortex showed higher activity for backward move-
ment versus the left motor cortex, which in turn showed a
higher activity for the forward movement.

)is result supports our hypothesis that MI of forward-
backward movement can activate the motor cortex the same
way as a strong optic flow does [27].

Figure 7 presents the β-ERS at channels C4 and C3,
respectively, and at the frequency band 25–30Hz.

3.2. Session 1: Offline Calculation of Band-Power ERD/ERS.
It shows a remarkable backward ERS that starts right after
the termination of the movement imagery and peaked with
200% after about 200msec. )e template illustrates no
overlap with the forward signal which appears to be equal to
baseline, with a correlation of 0.31.

It also shows a remarkable forward ERS that starts 200
msec after the movement offset and right after the termi-
nation of themovement imagery and peaked with 600% after
about 300msec, thus 500msec after the termination of the
MI. )e template illustrates no overlap with the backward

signal which appears to be equal to baseline, with a corre-
lation of 0.28.

)is lateralization (shown in [27, 36]) states that MI of
moving backward would relatively highly activate the motor
cortex of the right brain hemisphere, resulting in a higher
right ERS, while MI of moving forward would activate the
motor cortex of the left brain hemisphere, resulting in a
higher left ERS.

EEG channels C3 and C4 lie over the primary motor
cortex, which is mainly responsible for movement planning
and represents the hand movement area in the brain.

However, the foot motor area representation is lo-
cated deep within the interhemispheric fissure, right
under the EEG channel Cz that lies over the cranial
midline; thus, the detection of ERD/ERS through the EEG
signal is very difficult. )is explains the reasons for the
following:

(1) Very small ERD power changes over Cz were detected
(2) Many studies detected the brain activity of naviga-

tion only in EEG channels close to the channel Cz,
such as Fz [37] and Pz [38]

On the contrary, the phenomena of ERD/ERS reflect
the dynamics of neural networks and can be observed on
different scalp locations at the same moment in time,
whereas one cortical area displays ERD and other areas
display ERS.

)is phenomenon is called “focal ERD/surround ERS”
and is interpreted as a “correlate of an activated cortical area
(ERD) and simultaneously deactivated or inhibited areas,
very likely mediated by thalamic gating” [10].

)us, in this study, the ERS patterns that were found
over hand representation areas were developed simulta-
neously with ERD in the area of the feet [39], which is also
consistent with what studies [36, 40, 41] found.

Backward

Forward

C3 C4

Figure 6: TFR over C3 and C4 for subject 3.
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3.3. Session 2: Online Real-Time Band-Power ERD/ERS
Neurofeedback. )e two ERS values that were obtained in
session 1 (see Section 3.2) were set up in BioGraph as signal
thresholds to form a control signal for an online real-time
neurofeedback of the real-time processed data in session 2.

)e first ERS value was for transition from the idling to
the “move forward” state, while the second one was for
transition from the idling to the “move backward” state. So,
the backward threshold was set on the BP of the frequency
band 25–30Hz over channel C4 according to the following
equation:

Thb � MEAN + 6 × STDEV, (3)

where) is the threshold, b refers to backward, MEAN is the
power calculated in a reference interval, and STDEV is the
standard deviation.

)e STDEV coefficient was calculated according to the
ERS time course and was selected based on a value that
would yield a maximal separation between the standard
deviations from the mean baseline of the two tasks and was
set to 3 standard deviations each, i.e., 3 negative standard
deviations from the mean of the task that had the higher

curve and 3 positive standard deviations from the mean of
the task that had the lower curve.

For subject 7, we calculated two negative standard de-
viations from the mean of the averaged backward signal over
C4 and calculated its ERS time course and found that it was
close to 3 standard deviations from the mean baseline. We
then repeated that for the forward signal and found that it
was 2 standard deviations from the mean baseline. So we
selected the value 6 based on 2 STDEVbackward + 1
STDEVsafety for backward + 3 STDEVforward.

)is formula means that whenever the power over the
motor cortex of the right hemisphere exceeds and passes a
threshold of 6 standard deviations from the baseline, i.e.,
activation over C4 resulting from the MI of backward
movement, this would trigger the virtual reality tunnel with
a boolean that induces the tunnel to move in the backward
direction. Similarly, the same setting was used as a
threshold over the motor cortex of the left brain
hemisphere.

Session 2 consisted of four runs, performed in 2 different
days, of the same week, where the same paradigm was used
but with two differences.
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Figure 7: Grand average β-ERS at channels C4 (upper) and C3 (bottom).
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)e first difference was that, in session 2, the subject was
instructed to stop the MI right after the command “Move
Forward” or “Move Backward” offset; that is, at second 5 of
the trial, instead of stopping the MI once, the tunnel moves.

)is modification was based on the ERS results. Since the
ERS peaked at 200–500ms of the MI offset for both tasks,
this modification of terminating theMI at second 5 would let
the beta power to rebound and then peak at second 5.5.

)e Interface software between BioGraph and our virtual
tunnel was programmed such that whenever the signal
passed the threshold at second 5.5 and only at this point, the
boolean was sent to trigger the tunnel to move in either
direction.

In session 2, EEG was downsampled to 8Hz and
smoothed out by averaging 3 consecutive samples (with a
moving average) in order to produce a smooth control signal
(CS).

Amongst the 10 subjects we tested, 7 showed the same
ERS pattern at the high β frequency band, and 3 subjects
showed the same pattern but with a central β-ERS (16–
24Hz). All patterns had also different ERS values for both
forward and backward MI.

Figure 8 shows that 50% of the subjects were able to
achieve accuracy more than 80% and after a total of
96minutes of training.

Figure 9 shows success rates across runs and averaged
across subjects. We can see an expected bias toward forward
control versus backward control in run 1. We have also
applied the t-test to interpret the results, where we applied
the intrasubject t-test on the pair of the two tasks in every
single run.

)e subjects had significantly more trouble in con-
trolling the tunnel movement using backward MI more
than the forward MI (rb1-f1 � 0.191, t � − 7.434, dof � 9,
p< 0.001) because walking forward is an easy automated
task for the brain; however, moving backward would re-
quire more strength and concentration and would also
require learning to develop a special mental strategy in
order to alter the brain waves to produce the correct control
signal.

So, the success rate for the backward control was
32.75%± 17.53 versus 74.75%± 8.11 for forward control.
Most of the subjects in run 2 put much effort into the
backward-control strategy learning versus the forward
control, where the bias was inverted toward the backward
control, in which its success rates were improved, accom-
panying a drop in the success rate of the forward control,
with an average success rate of 57.3%± 7.91 for backward
control versus 55.75%± 12.25 for forward control (rb2-f2 �

414, t� 0.426, p< 1).
)e next day and in run 3, the backward control con-

tinued to improve gradually in an almost linear learning
curve, where the forward control was regained (rb3-f3 �

− 0.181, t� − 1.663, p< 0.2).
We think that was because this run was performed in a

different day, and so the brain was back to achieve a high
success rate for its automated task, the forward control, but
sustained the learning and mental strategy developed for the
backward control, and continued to develop it more, to

achieve a higher success rate of 64.5%± 16.02, where the
forward control was regained with a success rate of
76.75%± 14.24.

In run 4, the subjects’ brains continued to develop the
mental strategy for the backward control, where a re-
markable improvement took place to increase the success
rate with only 71.5%± 13.44, where the forward control
stabilized with slight improvement (rb4-f4 � 603, t� − 2.864,
p< 0.02).

So we can say that the neurofeedback induced a learning
curve to control the backward navigation in virtual reality
(rb1-b4 � − 0.184, tb1-b4 � − 5.109, p< 0.05), in contrast to the
forward navigation in virtual reality (tf1-f4 � − 1.816, p> 0.1),
where in this neurofeedback, the learning curve started with
a bias toward the naturally automated forward control
versus backward control and then the backward control
improved gradually with a so-like linear learning curve;
however, the forward control was lost in run 2 but regained
and then stabilized at run 3 and 4.

We have applied ANOVA to the results for statistical
comparisons. As a consequence of the numerous planned
comparisons required in the first phase of this study, the
Greenhouse–Geisser and Huynh–Feldt corrections were
applied to interaction tests in order to control for random
outcomes in this context.

)e ANOVA revealed a significant intrasubject main
effect of “Task” (F� 26.085, dof� 1, p> 0.01), a significant
effect of “Runs” (F� 17.204, dof� 3, p< 0.001), and a sig-
nificant “Runs”× “Task” interaction (F� 14.085, dof� 3,

1 2 3 4 5 6 7 8 9 10

Su
cc

es
s r

at
e (

%
)

Subjects

0
10
20
30
40
50
60
70
80
90

Figure 8: Run 4: average accuracy for all subjects.
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p< 0.01) and also revealed a significant intersubject main
effect (F� 978.355, dof� 1, p< 0.001).

3.4. Session 1: Offline Classifications. )e features extracted
were frequency bands× epochs× sampling frequency×

features× feature models’ orders× channel combina-
tions× subjects. )en, these features were used to train LDA
and SVM classifiers, where all these classifications were
performed with 10-fold cross-validation. )e offline nature
of this analysis allowed us to run the tests on all of these
features and then to select the classifiers/models that
achieved the best classification performance.

To investigate the best classification in terms of epochs,
classification was run over the 4 epochs. )e results showed
that the epoch that achieved the highest classification ac-
curacy was epoch 3 (Figure 10), i.e., the time slot that started
1.5 seconds after the command display and ended just before
the tunnel started to move.

)is means that the classifier gave poorer results when
classifying the ERD and better results when classifying the
ERS. However, the classifiers’ performance was attenuated at
epoch 4; we think that this was due to the visual effect the
dynamic tunnel added to the ERD/ERS. All coming results
are presented within epoch 3.

To investigate the best classification in terms of
channels and rhythms, classification was run over single
and then different combinations of channels and over al-
pha, SMR, and beta rhythms. Results show poor prediction
within alpha and SMR and poor prediction when using the
single EEG channel, so we cannot rely on one single EEG
channel to predict the upcoming forward-backward
movement and we need at least two EEG channels to
achieve an average accuracy more than 75% when pre-
dicting the upcoming forward-backward movement within
the beta band.

So, all results that will be presented next are within the
beta band and between C3 and C4 EEG channels.

To investigate the best features, we ran classification over
BP and PSD-Ar and over their AR and ARXmodels, varying
the model order from 2 to 30, with a step value of 1.

To investigate the best classification in terms of classifiers
(algorithms), we used linear LDA and linear SVM. For SVM,
we tested different values for the C factor in an exhausted
search for the optimum C factor, where we varied the values
exponentially between 1·e− 7 and 1·e2 with a step value of e− 1.

However, we ran the search for the optimum C factor on
the data of randomly selected 50% of the subjects, which
means we tested 5 subjects out of the 10 subjects and found
C� 1·e− 2 to give optimum results, so we assumed a gener-
alization of this value for all subjects’ data in this study. All
results that will be presented next are presented with the C
factor that achieved the highest accuracy, C� 1·e− 02.

)e LDA classifier gave a 6% higher accuracy than the
SVM, but the classification drops remarkably when the
features were modeled in both AR and ARX methods, even
when these models were modeling noise but not the actual
feature; thus, they were poor at predicting upcoming for-
ward and backward movements. )us, using the PSD

asymmetrical ratio as a feature gave better results than using
their model coefficients as features.

Table 2 shows comparison between different session 1
offline classification accuracies over PSD-Ar features when
fed to LDA, using 2 EEG channels, and over band-power
features when fed to SVM, using 3 EEG channels, and using
the best AR and ARXmodel orders, for all subjects, and then
averaging over all subjects.

So, using the 2-channel BCI, classification models’
performance over session 1 data showed that only 20% of
the subjects achieved a classification accuracy of 80–82%
and that 60% achieved a classification accuracy of
70–80%.

Statistical tests were run to investigate if there were
significant differences between these classification models
and then to select the classification models that achieved the
best classification performance.

)e Shapiro–Wilk test revealed that the normality
assumption is rejected, so the Wilcoxon test was performed
over all paired samples of the models’ classification ac-
curacies. )is statistical test revealed many important
findings.

First, no significant differences were found between
using the PSD-Ar features and using their filtered autore-
gressive models when feeding them to either LDA
(Z� 1.3239, p> 0.1, and Z� 1.0220, p> 0.3) or SVM
(Z� 0.6050, p> 0.5, and Z� − 0.2646, p> 0.7) classifier nor
between using any of the two autoregressive models used in
this study (Z� − 0.7181, p> 0.4).

Second, the statistical tests revealed significant differ-
ences when using all LDA models versus all SVM models
(p< 0.05).

3.5. Session 2:OfflineClassifications. Section 3.4 showed that
the two classification models of session 1 that achieved the
best performance and were significantly different were the
following:

(1) Classifier 1: β-PSD-Ar between C3 and C4 with LDA
(2) Classifier 2: β-band power modeled with ARburg over

C3, C4, and Cz with the SVM classifier
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Figure 10: Classification of PSD-Ar between C3 and C4 within the
β band varying with epochs and averaged across 10 subjects.
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)ese 2 trained classification models were used offline
over processed data from session 2, in a so-like BCI sim-
ulation of the classifier performance if implemented online.

Results in Table 3 show that classification model 2
reached an average accuracy over all subjects of 80%.

)e performance of model 2 used for offline classifica-
tion was 4% higher than the performance of the model used
for online neurofeedback. )e statistical tests confirmed the
nonsignificant differences between these 3models (p> 0.1p).

4. Conclusion

)is study investigated, in a first session, the brain activity of
the MI of forward/backward navigation in a virtual tunnel,
where many models from the data of this session were then
trained. )en, in a second session, only one model was used
online in real time, which is the band-power neurofeedback,
since the remaining models were machine learning models,
which can be tested offline over the data of this second
session.

Supporting previous psychophysical studies, this study
showed that the motor cortex was activated bilaterally when
backward-forward feet movements were imagined, and thus,
two EEG channels must be used to control a VR application

via a BCI using MI of lower limbs’ backward and forward
movements. To our knowledge, this is the first study to
investigate a BCI that used the MI moving backward
command. It is also the first to compare the use of forward
and backward MI commands to activate a BCI and to
compare the performance of neurofeedback and the per-
formance of a BCI simulation that uses different algorithms,
in order to control the navigation in a VR environment using
MI of lower limbs’ backward and forward movements.

All subjects were able to control their navigational di-
rection within the tunnel, but with an averaged accuracy of
76%. )e subjects found the backward control a harder task
to achieve (the average accuracy for backward control was
50–70% versus ∼64–84% for forward control).

)e band-power features modeled with AR and classified
with SVM as well as the well-known and widely used power
spectral asymmetrical ratio with the LDA classifier gave
slight better results than human learning methods (p> 0.1),
with an average classification accuracy of almost 80%. Using
autoregression modeling over the band-power features
helped in decreasing the number of features over one
channel but increased the required number of channels,
where good classification accuracy was obtained only when
using band-power features from three channels.

For the future work, and since MI of backward move-
ment required higher strength to achieve and control, an-
other strategy to improve the BCI control is to assign an
easier imagery task to control the backward navigation in the
tunnel. Also, more machine learning algorithms will be
investigated, in order to improve the performance and ca-
pabilities to control this BCI.
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