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Abstract

Small non-coding ribonucleic acids (RNAs), known as microRNAs (miRNAs), are now becoming 

recognized as significant agents that can affect the onset and progression of numerous disorders 

throughout the body. In particular, miRNAs also may determine stem cell renewal and 

differentiation. Intimately tied to the ability of miRNAs to govern stem cell proliferation are the 

proliferative pathways of silent mating type information regulation 2 homolog 1 (Saccharomyces 

cerevisiae) (SIRT1) and the cell survival mechanisms of autophagy that can be coupled to the 

activity of the mechanistic target of rapamycin (mTOR). Targeting miRNAs that oversee SIRT1 

activity offers interesting prospects for the translation of these pathways into efficacious clinical 

treatment programs for a host of disorders. Yet, as work in this area progresses, a number of 

challenges unfold that impact whether manipulation of non-coding RNAs and SIRT1 can finely 

guide stem cell renewal and differentiation to reach successful clinical outcomes.
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Stem Cell Clinical Utility: Considerations for miRNAs and SIRT1

Stem cells are increasingly being considered for the development of novel strategies for 

multiple disorders throughout the body that can affect the nervous system, cardiovascular 

system, immune system, metabolism, and cancer. One of the challenges for applications that 

rely upon stem cell proliferation and differentiation is the protection and maintenance of 

stem cell populations. For example, specific pathways, such as the mechanistic target of 

rapamycin (mTOR), can be critical for stem cell proliferation [1]. In the absence of mTOR 

activity, trophoblast growth can be inhibited with the failure to establish embryonic stem 

cells [2]. Loss of mTOR activity in neural stem cells results in reduced lineage expansion 

and blocked differentiation and neuronal production [3]. During aging, activity of mTOR 

may be reduced and leads to reduced neurogenesis [4] and a reduction in the proliferation of 
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active neural stem cells [5]. The degree of activity of the mTOR pathway also can impact 

the differentiation of stem cell populations. Inhibition of mTOR activity can promote cell 

differentiation into astrocytic cells [6] and lead to earlier neuronal and astroglial 

differentiation [7]. Furthermore, increased activity of mTOR can foster tumor growth [8,9]. 

Blockade of mTOR activity can limit the population of cancer stem cells that can cause 

disease recurrence and therapeutic resistance [10].

Interestingly, loss of mTOR activity can promote the induction of autophagy [11] and lead 

to an increase in silent mating type information regulation 2 homolog 1 (Saccharomyces 

cerevisiae) (SIRT1) activity that also is vital for stem cell proliferation [12]. In human 

embryonic stem cells challenged with oxidative stress, autophagy leads to cell protection 

and requires SIRT1 activity with the concurrent inhibition of mTOR [13]. SIRT1 appears to 

have an inverse relationship with mTOR to increase stem cell survival [12,14]. During the 

down-regulation of mTOR, SIRT1 promotes neuronal growth [15] and increases mesangial 

cell proliferation during high glucose exposure [16]. SIRT1 can limit the expression of aged 

mesenchymal stem cell phenotypes [17], prevent senescence and impaired differentiation of 

endothelial progenitor cells [18], and improve cardiomyoblast survival [19]. SIRT1 can 

influence neuronal differentiation as well. If SIRT1 is repressed with the parallel induction 

of heat shock protein-70, neural differentiation and the maturation of embryonic cortical 

neurons can ensue [20]. Differentiation of human embryonic stem cells into motoneurons 

also occurs in the absence of SIRT1 [21]. As a proliferative agent, increased activity of 

SIRT1 under some circumstances can lead to the expansion of cancer stem cells. SIRT1 can 

maintain acute myeloid leukemia stem cells and result in resistance against chemotherapy 

[22], promote endometrial cell tumor growth through lipogenesis [23], and foster oncogenic 

transformation of neural stem cells [24].

One strategy that may successfully regulate SIRT1 activity and stem cell proliferation for 

effective translation into clinical treatment programs may involve the modulation of 

microRNAs (miRNAs). MiRNAs are composed of 19-25 nucleotides and are small non-

coding ribonucleic acids (RNAs). MiRNAs oversee gene expression by silencing targeted 

messenger RNAs (mRNAs) translated by specific genes. These small non-coding 

ribonucleic acids may play an important role to influence stem cell proliferation and cellular 

differentiation. For example, over-expression of miR-381 can lead to neural stem cell 

proliferation and prevent differentiation into astrocytes [25]. MiR-134, miR-296, and 

miR-470 can serve to target Oct4, Sox2, and Nanog coding regions to lead to stem cell 

differentiation [26]. In regards to SIRT1, neuronal differentiation can occur through 

miR-34a that leads to decreased SIRT1 expression and DNA-binding of p53 in mouse neural 

stem cells [27]. However, during increased SIRT1 activity, miR-34a results in astrocytic 

differentiation that appears to be independent of SIRT1 [27]. Under other conditions, a 

reduction in miRNA activity with increased SIRT1 expression may be necessary for stem 

cell proliferation. Silencing of miR-195 in old mesenchymal stem cells that allows increased 

SIRT1 activity restores anti-aging factors expression that include telomerase reverse 

transcriptase, protein kinase B (Akt), and the forkhead transcription factor FOXO1 [28] to 

promote stem cell proliferation [29]. In addition, loss of miR-204 that can target SIRT1 can 

allow SIRT1 to foster the proliferation of spermatogonial stem cells [30]. Given the inverse 
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relationship between mTOR and SIRT1, proliferation of stem cells also may require 

increased SIRT1 activity in combination with the inhibition or dysfunction of mTOR 

signaling that is controlled by miRNAs [31].

Targeting miRNAs provides an intriguing format for the control of stem cell proliferation 

and differentiation through pathways that involve SIRT1. Yet, several considerations must 

be addressed for the development of novel strategies with stem cells, miRNAs, and SIRT1. 

For example, the cellular level of activity of SIRT1 that is controlled by miRNAs may 

present an important caveat for the development of strategies for clinical disorders, since the 

presence of SIRT1 has the capability to either promote or retard stem cell proliferation and 

differentiation. To a similar degree, the level of SIRT1 activity can ultimately influence 

cellular survival. Sufficient SIRT1 activity is required for cellular cardiovascular protection 

[32-35] and neuronal protection [36-38]. However, a reduction in SIRT1 activity may be 

necessary for growth factor protection with insulin growth factor-1 [39]. Other 

considerations involve the role of programmed cell death pathways that involve autophagy 

or apoptosis as well as mTOR with miRNAs and SIRT1. SIRT1 can promote autophagy 

induction during inhibition of mTOR activity that may be beneficial to stem cell 

proliferation. Yet, non-coding mRNAs may block autophagy pathways through SIRT1 and 

prevent potentially reparative stem cell pathways such as angiogenesis [40]. In addition, 

some miRNAs, such as miR-34a, have been reported to lead to apoptosis, impaired cell 

vitality, and aggravated senescence in mesenchymal stem cells through the activation of the 

SIRT1 and FOXO3a [41], clearly suggesting that SIRT1 activity regulated by miRNAs can 

greatly affect not only stem cell proliferation and differentiation, but also stem cell survival.
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