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A B S T R A C T   

Background: Inflammation and immune factors are the core of intervertebral disc degeneration 
(IDD), but the immune environment and epigenetic regulation process of IDD remain unclear. 
This study aims to identify immune-related diagnostic candidate genes for IDD, and search for 
potential pathogenesis and therapeutic targets for IDD. 
Methods: Gene expression datasets were obtained from the Gene Expression Omnibus (GEO). 
Differential expression immune genes (Imm-DEGs) were identified through weighted gene cor-
relation network analysis (WGCNA) and linear models for microarray data analysis (Limma). 
LASSO algorithm was used to identify feature genes related to IDD, which were compared with 
core node genes in PPI network to obtain hub genes. Based on the coefficients of hub genes, a risk 
model was constructed, and the diagnostic value of hub genes was further evaluated through 
receiver operating characteristic (ROC) analysis. Xcell, an immunocyte analysis tool, was used to 
estimate the infiltration of immune cells. Finally, nucleus pulposus cells were co-cultured with 
macrophages to create an M1 macrophage immune inflammatory environment, and the changes 
of hub genes were verified. 
Results: Combined with the results of WGCNA and Limma gene differential analysis, a total of 30 
Imm-DEGs were identified. Imm-DEGs enriched in multiple pathways related to immunity and 
inflammation. LASSO algorithm identified 10 feature genes from Imm-DEGs that significantly 
affected IDD, and after comparison with core node genes in the PPI network of Imm-DEGs, 6 hub 
genes (NR1H3, SORT1, PTGDS, AGT, IRF1, TGFB2) were determined. Results of ROC curves and 
external dataset validation showed that the risk model constructed with the 6 hub genes had high 
diagnostic value for IDD. Immunocyte infiltration analysis showed the presence of various dys-
regulated immune cells in the degenerative nucleus pulposus tissue. In vitro experimental results 
showed that the gene expression of NR1H3, SORT1, PTGDS, IRF1, and TGFB2 in nucleus pulposus 
cells in the immune inflammatory environment was up-regulated, but the change of AGT was not 
significant. 

* Corresponding author. Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215009, China. 
** Corresponding author. Suzhou Hospital of Traditional Chinese Medicine, 18 Yangsu Road, Canglang New City, Suzhou City, Jiangsu Province, 

China. 
E-mail addresses: xubo12080@163.com (B. Xu), lyw97538@126.com (Y. Li).   

1 These authors have contributed equally to this work and share first authorship. 

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e34530 
Received 20 March 2024; Received in revised form 10 July 2024; Accepted 10 July 2024   

mailto:xubo12080@163.com
mailto:lyw97538@126.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e34530
https://doi.org/10.1016/j.heliyon.2024.e34530
https://doi.org/10.1016/j.heliyon.2024.e34530
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e34530

2

Conclusions: The hub genes NR1H3, SORT1, PTGDS, IRF1, and TGFB2 can be used as immu-
norelated biomarkers for IDD, and may be potential targets for immune regulation therapy for 
IDD.   

1. Background 

Low back pain is one of the most common orthopedic diseases in clinical practice, affecting approximately 40 % of the global 
population. It is an important medical condition that affects the quality of life of the elderly and causes a huge social and economic 
burden [1]. The intervertebral disc is the largest avascular tissue area in the human body and is mainly composed of the central nucleus 
pulposus, lateral annulus fibrosus, and upper and lower cartilage endplates. Intervertebral disc degeneration (IDD) is the most common 
cause of low back pain and can lead to various spinal diseases, such as structural instability, disc herniation, spinal stenosis, nerve root 
disease, and myelopathy [2]. IDD is related to genetics, lifestyle, and aging. The main pathological features of IDD include the release 
of proinflammatory factors, gradual loss of extracellular matrix, increased cellular death, and changes in the phenotype of healthy 
intervertebral disc cells [3,4]. However, the etiology and pathogenesis of this disease are still not completely understood. 

Currently, there are three main theories that explain the pathophysiology of IDD: mechanical compression theory, chemical nerve 
root inflammation theory, and autoimmune theory. Immune privileged organs are those that do not come into contact with immune 
cells during development. In these organs, there are isolation barriers between the internal environment and the body’s immune 
system, such as the blood-brain barrier and blood-eye barrier. Since its formation, the nucleus pulposus has been enclosed within the 
annulus fibrosus and cartilaginous endplate, creating a unique structure that isolates it from the body’s immune system. Exposing the 
various components of the nucleus pulposus to the body’s immune system can trigger an autoimmune reaction. Therefore, the 
intervertebral disc is considered an immune-privileged organ [5–7]. In fact, the concept of intervertebral disc immune privilege has 
been proposed for many years. However, to date, our understanding of the mechanisms behind intervertebral disc immune privilege 
and its clinical significance remains unclear. In 2002, Burke et al. proposed that degenerated intervertebral disc tissue produces 
proinflammatory mediators and cytokines, giving rise to the chemical radiculitis theory [8]. From a microscopic perspective, both the 
chemical radiculitis theory and the autoimmunity theory to a large extent explain the pathophysiology of IDD by suggesting that 
inflammation and immune factors are at the core of pain and spinal degeneration. However, the role of the immune environment and 
epigenetic regulation in the pathological process of IDD is still not clear. 

Transcriptomics and machine learning are becoming increasingly mature in their application to bioinformatics [9–11]. The 
analysis of molecular networks and genes can enhance our overall understanding of IDD [12]. In this study, we first downloaded 
IDD-related data sets from the Gene Expression Omnibus (GEO) database and obtained immune-related genes from the ImmPort and 
GeneCards databases. Differentially expressed genes (DEGs) were identified by weighted gene correlation network analysis (WGCNA) 
and linear models for microarray data analysis (Limma). Machine learning was used to determine the hub immune-related diagnostic 
biomarkers for IDD. Immune cell infiltration analysis was conducted to observe the immune cell infiltration characteristics of IDD. 
Changes in hub genes were verified through cell experiments. This study may help identify potential immunodiagnostic and thera-
peutic biomarkers for IDD. 

2. Materials and methods 

2.1. Microarray data source 

Search the GEO database (https://www.ncbi.nlm.nih.gov/geo/) for studies involving ’intervertebral disc degeneration’ and apply 
subsequent screening criteria, including experiment type (array expression profile), species (Homo sapiens), sample source (nucleus 
pulposus tissue or whole blood), and modeling time. Ultimately, the dataset of interest, GSE70362 [13], GSE147383 [14], GSE56081 
[15] and GSE124272 [16], was selected for further analysis. The GSE70362 chip data includes 16 IDD samples and 8 control samples, 
the GSE147383 chip data includes 2 IDD samples and 2 control samples, and the GSE56081 chip data includes 5 IDD samples and 5 
control samples. These three datasets are used for analysis. The GSE124272 chip data includes 8 IDD samples and 8 control samples, 
and this dataset is used for hub gene validation (Table 1). Import those datasets into the Sangerbox platform (http://sangerbox.com/ 
home.html) for subsequent correlation analysis [17]. We normalized the gene expression data using the R package "optparse" [18]. The 
inSilicoMerging R package (DOI: 10.1186/1471-2105-13-335) was used to merge the three datasets, and then batch effects were 
removed using Johnson WE et al.’s method [19]. Specifically, we estimate the Location and scale model parameters that represent the 

Table 1 
Microarray data.  

Data number Platform information IDD group Control group Species Tissu 

GSE70362 GPL17810 16 8 Homo sapien Nnucleus pulposus 
GSE147383 GPL570 2 2 Homo sapien Nnucleus pulposus 
GSE56081 GPL15314 5 5 Homo sapien Nnucleus pulposus 
GSE124272 GPL21185 8 8 Homo sapien whole blood  
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batch effects by “pooling information” across genes in each batch to ’shrink’ the batch effect parameter estimates toward the overall 
mean of the batch effect estimates (across genes). These empirical Bayes estimates are then used to adjust the data for batch effects, 
providing more robust adjustments for the batch effect on each gene. 

We obtained 1793 and 17767 immune-related genes from the ImmPort [20] and GeneCards [21] databases, respectively. From the 
intersection of these two gene sets, 1698 immune-related genes were identified. 

2.2. Weighted gene correlation network analysis 

We used the ’WGCNA’ package in R software to study the association between genes and phenotypes by constructing gene co- 
expression networks [22]. The Median Absolute Deviation (MAD) of each gene was calculated separately, excluding the top 50 % 
of genes with the smallest MAD. Then, both Pearson’s correlation matrices and average linkage method were applied for all pairwise 
genes. Next, a weighted adjacency matrix was constructed using a power function A_mn = |C_mn|^β (C_mn = Pearson’s correlation 
between Gene_m and Gene_n; A_mn = adjacency between Gene m and Gene n). To classify genes with similar expression profiles into 
gene modules, average linkage hierarchical clustering was conducted according to the TOM-based dissimilarity measure with a 
minimum size of 300 for the gene group dendrogram, and a sensitivity set to 3. In addition, we also incorporated modules with 
distances less than 0.25. 

2.3. Identification of immunodifferentially expressed genes associated with IDD 

Perform differential analysis using the R software package limma (https://doi.org/10.1093/nar/gkv007, version 3.40.6) to obtain 
differentially expressed genes [23]. Specifically, we obtained the expression profile dataset, used the lmFit function for multiple linear 
regression, further used eBayes function to compute moderated t-statistics, moderated F-statistic, and log-odds of differential 
expression by empirical Bayes moderation of the standard errors towards a common value, and ultimately obtained the significance of 
differential expression for each gene. The differential gene screening threshold was set as follows: fold change>1.5, P-value<0.05. 
Volcano plots and heatmaps were used to display the results of differential gene expression. The intersection of DEGs and immune 
genes was taken to obtain the differentially expressed immune genes (Imm-DEGs). 

2.4. Enrichment analysis 

The ’clusterProfile’ package [24] in R software was used to explore the biological functions of Imm-DEGs. We performed gene 
ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis [25,26]. Set the minimum gene set to 5 and the 
maximum to 5000,P value of <0.05 and a FDR of <0.25 were considered statistically significant. 

2.5. Protein-protein interaction (PPI) network 

The PPI relationship of Imm-DEGs was obtained by using String database. Cytoscape 3.7.2 software was used to construct the 
protein-protein interaction network diagram [27]. Network topology analysis was performed using the ’CytoNCA’ app in the software, 
and core node genes were selected based on betweenness centrality. Genes in the top 50 % of the betweenness centrality of the PPI 
network are screened as the core node genes of the network. 

2.6. Identification of candidate hub genes via machine learning 

We integrated gene expression data using R’s glmnet package and performed LASSO-Cox regression analysis [28]. The candidate 
Imm-DEGs were included in the model, and LASSO algorithm was used for analysis to obtain feature genes associated with IDD. In 
addition, we also set up a 3-fold cross-validation to obtain the optimal model. The risk scoring formula [Risk Score= (exp-Gene 1 
*coef-Gene 1) ＋ … (exp－Gene n *coef－Gene n)] was established using a random forest model to predict the likelihood of IDD. We 
further evaluated the prognostic value of candidate genes and nomogram through ROC analysis. The area under the curve (AUC) and 
95 % confidence interval (CI) were obtained by ROC analysis, where an AUC value > 0.7 was considered to have a good diagnostic 
effect. 

2.7. Immune cell infiltration analysis 

The immune microenvironment is usually composed of immune cells, inflammatory cells, fibroblasts, stromal cells, different cy-
tokines, and chemokines. Immune cell infiltration analysis plays an important role in predicting disease progression and treatment 
response. IOBR [DOI: 10.3389/fimmu.2021.687975] is a immune tumor biology computing tools, Here, based on our expression 
profile, we used the R software package IOBR and selected xCell (https://doi.org/10.1186/s13059-017-1349-1) method to calculate 
64 immunoinfiltrating cell scores for each sample [29]. We used this platform to evaluate the proportions of immune cells between the 
IDD group and the control group [30]. Heatmaps from the Sangerbox platform were utilized to describe the associations among 
different immune cells [17]. 
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2.8. In vitro validation experiment 

Human nucleus pulposus cells and human myeloid leukemia mononuclear cells (THP-1) were purchased from Procell Life Sci-
ence&Technology Co., Ltd. (CP–H097, CL-0233). The cells were maintained in Dulbecco’s Modified Eagle Medium (11320033 Gibco) 
containing 10 % fetal bovine serum (29121005 Corning), with an additional 100 U/ml penicillin and 100 mg/ml streptomycin at 37 ◦C 
under 5 % CO2. Firstly, THP-1 were induced by phorbol myristate acetate (100 ng/mL) to differentiate into M0 macrophages. Then the 
THP-1 macrophages were further induced with LPS (1 μg/mL) for 24 h to differentiate into M1 macrophages. The pre-seeded nucleus 
pulposus cells were co-cultured with macrophages in the Transwell chamber. The cell supernatant was collected and the expression 
levels of interleukin-1β (IL- 1β) and tumor necrosis factor-α (TNF-α) in the supernatant of nucleus pulposus cells were detected using IL- 
1β ELISA kit and TNF-α ELISA kit (LA167616H, LA160102H Nanjing Jin Yibai Biological Technology Co. Ltd.). 

Fig. 1. GEO datasets debatching. (A) Summary of intersections among GEO datasets. (B) Comparison of data set expression distribution before 
debatching. (C) Comparison of dataset expression distribution after debatching. (D) Comparison of data set density distributions before debatching. 
(E) Comparison of dataset density distribution after debatching. (F) Unified manifold approximation and projection (UMAP) of data sets before 
debatching. (G) UMAP of datasets after debatching. 

Z. Huang et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e34530

5

(caption on next page) 

Z. Huang et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e34530

6

2.9. Immunofluorescence 

M1 macrophages were identified by immunofluorescence. Cells were fixed with 4 % paraformaldehyde, permeabilized with 1 % 
Triton X-100, and blocked with 3 % goat serum. The CD68 antibody (ARG10514, arigo, 1:200) and iNOS antibody (ARG56509, arigo, 
1:200) were added and incubated overnight at 4 ◦C. The next day, the second antibody was replaced and incubated for 30 min. After 
incubation, DAPI was used for counterstaining, and fluorescence microscopy was used to visualize the cells. 

2.10. Reverse transcription-quantitative real-time PCR (RT-qPCR) 

Total RNA was extracted with Trizol. The Optical Density value of the RNA was determined with a spectrophotometer, the purity of 
the RNA was evaluated, and quantitative analysis was performed. Prime Script RT reagent Kit (Nanjing Nuoweizan Biotechnology Co., 
LTD., Nanjing China) reverse-transcribed and stored at − 20 ◦C. The corresponding gene sequences in GenBank were retrieved, and the 
primer was designed using Oligo v6.6 software (Shanghai Bioengineering Technical Service Co., LTD.). The cDNA was amplified with 
the following primers: GAPDH forward, 5′-GGA GTC CAC TGG CGT CTT CAC-3′; GAPDH reverse, 5′-GCT GAT GAT CTT GAG GCT GTT 
GTC-3′; NR1H3 forward, 5′-GCC TGA CAT TCC TCC TGA CTC TG-3′; NR1H3 reverse, 5′-GGC ATC CTG GCT TCC TCT CTG- 3′; SORT1 
forward, 5′-CTC AGA GCC GAA TGC CGT AGG-3′; SORT1 reverse, 5′-GCC ACA ATG ATG CCT CCA GAA TC-3′; PTGDS forward, 5′-AGA 
AGA AGG CGG CGT TGT CC-3′; PTGDS reverse, 5′-CAT GGT TCG GGT CTC ACA CTG G-3′; AGT forward, 5′-ACC CTG GCT TTC AAC 
ACC TAC G-3′; AGT reverse, 5′-TTG AGT CAC CGA GAA GTT GTC CTG-3′; IRF1 forward, 5′-CTC CAC TCT GCC TGA TGA CCA C-3′; IRF1 
reverse, 5′-GCC ACT CCG ACT GCT CCA AG-3′; TGFB2 forward, 5′-AGT TCA GAC ACT CAG CAC AGC AG-3′; TGFB2 reverse, 5′-ACG 
CAG CAA GGA GAA GCA GAT G-3′. 5 × Prime Script RT Master Mix (Nanjing Nuoweizan Biotechnology Co., LTD., Nanjing China) 20ul 
system was amplified, and the results were calculated as 2-△△CT semi-quantitative. 

2.11. Western blot 

At first, the samples were subjected to protein extraction, and the concentration of protein was assessed utilizing the BCA tech-
nique. The proteins were then denatured by heating in a constant-temperature metal bath. Afterwards, additional samples were 
included according to the protein concentration, subjected to electrophoresis, and then transferred onto a PVDF membrane. At room 
temperature, the membrane was sealed using 5 % skim milk powder. The following antibodies were added and incubated at 4 ◦C 
overnight: NR1H3 antibody (14351-1-AP, proteintech, 1:2000), SORT1 antibody (12369-1-AP, proteintech, 1:2000), PTGDS antibody 
(10754-2-AP, proteintech, 1:1000), AGT antibody (11992-1-AP, proteintech, 1:1000), IRF1 antibody (11335-1-AP, proteintech, 
1:500), TGFB2 antibody (28426-1-AP, proteintech, 1:500), and GAPDH antibody (10494-1-AP, proteintech, 1:5000). On the subse-
quent day, the second antibody was administered and left to incubate for a duration of 60 min. Finally, ECL chromogenic solution was 
used for exposure. 

2.12. Statistical analysis 

Bioinformatics analysis was performed in Sangerbox 3.0 (http://vip.sangerbox.com/home.html) and R software. The chi-square 
test or Fisher’s exact test was carried out to analyze the statistical significance between two sets of categorical variables. Correla-
tion coefficients between different immune cell were estimated via Pearson correlation analysis. The in vitro validation data were 
analyzed using GraphPad Prism 9.0.0 statistical software. To compare multiple groups, one-way analysis of variance was used. 
Pairwise comparisons were made using Tukey’s test. P < 0.05 was considered statistically significant. 

3. Results 

3.1. Data set processing 

Three GEO datasets were de-batch-effect processed to obtain the combined dataset, which included a total of 23 IDD samples and 
15 control samples (Fig. 1A). Before de-batch-effect, the sample distribution of each data set in the boxplot and density map is quite 
different (Fig. 1B and D), and the Unified manifold approximation and projection (UMAP) shows that the samples of each dataset are 
clustered together (Fig. 1F), indicating that there is a batch effect. After the removal of batch effect, the boxplot shows that the data 
distribution among all datasets tends to be consistent, and the median is in a line (Fig. 1C); the density map shows that the mean and 
variance among all datasets are similar (Fig. 1E); and the UMAP shows that the samples among all datasets are clustered and inter-
weaved together (Fig. 1G). The above results indicate that the batch effect is well removed in this study. 

Fig. 2. WGCNA and Key Module Identification. (A) The scale-free fit index (scale independence, y-axis) as a function of the soft threshold power (x- 
axis). (B) The mean connectivity (degree, y-axis) as a function of the soft threshold power (x-axis). (C) Gene dendrograms were obtained by average 
linkage hierarchical clustering. The colored row underneath the dendrogram shows the module assignment determined by the dynamic tree cut 
method. (D) Clustering dendrogram of the IDD and control samples. (E) Heatmap of eigengene adjacency. (F) Heatmap of the association between 
modules and MS. Each cell contains the corresponding correlation and p-value. (G) Correlation plot between module membership and significance of 
genes included in the blue module. 
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Fig. 3. Expression of immune-related genes in patients with IDD. (A) DEGs expression heatmap (fold change>1.5, P-value<0.05). (B) DEGs volcano 
plot (fold change>1.5, P-value<0.05). (C) Genes intersection Venn diagram. (D) GO analysis of the intersection genes. (E) KEGG pathway analysis of 
the intersection genes. (F) PPI network of Imm-DEGs (ovals represent up-regulated genes, prisms represent down-regulated genes, and red repre-
sents core node genes). 
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3.2. WGCNA and Key Module Identification 

We used WGCNA to construct a scale-free co-expression network to identify the most relevant module associated with IDD. A "soft" 
threshold β of 8 was chosen based on scale independence and average connectivity (Fig. 2A and B). Clustering dendrograms were 
generated for the IDD group and control group, resulting in five different colored gene co-expression modules, as shown in Fig. 2C and 
D. Correlation analysis results showed that the blue module had the highest correlation with IDD (r = 0.61, P < 0.001) (Fig. 2E and F). 
Gene significance and module membership were correlated positively (correlation coefficient = 0.48, P < 0.001) in the blue module, 
consisting of 1375 genes (Fig. 2G). These results indicate that the genes within the blue module are most closely related to IDD. 

3.3. Expression of immune-related genes in patients with IDD 

Limma gene differential analysis results showed that there were 384 differentially expressed genes between the IDD group and the 
control group, of which 262 were up-regulated and 122 were down-regulated in the IDD group (Fig. 3A and B). Fig. 3C shows the 
intersection genes most closely associated with disc degeneration, differential genes, and immune-related genes in a weighted gene co- 
expression network analysis. Thirty immune-related differentially expressed genes were generated after the IDD group, of which 24 
were up-regulated and six were down-regulated. GO analysis elucidated that Imm-DEGs were mainly enriched in biological processes 
(BP) such as cell reaction, defense response, cell secretion, and immune response, cellular components (CC) such as extracellular 
matrix and vesicles, and molecular functions (MF) such as receptor ligand activity (Fig. 3D). KEGG analysis showed that Imm-DEGs 
were primarily enriched in staphylococcus aureus infection, inflammatory bowel disease, rheumatoid arthritis, TGF-beta signaling 
pathway, IL-17 signaling pathway, and TNF signaling pathway (Fig. 3E). The PPI network of Imm-DEGs consists of 30 nodes and 178 

Fig. 4. Candidate hub gene identification and diagnosis model construction. (A) Coefficient profiles of variables in the LASSO regression model 
(Candidate genes: SORT1, PTGDS, TGFB2, IRF1, DEFB1, FABP3, AGT, NR1H3, HLA-DRA, and NFKBIZ). (B) Ten-fold cross-validation for turning 
parameter (λ) selection in the LASSO regression model. (C) The random forest algorithm of key genes. (D) Violin map of key genes. (E) Venn di-
agram of the intersection of the LASSO algorithm and core genes in the PPI network. (F) The ROC curve of the diagnostic model. (G) The ROC curve 
of the individual genes. (H) The ROC curve of the validation dataset. 

Fig. 5. Immune infiltration analysis. (A) Immune cell content stacking plot. (B) Violin diagram of 12 different immune cells. (C) Correlation matrix 
of 12 different immune cells. 
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edges (Fig. 3F). Topological analysis shows that core node genes of the network are TGFB2, AGT, APOD, PPBP, S100A8, VEGFC, 
PTGDS, SERPINA3, IL27RA, SORT1, NR1H3, TNFAIP3, IRF1, PF4, RBP4. By identifying these differentially expressed Imm-DEGs and 
analyzing their biological functions and enrichment pathways, we can further understand the immunopathological mechanism of IDD, 
and provide important clues for the prevention, diagnosis and treatment of it. 

3.4. Candidate hub gene identification and diagnosis model construction 

The LASSO algorithm identified 10 significant feature genes out of 30 Imm-DEGs that have a great impact on IDD (Fig. 4A, B, and 
C). The expression of these 10 genes in degenerated intervertebral disc samples and control samples is shown in Fig. 4D. The Venn 
diagram shows the intersection between the candidate genes identified by the LASSO algorithm and the core genes in the PPI network 
of Imm-DEGs, confirming six genes (NR1H3, SORT1, PTGDS, AGT, IRF1, TGFB2) as HUB genes (Fig. 4E). Based on the coefficients of 
these six feature genes, the score for IDD was calculated by multiplying the gene expression with the corresponding coefficients and 
adding them up. Therefore, the formula for the model constructed by the six genes is: RiskScore = 0.149*NR1H3+
0.296*SORT1+0.210*PTGDS-0.121*AGT+0.085*IRF1+0.124*TGFB2, with a lambda value of 0.06. The receiver operating charac-
teristic (ROC) curves were used to predict IDD based on the six gene features, which showed that all genes had a predictive efficacy of 
AUC 0.99, 95%CI 0.96–1.00 (Fig. 4F), while individual genes’ predictive efficacy was NR1H3 (AUC 0.86, 95%CI 0.75–0.98), SORT1 
(AUC 0.85, 95%CI 0.73–0.98), PTGDS (AUC 0.84, 95%CI 0.70–0.98), AGT (AUC 0.84, 95%CI 0.70–0.97), IRF1 (AUC 0.83, 95%CI 
0.66–0.99), and TGFB2 (AUC 0.82, 95%CI 0.68–0.95) (Fig. 4G). The predictive effect of all genes was higher than that of individual 
genes, consistent with the multimolecular driven nature of disc degeneration. The model was validated using GSE124272, which 
showed a predictive efficacy of AUC 0.82, 95%CI 0.60–1.00 (Fig. 4H), indicating that the model has high diagnostic value for IDD. 

3.5. Immune infiltration analysis 

Immune infiltration analysis can better explore the role of immunity in IDD, as shown in Fig. 5A for 64 kinds of immune cells in IDD 
and control groups. The box plot shows that astrocytes, CD4+ memory-activated T cells, erythrocytes, M1 macrophages, monocytes, 
multipotent progenitors (MPP), and neutrophils levels were higher in the IDD group compared to the control group, while lymphoid 
progenitor cells (CLP), hematopoietic stem cell (HSC), interdigitating DC (iDC), mast cells, and natural killer T cell (NKT) levels were 
lower, as shown in Fig. 5B. Analysis of 12 different immune cells showed that astrocytes had a strong correlation with monocytes (r =
0.54) and NKT (r = − 0.59); CLP had a strong correlation with erythrocytes (r = − 0.62), MPP (r = − 0.53), and neutrophils (r = − 0.51); 
erythrocytes had a strong correlation with monocytes (r = 0.51) and MPP (r = 0.58); M1 macrophages had a strong correlation with 
mast cells (r = − 0.50); monocytes had a strong correlation with neutrophils (r = 0.58) and NKT (r = − 0.63). All correlations are shown 
in Fig. 5C. In conclusion, different levels of immune cell infiltration in IDD patients may be a potential therapeutic target. 

3.6. In vitro validation results 

The research suggests that M1 macrophages infiltrate the entire intervertebral disc and trigger a cascade of inflammatory reactions 
after the destruction of the nucleus pulposus immune barrier, leading to abnormal metabolism of nucleus pulposus cells and degra-
dation of extracellular matrix [31,32]. They are one of the important immune cells involved in IDD. Immune infiltration analysis also 
shows an increase in M1 macrophage levels in the nucleus pulposus tissue of degenerative discs. Therefore, we co-cultured nucleus 
pulposus cells with macrophages to create an M1-polarized immune inflammatory environment and verify changes in HUB genes. 
iNOS is one of the commonly used markers for M1 macrophages, and immunofluorescence results show that LPS can successfully 
induce M1 macrophage polarization. (Fig. 6A). After co-culturing nucleus pulposus cells with M1 macrophages for 24 h, the levels of 
IL-1β and TNF-α in the cell supernatant were significantly increased, indicating that the nucleus pulposus cells were in an immune 
inflammatory environment. (Fig. 6B and C). The expression of NR1H3, SORT1, PTGDS, IRF1, and TGFB2 in nucleus pulposus cells was 
upregulated when they were exposed to the immune inflammatory environment, which is consistent with previous bioinformatics 
analysis results. However, downregulation of AGT was not significant, indicating that the expression of AGT in nucleus pulposus cells 
may be regulated by other factors. (Fig. 6D, E and Fig. S1). 

4. Discussion 

Intervertebral discs are the largest avascular enclosed structures in the human body and have been isolated from autologous blood 
circulation since birth, making them inherently antigenic. The annulus fibrosus and the cartilaginous endplate constitute a solid 
physical barrier that separates the nucleus pulposus tissue in the intervertebral disc from the body’s immune system, preventing 
immune cells and immune factors from entering the intervertebral disc. Fas ligands were found in the nucleus pulposus of the 
intervertebral disc. Fas ligands, as apoptosis-inducing factors, are widely expressed in other immune pardoning organs. Fas ligands 

Fig. 6. In vitro validation experiment. (A) Identification of M1 macrophages. (B) Cell coculture of nucleus pulposus cells and macrophages. (C) IL-1β 
and TNF-α levels in the supernatant after 24 h of coculture. (D) Levels of NR1H3, SORT1, PTGDS, AGT, IRF1, and TGFB2 mRNA in nucleus pulposus 
cells after 24 h of coculture. (E) Levels of NR1H3, SORT1, PTGDS, AGT, IRF1, and TGFB2 protein in nucleus pulposus cells after 24 h of coculture. 
The unedited images are referenced in Fig. S1. *: P < 0.05, **: P < 0.01, ***: P < 0.010, ****: P < 0.0001, ns: P > 0.05. 
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may function as molecular barriers by inhibiting vascular and immune cell infiltration [7,33]. In addition, many studies have reported 
the protective role of notochordal cells in intervertebral disc and their inhibitory effect on inflammation [34]. In summary, the annulus 
fibrosus, the cartilage endplate, and certain biological factors, such as Fas ligands, together constitute a unique structure that maintains 
intervertebral disc immunity [35]. When the annulus fibrosus ruptures and the isolation function disappears, the body recognizes the 
nucleus pulposus as "non-self" tissue, and the isolated antigens in the nucleus pulposus come into contact with the body’s immune 
system, resulting in an autoimmune reaction that is the main cause of the inflammatory reaction in intradiscal tissue [5,6]. Under-
standing the pathogenesis of IDD at the level of immune molecules will provide a theoretical basis for us to comprehensively and 
deeply understand the pathological process of this disease and develop more effective prevention and treatment measures. Therefore, 
we used bioinformatics analysis and machine learning methods to identify immunorelated diagnostic candidate genes for IDD. We 
identified six key immunorelated candidate genes (NR1H3, SORT1, PTGDS, AGT, IRF1, TGFB2) and performed in vitro experiments to 
validate them. Experimental results showed that the gene expression of NR1H3, SORT1, PTGDS, IRF1, and TGFB2 in nucleus pulposus 
cells in the immune inflammatory environment was up-regulated, consistent with bioinformatics analysis results, but the change of 
AGT was not significant. 

The protein encoded by the nuclear receptor subfamily 1 group H member 3 (NR1H3) gene belongs to the NR1 subfamily of the 
nuclear receptor superfamily, also known as the liver X receptor-α (LXRα). NR1 family members are key regulatory factors for 
macrophage function, involved in controlling lipid homeostasis and transcriptional programs relating to inflammation. When LXRα is 
activated by inflammatory substances, it quickly enters the nucleus from the cytoplasm and is modified by small ubiquitin-like 
modifier proteins [36]. At the same time, LXRα recruits nuclear receptor co-repressor (N-CoR) in the nucleus, initiating a "tran-
scriptional repression" mechanism that affects the expression of inflammatory genes and the stimulation of chemokines by regulating 
signaling pathways such as nuclear factor-κB (NF-κB), toll-like receptors, etc [37]. For example, Jeon et al. showed that the poly-
morphism of the LXRα promoter region (1830 T > C) is associated with an increased risk of systemic lupus erythematosus and cor-
responded to decreased expression of LXRα in B cells [38]. Other studies demonstrated that LXR expression was elevated in CD4+ T 
cells of patients with SLE [39] and macrophages in synovial fluid of rheumatoid arthritis patients [40], which are believed to be the 
cause of aberrant immune responses. In summary, these studies support the role of LXR in the immune system and suggest that 
abnormal LXR signaling (increased or decreased) may lead to immune cell dysfunction, especially autoimmune disorders. 

Sortilin1 (SORT1) participates in innate immunity by regulating inflammation and phagocytosis, and in adaptive immunity by 
controlling immune cell maturation and regulating T cell and NK cell activation [41]. At present, there has been little research on the 
role of SORT1 in immune regulation; further understanding of this gene may reveal new functions in immune regulatory pathways. 

Prostaglandin D2 synthase (PTGDS), also known as PGD2 or L-PGDS, is a major prostaglandin and an important mediator of allergic 
responses. PGD2 is the primary product of COX catalytic reactions in various tissues and cells, including T cells, DCs, macrophages, 
mast cells, and platelets [42]. PGD2 also acts as a neuromodulator and trophic factor in the central nervous system [43]. Studies have 
shown that after the injury of sciatic nerve and dorsal root ganglion neurons, PGD2 regulates the phagocytosis activity of macrophages 
through non-cellular autonomous mechanisms, promotes the removal of myelin debris and conducive to axon and myelin regenera-
tion. In addition, PGD2 regulates blood pressure barrier permeability and SOx2 expression levels in Schwann cells, controlling 
macrophage accumulation in injured nerves [44]. Therefore, we speculate that PGD2 may also influence IDD by regulating the 
focusing and function of immune cells such as macrophages. 

The activation of interferon regulatory factor 1 (IRF1) is involved in the transcription of genes that respond to viruses and bacteria 
in humans and it plays a role in cellular proliferation, apoptosis, immune response, and DNA damage response. The IRF1 gene is 
generally expressed at low basal levels in cells and is highly sensitive to various stimuli, including interferons and NF-κB [45]. The high 
expression of IRF1 in degenerated intervertebral discs also provides evidence for the theory of autoimmune-mediated IDD. 

Transforming growth factor-beta 2 (TGFB2) is a member of the TGF-β superfamily of proteins that regulate cell growth and dif-
ferentiation. TGF-β is a pleiotropic cytokine that has both positive and negative effects on various tissues and disease states, suggesting 
that overactivation of TGF-β signaling may further lead to IVD degradation [46,47]. The TGF-β cytokine family contains multiple 
subtypes, including TGFB1, TGFB2, and TGFB3, which have similar effects on various cells, such as macrophages, T cells, and B cells 
[48]. In the early stages of inflammation, preexisting latent TGFB2 and TGFB2 released from the site of injury bind to local extra-
cellular matrix and become activated. The activated TGFB2 has strong chemotactic properties for leukocytes, monocytes, T cells, and 
fibroblasts [49]. Currently, TGFB2 is considered an immune-regulatory factor that is closely related to maintaining the immuno-
suppressive environment and immune privilege in the eye [50]. The nucleus pulposus also has immunoprivileged characteristics; thus, 
there is reason to believe that TGF-β2 may also play an important role as an immune-regulatory factor in the process of IDD. 

As the main functional executors of the immune system, immune cells participate widely in the occurrence and progression of 
degenerative diseases. Degenerated nucleus pulposus cells and annulus fibrosus cells produce a large amount of proinflammatory 
cytokines, including IL-1α, IL-1β, TNF-α and C–C motif chemokine ligand (CCL), etc [51]. These inflammatory chemotactic factors 
further recruit immune cells to infiltrate the intervertebral disc and aggravate the inflammatory response. Our research shows that 
astrocytes, CD4+ memory-activated T cells, M1 macrophages, monocytes, neutrophils, etc., are present at higher levels in degenerated 
discs [52]. Macrophages are the main type of inflammatory cells in degenerated intervertebral disc tissue. Macrophages are important 
defense functional immune cells differentiated from monocytes in the blood, mainly playing a role in phagocytosis, antigen presen-
tation, and secretion of cytokines during immune responses. M1 macrophages have the function of antigen presentation and secretion 
of proinflammatory cytokines. Normal intervertebral disc tissues are excluded from the immune system, and T cells cannot be detected. 
When IDD occurs, the disc nucleus itself can activate T cell subsets, leading to an imbalance of T cell subsets and an outbreak of 
inflammation [53]. According to the differentiation antigens on the cell surface, mature T lymphocyte cells can be divided into two 
subtypes: CD4+ and CD8+. CD4+ T cells recognize exogenous antigen peptides composed of 13–17 amino acids and mainly 
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differentiate into helper T cells (Th) after activation, which can help B cells produce antibodies, form antigen-antibody complexes, and 
exacerbate the inflammatory response [54]. At first, it was thought that macrophages might be the only immune cells infiltrating the 
intervertebral disc [55]. Later studies have shown that there are different types of immune cell infiltration in the degenerative disc, but 
most studies have focused on the relationship between macrophages and disc degeneration. Our study showed that in addition to M1 
macrophages, immune cells such as T cells and neutrophils also play an important role in the immune inflammatory response of 
intervertebral disc, suggesting the direction of future research. At present, many immunotherapy drugs used in tumor play an 
immunotherapeutic role by regulating immune infiltrating cells such as macrophages and T cells [56]. These results indicate that there 
is a close relationship between IDD and immune system changes, and regulating immune-infiltrating cells may become a therapeutic 
target for IDD [57]. 

Molecular markers can indicate biological changes, and the changes in the biomarker spectrum detected in degenerated inter-
vertebral discs and peripheral blood may play an important role in early detection of IDD [58]. Diagnostic value analysis indicates that 
the diagnostic model we constructed has high accuracy and stability in diagnosing intervertebral disc degeneration in both the training 
queue and peripheral blood verification queue. However, clinical validation is needed to identify these genes as potential therapeutic 
targets or diagnostic markers. This includes evaluating the efficacy of drugs targeting the central gene in clinical trials or validating the 
accuracy and clinical application value of diagnostic markers. After clinical verification, on the one hand, the expression pattern of the 
central gene can be used to develop relevant diagnostic markers or biomarkers for diagnosis, prediction of disease course or evaluation 
of treatment effect. On the one hand, based on specific expression patterns of central genes, drugs can be developed to target these 
genes to regulate the immune response and the process of IDD. 

Due to the limited datasets meeting the criteria, the included datasets and samples could not cover groups with different races, 
genders, ages and degrees of degeneration. Therefore, the influence of these factors on gene expression was not explored in this study, 
which has an impact on the robustness of the study results. More original studies and bioinformatics studies involving different races, 
ages and genders are needed in the future. 

5. Conclusion 

In this study, we successfully identified five immune-related hub genes (NR1H3, SORT1, PTGDS, IRF1, TGFB2) using bioinfor-
matics analysis, machine learning algorithms, and experimental verification. These hub genes have significant specificity and have 
shown important roles in immune-related functional annotation and pathway analysis, revealing the immunoinflammatory regulation 
mechanism of disc degeneration. These genes have shown potential as diagnostic candidate genes for IDD and are potential targets for 
immunoregulatory therapy. Overall, our research results may provide new insights into the pathogenesis of IDD. 
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