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Abstract
1.	 A time-consuming challenge faced by camera trap practitioners is the extraction 

of meaningful data from images to inform ecological management. An increasingly 
popular solution is automated image classification software. However, most solu-
tions are not sufficiently robust to be deployed on a large scale due to lack of lo-
cation invariance when transferring models between sites. This prevents optimal 
use of ecological data resulting in significant expenditure of time and resources to 
annotate and retrain deep learning models.

2.	 We present a method ecologists can use to develop optimized location invariant 
camera trap object detectors by (a) evaluating publicly available image datasets 
characterized by high intradataset variability in training deep learning models for 
camera trap object detection and (b) using small subsets of camera trap images to 
optimize models for high accuracy domain-specific applications.

3.	 We collected and annotated three datasets of images of striped hyena, rhinoceros, 
and pigs, from the image-sharing websites FlickR and iNaturalist (FiN), to train 
three object detection models. We compared the performance of these models 
to that of three models trained on the Wildlife Conservation Society and Camera 
CATalogue datasets, when tested on out-of-sample Snapshot Serengeti datasets. 
We then increased FiN model robustness by infusing small subsets of camera trap 
images into training.

4.	 In all experiments, the mean Average Precision (mAP) of the FiN trained mod-
els was significantly higher (82.33%–88.59%) than that achieved by the models 
trained only on camera trap datasets (38.5%–66.74%). Infusion further improved 
mAP by 1.78%–32.08%.

5.	 Ecologists can use FiN images for training deep learning object detection solu-
tions for camera trap image processing to develop location invariant, robust, out-
of-the-box software. Models can be further optimized by infusion of 5%–10% 
camera trap images into training data. This would allow AI technologies to be de-
ployed on a large scale in ecological applications. Datasets and code related to this 
study are open source and available on this repository: https://doi.org/10.5061/
dryad.1c59z​w3tx.
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1  | INTRODUC TION

Automated survey methods such as camera trapping and passive 
acoustic monitoring are widely used in ecological research (Gibb 
et al., 2019; Rovero & Zimmermann, 2016; Sugai et al., 2018). These 
methods provide invaluable insight into a plethora of ecological in-
formation including species occurrence, activity patterns, and be-
havior (O'Connell et  al.,  2011). However, they often result in the 
collection of large quantities of data, which must be processed, re-
quiring a significant commitment of time and resources for manual 
or supervised classification (Swinnen et al., 2014; Young et al., 2018). 
Reducing the processing time and resources necessary for traditional 
data analysis such as manual analysis and citizen science (Nguyen 
et al., 2017; Swanson et al., 2015) has prompted increasing research 
into the adoption of Artificial Intelligence (AI) software in automated 
data classification (Falzon et  al.,  2014; Norouzzadeh et  al.,  2018; 
Willi et al., 2018).

Object detector and image classifier models have already 
been adopted to some extent in the processing of camera trap im-
ages (Falzon et  al.,  2020; Gomez Villa et  al.,  2016; Norouzzadeh 
et al., 2018; Tabak et al., 2019; Willi et al., 2018; Yu et al., 2013). These 
tools rely on data-driven deep learning to identify complex patterns 
which can be used for classification without feature engineering as 
described by (Miao et al., 2019). However, most solutions presented 
thus far have shown limited transferability to image data outside the 
domain of the training data (Beery et  al.,  2018; Willi et  al.,  2018). 
This results in the need to develop models specific to each domain. 
However, this process is time and resource intensive, requiring re-
peated collection and manual annotation of camera trap data, and 
computationally expensive training of deep neural networks (Falzon 
et al., 2020). Thus, there is a clear need to develop location invariant 
object detectors, which are deep learning models that can be trans-
ferred from one location to another, achieving acceptable results 
without having to be retrained. Such out-of-the-box solutions are 
attractive due to their potential for extensive application, particu-
larly in circumstances where the development of domain or study-
specific models is prohibitively expensive or otherwise unattainable.

Achieving location invariance requires training data to be charac-
terized by high intradataset variability. This is because neural networks 
learn patterns in data, meaning low intradataset variability can result 
in learning of domain-specific features such as camera angle, lighting, 
and vegetation, reducing location invariance (Miao et al., 2019; Singh 
et al., 2020; Torralba & Sinha, 2003). Therefore, camera trap images 
must be obtained from many sources to be able to train effective ob-
ject detectors and classifiers. This requires the deployment of many 
camera traps across large geographical regions and environments. 
However, establishing such extensive networks of cameras is time 

and resource intensive and may be unfeasible for smaller-scale studies 
or those focusing on rare or elusive species. Even when researchers 
have access to a network of camera traps, collecting enough images 
for training object detectors can prove difficult. (Maurice, 2019) de-
ployed 15 cameras for 2 months resulting in the collection of only 41 
images of the pangolin (the target species), a number which would 
be insufficient for effective neural network training (Shahinfar et al., 
2020). Other factors which limit the accessibility and availability of 
camera trap images include the reticence of researchers to share ex-
isting camera trap data, or lack of data for novel species studies.

These limitations in data accessibility and availability limit the 
adoption of automated AI solutions in ecological camera trap image 
processing (Schneider et  al.  2018). Thus, alternative data sources 
must be identified and evaluated to assist in the development of ob-
ject detectors capable of being deployed in any domain, at any loca-
tion, achieving acceptable results regardless of camera trap image 
availability. Possible solutions include publicly available sources of 
animal imagery, such as FlickR (flickr.com) and iNaturalist (inatu​ralist.
org). FlickR is a consumer photo sharing website, hosting approxi-
mately 10 billion images, shared by over 90 million monthly users. 
It is characterized by high intradataset variability, high accessibility, 
and a wide range of species types in highly varying contexts, with 
minimal unintentional bias, as images are not collected for a specific 
purpose (Everingham et al., 2010). It is arguably the most extensively 
used source of image data in object detection benchmark datasets, 
including ImageNet (Deng et al., 2009), MS COCO (Lin et al., 2014), 
the Open Images Dataset (Kuznetsova et al., 2020) and PASCAL VOC 
(Everingham et al., 2010). iNaturalist contains over 45 million obser-
vations of biodiversity data including both flora and fauna. Labeling 
of images on iNaturalist may be more accurate than FlickR due to its 
purpose as a biodiversity data sharing website, and it does contain 
more camera trap images than FlickR. Other potential image sources 
include Pinterest (www.pinte​rest.com), Imgur (www.imgur.com), pix-
abay (www.pixab​ay.com), and 500px (www.web.500px.com). These 
image sources are highly beneficial in training general, location in-
variant neural networks as they exhibit an extensive range of con-
textual features, not necessarily present in camera trap imagery.

Despite their benefits as out-of-the-box solutions, universal or 
general object detectors usually fail to achieve the high accuracy 
attainable by domain-specific object detectors (Rebuffi et al., 2017; 
Wang et al., 2019). Due to the need to achieve high accuracy object 
detection and classification in ecological research, it may therefore 
be necessary to optimize location invariant models for domain-
specific studies. This is particularly relevant when processing cam-
era trap imagery characterized by features which differ strongly 
from noncamera trap data, including infrared imagery, poor-quality 
illumination and blurry images.
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(i)	To evaluate the use of publicly available image sources, in the de-
velopment of location invariant camera trap object detectors.

(ii)	 To develop an optimization strategy dubbed ‘infusion’ to im-
prove the performance of location invariant object detectors in 
domain-specific applications.

Therefore, the aims of this study are twofold:
In this study, we will demonstrate our proposed approach on 

three single-class applications. The rare species Striped Hyena 
(Hyaena hyaena) was chosen due to the sparsity of camera trap 
training data, and the difficulty in discriminating between the 
striped hyena and the more common spotted hyena. Furthermore, 
other studies have highlighted it as a species of particular interest 
due to the difficulty they faced in detecting its presence in cam-
era trap images, for example, (Willi et  al.,  2018) failed to detect 
any of the 27 striped hyenas present in their test dataset. Next, 
the iconic and critically endangered Rhinoceros (Rhinocerotidae) 
was also chosen, due to the high research interest in monitoring 
its prevalence and changes in populations. Finally, the pest family 
Suidae (pigs, boars and hogs) was included due to the significant 
role it plays across global ecosystems and its host status for a range 
of diseases such as Swine Fever, which are a major threat to agri-
cultural industries.

2  | METHODOLOGY

2.1 | Datasets and annotation

The datasets used in this study were collated using images from 
FlickR and iNaturalist. We also used camera trap image datasets 
obtained from www.lila.science including Snapshot Serengeti (SS), 
Wildlife Conservation Society (WCS) Camera Traps, and other sites 
specified in more detail below. All datasets, annotations, and the 
algorithms used for dataset collection and processing, as well as 
auto-annotation of images are available at: https://doi.org/10.5061/
dryad.1c59z​w3tx.

2.1.1 | FlickR and iNaturalist

We developed and used a Python script to download images from 
FlickR using the FlickR API. This allowed us to download images 
with multiple keywords at once. The keywords used are shown 
in Table  1. We downloaded a maximum of 200 images per key-
word, to maximize the variety of search results. Our datasets were 
restricted to Creative Commons images. We also developed a 
Python script to download images from iNaturalist using a csv file 
containing URLs of relevant observations downloaded from inatu​
ralist.org.

Duplicates and near duplicates were removed using a Structural 
Similarity Index (SSIM; Zhou et al., 2004) clustering algorithm we de-
veloped (see Appendix S4). We deleted all images with a similarity 
score above 0.8, where a score of 1.0 represents a 100% similarity 
between 2 images. Near duplicates are images with strong visual 
similarity, containing only small distortions, slight variations, and oc-
clusions (Everingham et al., 2010). Interestingly, the datasets down-
loaded from FlickR and iNaturalist were mutually exclusive, with 
not one image present on one site, being also present on the other. 
Although this does not mean that images obtained from FlickR will 
not be available via iNaturalist, it does suggest that users of FlickR 
may often not be users of iNaturalist. Details about the final datasets 
are shown in Table 2. Subsamples of the final datasets are illustrated 
by Figure 1.

2.1.2 | Camera trap datasets

We obtained all camera trap data of rhinoceros and striped hyena 
from lila.science using a Python script we developed, which we 
have made available on our Dryad repository. We scoured all im-
ages of striped hyena and rhinoceros from both WCS Camera 
Traps (WCS_striped_hyena and WCS_rhino) and Snapshot Serengeti 
(SS_striped_hyena and SS_rhino) datasets (Swanson et al., 2015). We 
used the same script to obtain our EU_pig and NA_pig datasets from 
the Missouri Camera Traps (Zhang et al., 2016) and North American 

Rhinocerotidae Hyaena hyaena Suidae

diceros AND bicornis
ceratotherium AND simum
dicerorhinus AND sumatrensis
white AND rhinoceros
rhinoceros

striped AND hyena
Hyaena AND hyaena

Phacochoerus AND africanus
Sus AND scrofa
sanglier
warthog OR warthogs
wild AND pig OR boar OR hog
feral AND pig OR boar OR hog

TA B L E  1   Keyword searches used 
to download images from FlickR and 
iNaturalist. Scientific names tended to 
return more accurately labeled images

Dataset name Class FlickR iNaturalist
Total 
images

FiN_rhino Rhino 784 881 1,665

FiN_striped_hyena Striped hyena 401 71 472

FiN_pig Pig 606 0 606

TA B L E  2   Final number of images 
obtained from FlickR and iNaturalist 
for both the single-class and multi-class 
experiments, after duplicate removal and 
cleaning. Datasets are referred to hereon 
according to their source, abbreviated as 
FiN (FlickR–iNaturalist) and class name

http://www.lila.science
https://doi.org/10.5061/dryad.1c59zw3tx
https://doi.org/10.5061/dryad.1c59zw3tx
http://inaturalist.org
http://inaturalist.org
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Camera Trap Images (Tabak et al., 2018) datasets, respectively, also 
from lila.science. A summary of all camera trap datasets is provided 
in Table 3. Note in all experiments, the out-of-sample test sets are 
comprised of the Snapshot Serengeti datasets.

The SS_pig dataset is a subset of the Snapshot Serengeti data-
set, and CC_pig is a subset of the Camera CATalogue project con-
ducted by Panthera (www.panth​era.org). Both are available from 
the Data Repository for the University of Minnesota, used by (Willi 
et al., 2018), and released under a CC0 1.0 Universal Public Domain 
Dedication license. The Australian pig dataset (AU_pig) is a custom 
dataset, obtained during feral pig trapping and control operations. 
More information about each dataset is provided in Table 3, and a 
subset is shown in Figure 2.

Each image in the final datasets was annotated with bound-
ing boxes and corresponding class labels. Bounding box annota-
tion involves the positioning of an axis aligned box surrounding an 
object. We used an auto-annotator tool we developed to roughly 
annotate all the images. We then edited any suboptimal bounding 
boxes using the graphical annotation tool labelImg (Tzutalin 2015; 
https://github.com/tzuta​lin/labelImg) to ensure all objects were 
correctly annotated. Annotations were saved in PASCAL VOC 
format.

2.2 | Training and evaluation methodology

In this study, we conducted two major experiments. First, we com-
pared the performance of models trained on FlickR–iNaturalist 
(FiN) datasets only to those trained only on camera trap data 
using evaluation on out-of-sample test sets. Next, we optimized 
the FiN models by infusing small subsets of camera trap imagery 
into the FiN training set, evaluating performance on out-of-sample 
test sets. Details about the model architecture and training pa-
rameters are provided in Appendix S3. Additional information on 
transfer learning is also provided. The experiments outlined in this 
section were also verified on a multi-class application documented 
in Appendix S5.

2.2.1 | Comparison between FiN and camera trap 
data in developing location invariant object detectors

To evaluate the potential for publicly available data from FlickR 
and iNaturalist to be used in the development of location invari-
ant object detectors for camera trap image processing, we trained 
Keras-RetinaNet (Lin et  al.,  2018) models on FiN datasets, and 

F I G U R E  1   Subsamples of the FiN datasets. Top to bottom: striped hyena, rhinoceros, and pig. Images of were highly varied, and included 
both color/daytime and infrared images, as well as a large range of contexts and distances from the camera

http://www.panthera.org
https://github.com/tzutalin/labelImg
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compared their performance to that of RetinaNet models trained 
on camera trap data when tested on out-of-sample camera trap 
images.

We trained three single-class RetinaNet models on FiN datasets. 
These models are referred to as FiN_Classname; for example, FiN_
rhino refers to a rhino detector trained on FiN data. We also trained 
two single-class (rhino and striped hyena) RetinaNet models using 
the WCS_striped_hyena and WCS_rhino datasets, as well as four pig 
detectors, on the AU_pig, CC_pig, NA_pig, and EU_pig datasets. All 
models are named based on the source of their training data. Note, 
we were able to train four pig models due to greater availability of 
data when compared with rare species such as rhino and striped 
hyena.

The datasets were randomly split into training and validation 
sets, with 90% of images reserved for training, and 10% used for 
validation. Each training set was supplemented with 800 explicit 
negative samples to improve discrimination between target species 
and nontarget species or background. A detailed breakdown of the 
training and validation splits as well as the out-of-sample test set is 
provided in Table 4.

All models were tested using out-of-sample images from the 
Snapshot Serengeti (SS) datasets, that is, SS_striped_hyena, SS_rhino, 
and SS_pig. Each test set was supplemented with 200 negative sam-
ples to prevent biased evaluation of false positives. These negative 
samples were derived from the Snapshot Serengeti, and consisted of 
empty images, or images of nontarget species. For more information 

relating to the negative sampling data collection process, refer to 
Appendix S2.

2.2.2 | Infusion: Optimization of location invariant 
models using camera trap imagery

Next, we conducted experiments to evaluate an optimization pro-
cess that would allow ecologists to improve object detection per-
formance with minimal infusion of camera trap images into the FiN 
training set. Infusion is the process of supplementing the training set 
with a small subset of camera trap images, to improve robustness to 
the particularities of camera trap data, such as infrared, high occlu-
sion, and blurriness. Infusion was conducted both out of sample and 
in-sample. Out-of-sample results are presented in this manuscript. 
For in-sample results, refer to Appendix S6.

Due to the large number of highly similar images present within 
camera trap datasets, the infusion subsets were not randomly se-
lected. Instead, our SSIM algorithm was used to retain only images 
with low SSIM scores, with the aim of maximizing intradataset vari-
ability. The SSIM algorithm allowed us to randomly select one frame 
from each cluster of images (usually one capture event, or different 
capture events with very similar properties).

Our research indicates that image pairs with an SSIM value 
above 0.4 have sufficiently high similarity to be clustered. For exam-
ple, Figure 3 illustrates the output of the SSIM algorithm graphically, 

Dataset Source Location Size Characteristics

WCS_striped_hyena Wildlife 
Conservation 
Society

Multiple 582 Moderate quality
Night and day

SS_striped_hyena Snapshot 
Serengeti

Tanzania 478 Moderate quality
Infrared and day
Includes partials

WCS_rhino Wildlife 
Conservation 
Society

Multiple 333 Low quality
Mostly infrared
Many partials

SS_rhino Snapshot 
Serengeti

Tanzania 153 Moderate quality
Daytime
Many partials

AU_pig Custom NSW, Australia 589 Low quality
Mostly infrared
High occlusion
High density

SS_pig Snapshot 
Serengeti

Tanzania 574 Moderate quality
Mostly daytime

CC_pig Camera 
CATalogue

South Africa 559 Moderate quality
Partials
Low density

NA_pig North America 
Camera Trap 
Images

United States 514 High quality

EU_pig Missouri Camera 
Traps

Europe 501 Difficult
High occlusion

TA B L E  3   Summary of the 
characteristics of the camera trap 
datasets used in this study. The term 
“quality” refers to characteristics such as 
blurriness, pixilation, illumination etc. A 
poor-quality dataset will contain many 
images that are over or underexposed, 
blurriness caused by poor focus, or 
other features which make it harder to 
distinguish the identity of a target class 
and distort or damage key features. A 
visual subsample of these datasets is 
provided (see Figure 2)
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clearly showing the three clusters formed by visually similar images; 
the image in the upper right section of the graph (A1) is compared 
to each other image, with values closest to 1 indicating high similar-
ity with the test image. This method allows researchers to compile 
highly varied datasets automatically, minimizing the need for exten-
sive time-consuming image sorting and annotation.

Out-of-sample infusion was conducted by training four addi-
tional models for each species, with incremental infusion of the 
SSIM sorted camera trap images from the WCS and CC datasets 
into the FiN training data. These images were added in increments 
of 5% from 5% to 20%, as shown by Table  5. For example, the 
FiN_rhino dataset comprised of 1665 images. To achieve 5% in-
fusion, 83 images from the WCS_rhino dataset were added to the 
FiN_rhino dataset. 90% of these images were retained for training, 
with 10% reserved for monitoring training via the validation set. 
This process was repeated for all percentages and species shown 
in Table 5.

The models were then tested on the out-of-sample Snapshot 
Serengeti test sets presented in Table 4. Both the training and test 

F I G U R E  2   Subsamples of the camera trap datasets. Top row: SS datasets, left to right; striped hyena, rhino, and pig. Middle row: left; 
WCS_striped_hyena, middle; WCS_rhino, right; SS_pig. Bottom row: left; NA_pig, middle; EU_pig and right; AU_pig

TA B L E  4   Data distribution for models trained on datasets 
obtained from FlickR/iNaturalist, abbreviated as FiN (FlickR–
iNaturalist), and models trained using camera trap images alone 
abbreviated as follows; WCS (Wildlife Conservation Society), AU 
(Australia), NA (North America), CC (Camera CATalogue), and EU 
(Europe). All models were tested on out-of-sample images obtained 
from Snapshot Serengeti

Models
Training 
set (90%)

Validation 
set (10%)

Out-of-sample 
test set (SS)

FiN_striped_hyena 425 47 478

WCS_striped_hyena 524 58

FiN_rhino 1,499 166 153

WCS_rhino 300 33

FiN_pig 545 61 574

AU_pig 530 59

CC_pig 503 56

NA_pig 463 51

EU_pig 451 50
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sets were supplemented with negative samples as described in 
Section 2.2.1.

2.2.3 | Model evaluation

To evaluate the performance of our models, mean Average Precision 
(mAP) results will be provided. mAP is calculated as documented in the 
PASCAL VOC benchmark (Everingham et al., 2010). A high mAP indi-
cates that the model is detecting the majority of objects with high ac-
curacy, and minimal retention of false positives. Accuracy is measured 
using Intersection over Union (IoU), which is a measure of the overlap 
between the detection box and the ground truth bounding box.

We also evaluate the performance of our infusion models at vary-
ing confidence thresholds. A confidence threshold is preset by users 
of object detectors to ignore low scoring detections. When an object 
detector locates features of a target class, it attributes a classification 
score to the region of interest. If the classification score is low, it can 
be excluded using a high confidence threshold. This allows more con-
fident detections to be retained while reducing false positives.

3  | RESULTS

3.1 | Comparison between FiN and camera trap 
data in developing location invariant object detectors

The results of training on FiN data compared with training on cam-
era trap data are presented in Figure 4. All results were collected 

on the out-of-sample Snapshot Serengeti test sets. The models 
trained on FiN datasets achieved mAP results ranging between 
82.33% and 88.59%, while the models trained on camera trap data 
achieved mAP results ranging from 38.5% to 66.74%. In all cases, 
the FiN models outperformed the models trained on camera trap 
images.

The FiN_pig model achieved a mAP of 88.59% when tested 
on the out-of-sample SS_pig dataset. This was far superior to the 
CC_pig model, which was trained on camera trap images of wart-
hogs from the Camera CATalogue (CC) dataset, achieving a mAP 
of only 53.87%. Although both the CC_pig dataset and the SS_pig 
dataset contained the same subspecies (Phacochoerus africanus), 
the CC_pig model did not generalize well to the SS_pig test set. 
This may be because the SS_pig dataset was characterized by 
more variation in background, greater variation in the distance 
of pigs from the camera and greater contrast. Notably, the worst 
performing pig model was trained on data from Australia (AU_pig). 
This is very likely due to the large number of low quality infrared 
images present in the training data, which caused the model to 
return a high rate of false positives, and the large disparity be-
tween contextual features such as vegetation and species type 
(the Australia subspecies was Sus scrofa, while the SS subspecies 
was Phacochoerus africanus).

In comparison, the significantly greater intradataset variability 
present in the FiN datasets allowed for better model generalization 
when compared to the models trained only on single location cam-
era trap data. This trend was observed across all classes, with the 
FiN_striped_hyena and FiN_rhino models significantly outperforming 
the WCS_striped_hyena and WCS_rhino models.

F I G U R E  3   Graphical illustration of image clustering using an SSIM algorithm. The test image represented by 1.0 is compared with every 
other image. Highly dissimilar images have low SSIM scores (<0.4)
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3.2 | Infusion: Optimization of location invariant 
models using camera trap imagery

The results presented in the previous section indicate that the mod-
els trained on FiN datasets can be used to effectively process images 
collected at any camera trap site with an acceptable level of location 
invariance. However, camera trap images possess particular charac-
teristics which differentiate them from FiN images. In difficult cases, 
the mAP achieved by FiN models may not be sufficiently high for 
practical purposes, particularly when higher confidence thresholds 
are used. For example, for a given study, the confidence threshold 
may be set to 50%, meaning all detections with a classification score 
lower than 50% would be ignored. Thus, we present the results of 
our infusion optimization experiments, illustrated by Figure 5. In all 
cases, infusion resulted in an increase in mAP when evaluated on 
out-of-sample images.

At a confidence threshold of 5% (the standard threshold for mAP 
measurement (Lin et al., 2018)), out-of-sample infusion did not result 

in a pronounced improvement, with gains in mAP results ranging 
from 1.78% to 3.73%. However, in practical deployment, a confi-
dence threshold of 5% would rarely be used, with ecologists favor-
ing higher thresholds to ensure confident classification of species. 
It is at these higher thresholds that the benefits of infusion are best 
demonstrated. For example, at a confidence threshold of 30%, the 
mAP improved by 7.08%–16.54%, while at a confidence threshold of 
50% it improved by 9.11%–32.08%.

The results presented in Figure 5 indicate that the addition of a 
small percentage of camera trap images into the FiN training dataset 
can significantly improve performance. In most cases, the greatest 
improvement occurred with infusion of 5%, with performance con-
tinuing to improve as infusion was increased to 15%. As infusion was 
increased beyond 15%, performance plateaued, or decreased, with 
only 4 out of 9 results improving beyond 15%.

In some cases, in-sample images may be necessary to boost 
performance further, particularly in circumstances where domain-
specific images contain unusual features not present in FiN or 

Class Model name
Infusion 
Source

No 
infusion 
images

Infusion 
training set

Infusion 
Validation set

Hyaena hyaena_inf_05 WCS_hyena 24 446 50

hyaena_inf_10 47 467 52

hyaena_inf_15 71 489 54

hyaena_inf_20 94 509 57

Rhino rhino_inf_05 WCS_rhino 83 1573 175

rhino_inf_10 167 1649 183

rhino_inf_15 250 1723 192

rhino_inf_20 333 1798 200

Pig pig_inf_05 CC_pig 30 572 64

pig_inf_10 61 600 67

pig_inf_15 91 627 70

pig_inf_20 121 654 73

TA B L E  5   Incremental infusion of 
camera trap images into FiN training. 
The additional 800 negative samples 
were included in the training set. Models 
are named according to the class name 
and infusion percentile. Note the 
infusion images are trap images. The 
infusion training set is made up of FiN+ 
infusion images. The validation set is FiN 
validation+ infusion images

F I G U R E  4   Comparison of the mAP 
results achieved by the models trained 
on FiN data, and those trained on camera 
trap datasets. In all cases, the FiN models 
outperformed the camera trap models
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out-of-sample infusion data. As such, we present results of in-sample 
infusion experiments in Appendix S6. In all cases, 5%–10% in-sample 
infusion resulted in significant gains in mAP (3.66%–18.20%). Further 
infusion provided some accuracy gains (1.41%–4.12%). These results 
collected with a confidence threshold of 5% can be compared to 
the gains of 1.78%–3.73% gained by out-of-sample infusion with a 
5% confidence threshold. However, it must be noted that in-sample 
infusion also tends to result in greater retention of false positives 
which may damage mAP results at higher confidence thresholds. For 
further discussion, see Appendix S6.

4  | DISCUSSION

We investigated the use of FiN images as an alternative to cam-
era trap images in the task of DCNN training for location invariant 
camera trap image processing tasks, on three case studies, namely, 
striped hyena, rhinoceros, and pig. Specifically, we established the 
greater transferability of the FiN trained models when compared 
to models trained on camera trap datasets, and their high usability 
as location invariant object detectors. We then demonstrated how 
such models can be optimized via out-of-sample infusion, which was 
shown to increase the confidence of detections, allowing more true 
positives to be retained at higher confidence thresholds.

Our results show that FiN training significantly improves model 
robustness and location invariance. Particularly, it provides ecolo-
gists with a practical, cost-effective, out-of-the-box solution, capa-
ble of detecting animals even in the most challenging camera trap 
environments. We not only established that FiN data alone can be 
used to achieve good results, but these models can be improved with 
5%–10% infusion of out-of-sample or in-sample camera trap data to 
improve robustness to the particularities of camera trap imagery. 
One limitation of this study is that it only evaluates the models in 
terms of the Snapshot Serengeti dataset. We could only evaluate 
on one dataset for the classes “striped hyena” and “rhinoceros” due 
to lack of data availability. To maintain consistency, we also only 
presented results for the class “pig” on Snapshot Serengeti in this 
manuscript. However, to verify the usability of this method at any 
location and for any dataset, we present more extensive results in 
Appendix S7 for the class pig, for which we had more data available, 
thus showing location invariance across four extra test locations.

Out-of-sample infusion was demonstrated to significantly im-
prove the classification scores attributed to positive detections, 
thus allowing them to be retained even when using a higher con-
fidence threshold. It is well established that increasing the confi-
dence threshold decreases recall (the number of true positives 
retained in the final output), and consequently decreases mAP (Willi 
et  al., 2018). Note, we did not conduct evaluations of the models 

F I G U R E  5   Results of the infusion 
experiments on the out-of-sample SS test 
set. Infusion resulted in improvement 
across all models, particularly when 
evaluated at higher confidence thresholds. 
Infusion of 5% significantly improves 
performance; however, optimum 
performance occurs at 10%–15%, with the 
mAP results plateauing beyond 15%

0% 5% 10% 15% 20%
Striped hyena 84.75 86.39 86.86 85.43 86.52
Rhinoceros 82.33 82.12 84.11 83.59 83.53
Pig 88.59 91.00 90.14 91.10 92.32
Striped hyena 59.70 64.32 66.18 68.83 63.39
Rhinoceros 67.27 71.38 73.75 73.16 74.35
Pig 68.73 80.05 82.45 82.90 85.27
Striped hyena 32.99 39.37 44.34 46.38 45.47
Rhinoceros 54.84 58.56 62.18 63.95 61.68
Pig 30.19 49.81 58.27 59.54 62.27
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at confidence thresholds above 50% because almost all detections 
with scores above 50% were true positives, which meant increasing 
the threshold simply removed true positives. Selecting a confidence 
threshold for a given application is highly dependent on the quality 
of training data, extent of negative sampling and the model used 
(Beery et al., 2018). The supplementation of FiN training with out-
of-sample camera trap imagery is therefore highly beneficial as it 
allows more true positives to be retained, because the overall con-
fidence of correctly detected objects is improved. This is a result 
of the improved robustness to the particularities of camera trap 
imagery.

Our results suggest that ecologists can train object detectors 
using FiN imagery, and if camera trap data are available for their tar-
get species, use it to infuse the FiN training data. This model can 
then be used to process out-of-sample images from any camera trap, 
achieving a sufficiently high mAP to be deployed in most applica-
tions (Glover-Kapfer et  al.,  2019; Wearn & Glover-Kapfer,  2017). 
Furthermore, in circumstances where model performance is still 
considered suboptimal, they may then infuse model training with 
in-sample camera trap images, for further optimization. Although 
in-sample infusion makes the model more location variant, it does 
provide a means by which ecologists can train powerful models ca-
pable of achieving mAP results above 90%, with very few training 
images, as demonstrated by the results of in-sample infusion pre-
sented in Appendix S6. As shown by various studies in automated 
camera trap image processing, achieving robust object detectors 
via training solely on camera trap images usually requires thousands 
to millions of images (Norouzzadeh et al., 2017; Tabak et al., 2019; 
Willi et  al.,  2018). In-sample infusion overcomes this requirement 
by leveraging off the robustness of the FiN model, and the strong 
availability of FiN imagery to allow ecologists to train high accuracy 
optimized deep leaning models with very few camera trap images, 
significantly reducing the time and resources necessary to develop 
automated deep leaning object detectors.

In light of the growing number of camera trap-based proj-
ects undertaken by ecologists (Christin et al., 2019; Glover-Kapfer 
et al., 2019; O’Connell et al., 2011; Rovero & Zimmermann, 2016), 
this research provides an invaluable method by which researchers 
can process extensive image data regardless of the location from 
which the images were obtained, and the particularities of the cam-
era trap site or species. This method has been proven on several spe-
cies, including rare species, for which camera trap data for training 
models is often sparse. As illustrated by (Willi et al., 2018), the lack 
of camera trap data for rare species poses significant problems when 
training multi-class object detectors, as the large class imbalance be-
tween common species and rare species causes object detectors 
to misclassify species, by over enthusiastically classifying species 
based on how common they are in the dataset rather than via their 
features. This was observed by (Willi et al., 2018) who noted that 
insufficient images of the rare striped hyena in their dataset resulted 
in their model achieving a mAP of 0% on this class. We have specif-
ically addressed this problem by proposing the use of FiN images of 
striped hyena to rectify limitations in data availability.

The use of FlickR as the principal training data also rectifies an-
other major problem faced by researchers. Studies have indicated 
that deep learning models have a tendency to return overly confi-
dent predictions (Beery et al., 2018; Meek et al., 2015; Schneider 
et  al.,  2019; Willi et  al.,  2018) when trained on camera trap data 
and deployed in-sample. This is due to the high consistency in image 
quality, lighting, camera angle, and geographical and vegetation fea-
tures in camera trap data (Everingham et  al.,  2010). Furthermore, 
many trap images feature obscured or poor-quality imagery of an-
imals which if used in the training set, may cause the network to 
make unrealistically optimistic predictions, by attributing 100% con-
fidence to visual features which may not display sufficiently distinct 
characteristics present solely in the target class (Ponce et al., 2007). 
In contrast, the higher resolution of FiN images and large variations 
between images forces the model to reduce the confidence at-
tributed to poor-quality or obscured animals. Their greater robust-
ness allows them to be deployed out of sample, further minimizing 
this problem.

One potential benefit in using FiN imagery for training image 
processing models is the high availability of already annotated animal 
images. Because FlickR is a major source of images used in datasets 
such as ImageNet (Deng et al., 2009) and MS COCO (Lin et al., 2014), 
many animal classes have already been annotated with bounding 
boxes, which are freely available for downloading. Using the method 
proposed in the paper would therefore significantly reduce the time 
and resource expenditure necessary for model development, by 
leveraging off the work already completed by the broader object 
detection community. We were unable to use annotated FlickR im-
ages from ImageNet as it was under maintenance; however, it may 
prove to be a valuable resource in the development of future mod-
els. This study was limited to the evaluation of FlickR and iNaturalist 
images, and did not evaluate alternative images sources mentioned 
in Section 1.

This research did not investigate the application of the FiN and 
infusion training method using alternative object detectors such as 
YOLO (Redmon & Farhadi, 2016), and Faster R-CNN (Ren et al., 2015). 
Applying the findings of this study to these architectures may be 
beneficial. YOLO is a faster, more efficient object detector, which 
may be more suited to video processing, while Faster R-CNN gener-
ally achieves higher accuracies, but is slower. RetinaNet was chosen 
as it achieves a good balance between the computational efficiency 
of YOLO and the accuracy of Faster R-CNN, which made it an appro-
priate choice for the difficult task of camera trap image processing 
(Yang et al., 2019). In this study, we have only demonstrated loca-
tion invariance using RetinaNet. Although it goes beyond the scope 
of this study, it would be interesting to ascertain whether changes 
in model architecture would influence the robustness of location 
invariance models. Another possible area of research could be the 
application of this method to object segmentation-based image pro-
cessing. Object segmentation builds upon the benefits of object de-
tection by excluding background features. This limits the influence 
of contextual features on model performance, thus improving model 
accuracy and overall performance; however, it is likely that they 
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would encounter the same modeling bias faced by bounding box-
based object detection models.

Finally, the proposed method may be extended to other image 
modalities. For example, it could be extended to drone imagery 
(Kellenberger et al., 2017; Xu et al., 2020). Drone images are often 
captured from an aerial perspective, meaning they would con-
tain quite different features to those present available on FlickR. 
Applying our findings to object detection in the context of drone 
imagery would be interesting, particularly with infusion of a small 
subset of drone images to boost performance and allow better gen-
eralization to the particularities of drone imagery. This would deter-
mine how transferable FiN images are to new modalities. It could 
also be extended to other applications such as underwater animal 
imagery (Christensen et al., 2018; Dawkins et al., 2017), surveillance 
footage (Raghunandan et  al.,  2018), and thermal camera imagery 
(Bondi et al., 2020; Rodin et al., 2018). This may present opportu-
nities to rectify image shortages, or problems with low intradataset 
variability, particularly in novel studies.

5  | CONCLUSION

This study successfully demonstrated the use of FiN datasets in 
training location invariant deep learning object detection models in 
the task of camera trap image processing. It also evaluated an opti-
mization process dubbed infusion, to improve robustness to the par-
ticularities of camera trap imagery. Results presented across three 
single-class models on out-of-sample test sets indicate the aims of 
this study have been achieved. However, our approach is limited by 
its inability to achieve high precision out-of-sample object detec-
tion, which is still best achieved via in-sample training or infusion. 
Furthermore, this method was not evaluated on alternative object 
detection frameworks and did not provide findings on an extensive 
multi-class dataset. Nevertheless, this study provides a promising 
pathway to develop robust, location invariant models using publicly 
accessible data sources. Furthermore, development of these models 
will facilitate the widespread deployment of AI in ecological man-
agement. The findings of this study could also be extended beyond 
camera trapping to other object detection tasks and image modali-
ties such as drone imagery. Furthermore, the methodology of using 
transfer learning and publicly available datasets characterized by 
high intradataset variability and minimal unintentional bias to train 
location and context invariant AI-based data processing software 
could be extended beyond images to other forms of data.
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