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Lupus glomerulonephritis (LN) is a complex autoimmune disease characterized by
circulating autoantibodies, immune-complex deposition, immune dysregulation and
defects in regulatory T cell (Tregs). Treatment options rely on general
immunosuppressants and steroids that have serious side effects. Approaches to target
immune cells, such as B cells in particular, has had limited success and new approaches
are being investigated. Defects in Tregs in the setting of autoimmunity is well known and
Treg-replacement strategies are currently being explored. The aim of this minireview is to
rekindle interest on Treg-targeting strategies. We discuss the existing evidences for Treg-
enhancement strategies using key cytokines interleukin (IL)-2, IL-33 and IL-6 that have
shown to provide remission in LN. We also discuss strategies for indirect Treg-modulation
for protection from LN.
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INTRODUCTION

Systemic Lupus Erythematosus (SLE) is a debilitating autoimmune disease characterized by
inflammation, increased circulating autoantibodies (autoAb), immune complex (IC) deposition,
and multi-organ dysfunction affecting skin, joints, kidneys, brain etc. The cause of SLE is still unclear
but genetic, environmental and hormonal factors have been linked to its predisposition. The
prevalence of SLE is 366.6/100,000 in USA (2016 estimate) and 97/100,000 in UK (2012
estimate) (Barber et al., 2021). Lupus Foundation of America estimates that at least five million
people worldwide may have some form of lupus (https://www.lupus.org/resources/lupus-facts-and-
statistics). A majority of the patients affected by lupus progress to lupus nephritis (LN), an end stage
renal disease marked by kidney IC deposition and glomerulosclerosis (reviewed in Ward, 2010).
There are no approved medications that can cure the disease or provide long term remission with
maintenance immunosuppression being the current option. There is thus an urgent need for novel
treatment options for LN. Strategies for enhancing regulatory T cells (Treg) have garnered attention
recently.While, many studies have employed Tregs for SLE, not enough work has specifically focused
on lupus nephritis (LN). Therefore, we also included studies on Treg-based approaches for SLE.

AUTOIMMUNITY AND TREGS

Tregs constitute an important immune cell subset that prevents abnormal activation of the immune
system and provide tolerance in allergy and autoimmunity (reviewed in Sharma and Kinsey, 2018).
The role of Treg-deficiency in the onset and progression of autoimmunity has long been appreciated.
In humans and mice, Tregs are identified as T-cells expressing high levels of IL-2 receptor alpha
(CD25) and the transcription factor forkhead box P3 (Foxp3). Alongside IL-2 and CD25, which
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facilitate the development, function and stability of Tregs,
numerous other cell-surface receptors for Tregs have been
identified (reviewed in Sharma and Kinsey, 2018). IL-2
supports Treg development in the thymus (Vang et al., 2008)
and is also required for their survival and function in the
periphery (Fontenot et al., 2005; Barron et al., 2010; Sharma
and Kinsey, 2018). While mechanisms of Treg-intrinsic function
are still being recognized, factors including excessive production
of pro-inflammatory cytokines and resistance to Treg-mediated
suppression are being found to contribute to autoimmunity. A
strong association of Treg defect in SLE and other human
autoimmune diseases is now well-appreciated. Tregs not only
control innate and adaptive immunity, but also regulate cellular
damage and promote repair (reviewed in Shevach, 2018; Sharma,
2020). Thus, Treg-enhancement strategies remain an attractive
strategy for remission from LN (Figure 1).

IMMUNE-DYSREGULATION IN LUPUS
NEPHRITIS

T cell activation is one of themajor pathogenic mechanisms in the
immune-dysregulation observed in lupus patients (reviewed in
Mountz et al., 2019). Lupus patients have an elevated number of T
effector cells, indicating a continued pathogenic response
triggered either by pathogens that may mimic self-antigen
(Zhao et al., 2019a; Múnera et al., 2020; Munroe et al., 2020),
uncleared self-antigen from dying cells (reviewed in Muñoz et al.,
2010; Prechl et al., 2016), or altered cytokine milieu contributing
to effector cell bias (reviewed in Bengtsson and Rönnblom, 2017;
Paquissi and Abensur, 2021). The role of complement proteins in
LN is quite complex, where tissue damage is induced by
complement deposition, and hypocomplementemia of C3 and
C4 is pronounced in active disease, suggesting that complement-
mediated clearance of autoantigen and IC play a central role in

pathogenesis (reviewed in Li et al., 2021). The effector T-cells on
one hand can induce cell-mediated organ dysfunction directly,
they also activate innate-immune cells including macrophages
and dendritic cells (DC) for fueling the immune dysregulation, as
well as differentiate in to T-follicular helper (TfH) cells to help
auto-reactive B-cells to produce high-affinity autoAb (reviewed in
Mountz et al., 2019; Chen and Tsokos, 2021). The role of
cytokines in lupus is supported by reports of elevated Tumor
necrosis factor (TNF)-α and Interferon (IFN)-γ in SLE patients
(Harigai et al., 2008). Other proinflammatory mediators
including IL-6 and IL-17 lead to TH17/Treg dysregulation in
lupus patients compared to healthy individuals (Tang et al.,
2019).

IL-2: A MASTER REGULATOR OF TREGS IN
LUPUS NEPHRITIS

IL-2 was initially discovered as a growth factor that promoted
T-cell proliferation in vitro (Morgan et al., 1976), but was later
realized to be more critical for Treg-maintenance (Fontenot et al.,
2005) and T-cell regulation (reviewed in Chen and Tsokos, 2021).
IL-2 deficiency may contribute to autoimmunity in SLE patients
and lupus-prone mice by inducing paucity of Tregs, defective
activation-induced cell death (AICD) and increased IL-17
production (Lippe et al., 2012). Two back-to-back reports first
showed the induction of IL-17 producing TH17 cells by TGFβ
and IL-6 (Bettelli et al., 2006; Mangan et al., 2006). Subsequently,
Laurence et al. showed that IL-2 through STAT5 directly inhibits
the STAT3-mediated TH17 differentiation, because blocking of
IL-2 or deletion of STAT5 in CD4 T-cells enhanced RORγT, a key
transcription factor for TH17 differentiation (Yang et al., 2011).
The role of IL-2/STAT5 in TH2 responses as well as inhibition of
TH1 was first showed by W. E. Paul and colleagues (reviewed in
Zhu et al., 2006). Accordingly, in the setting of multi-organ

FIGURE 1 | Treg supplementation therapies for autoimmunity and lupus nephritis (LN): 1) Adoptive Treg transfer therapy has been successfully employed to
attenuate inflammation and render protection in acute injury settings and recently, a similar approach was successfully employed in a SLE patient with beneficial
outcomes. 2)Cytokines IL-2, IL-2/mCD25, IL-6 and IL233 have been shown to directly cause robust expansion of Tregs which prevents autoimmunity and LN. Whether
IL-33, which is reported to exhibit its protective effects on LN through modulation of M2 macrophages and Bregs have a direct effect on Tregs is yet to be
elucidated. Similarly, IL233 has been shown to expand Tregs and induce a M2 phenotype but its effects on Bregs are currently unknown. 3) Non-cytokine-based
approaches using agonists, small molecules, mesenchymal stem cells and nucleosomal histone peptides have been shown to support Treg expansion to target LN.
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inflammatory disease in the Foxp3-mutant scurfy mice, it was
shown that deletion of IL-4 or STAT6 (which is downstream to
IL-4/IL-13 signaling) enhanced TH1 responses, thus showing the
protective effects of TH2 in autoimmune inflammation in several
organs (Sharma et al., 2011; Ju et al., 2012). Recently, Hsiung et al.
(2020) showed that inflammation leads to lower levels of IL-2R
signaling in Tregs, which further lowers their suppressive
function. They concluded that low dose IL-2 therapy could
possibly overcome the negative effects of inflammation on
Tregs. Several investigators have tried to utilize the ability of
IL-2 to expand Tregs for protection in autoimmune diseases
(Fontenot et al., 2005; Bayer et al., 2007; Grinberg-Bleyer et al.,
2010). However, in a study using the NZB/W mice, long-term
treatment with a low dose of 1,500 units/day IL-2 or a high dose of
15,000 units/day did not alter the active lupus-like disease or
splenocyte populations (Owen et al., 1989). In an interesting
approach, a fusion protein of IL-2 with IL-2Ra (CD25) joined by a
linker and termed mIL-2/CD25 inhibited LN in female NZB x
NZW and male MRL/lpr mice (Xie et al., 2021). The treatment
induced Treg expansion without elevation of NK, CD4+/CD8+

T cells and proinflammatory cytokines.
In clinical studies treatment of SLE patients with low dose IL-2

increased Tregs, decreased AICD and restored CTL responses
along with a reduction of serum anti-dsDNA antibodies (von
Spee-Mayer et al., 2016; He et al., 2016). Another clinical study in
refractory SLE patients reported that the SLEDAI scores (a
disease activity index for lupus patients) were significantly
lowered with low dose IL-2 and rapamycin treatment and
normalization of TH17/Treg ratios were significantly reduced
(Zhao et al., 2019b). An interesting study focusing on the safety
and efficacy of low dose IL-2 in 11 autoimmune disease in 46
patients including SLE found significant Treg-expansion without
effector T-cell activation (Rosenzwajg et al., 2019). While low
dose IL-2 has shown promise for SLE patients, several study
results are still pending. Patients often receive multiple injections
due to the short half-life of IL-2 and there is a concern of side
effects triggered by low dose IL-2 mediated activation of cytotoxic
lymphocytes and NK cells.

Low Dose IL-2 Therapy for Other
Autoimmune Diseases
IL-2 therapy has also been successfully tested in other lesser
studied autoimmune diseases. A Phase I/II clinical trial on low
dose IL-2 therapy in HCV-induced vasculitis increased Treg
levels and reduced vasculitis (Saadoun et al., 2011). In a study on
Alopecia areata (Castela et al., 2014), low dose IL-2 achieved
local recruitment of Treg and also caused regrowth of scalp hair
in the majority of participants. This study emphasized the
importance of Treg supplementation in conditions involving
skin lesions. In a study focusing on autoimmune hepatitis, low
dose IL-2 normalized liver enzyme levels (Lim et al., 2018). The
TRANSREG clinical trial that comprised of patients with 11
autoimmune diseases also showed promising findings with low
dose IL-2 administration (Rosenzwajg et al., 2019). Other
reports in primary Sjogren’s syndrome (Miao et al., 2018),
Polymyositis/Dermatomyositis (Zhang et al., 2021), Psoriatic

arthritis (Wang et al., 2020) and Amyotrophic lateral sclerosis
(Camu et al., 2020) also showed benefits of low dose IL-2
therapy.

IL-33: AN ALARMIN CYTOKINE THAT
REGULATES INNATE IMMUNITY AND
INFLAMMATION
Interleukin-33 was identified as a nuclear cytokine belonging to
the IL-1 family that is known to induce proinflammatory
cytokines and expression of integrins on leukocytes and
endothelial cells (Dinarello, 2009; Spooner et al., 2013). The
pathway for IL-33 and its receptor ST2 is actively being
pursued for immune modulation during autoimmune and
inflammatory diseases (Monticelli et al., 2011; Byers et al.,
2013). Two forms of ST2: transmembrane (mST2) and soluble
isoforms (sST2) have been described (Mueller and Jaffe, 2015).
The sST2 has been identified as a biomarker for cardiac,
pulmonary and graft-versus-host diseases (Bajwa et al., 2015;
Bayes-Genis et al., 2015; Xiao and Zheng, 2016). Recent studies
have demonstrated a protective role of IL-33/ST2 in several
inflammatory settings (Miller et al., 2008; Mato et al., 2009;
Milovanovic et al., 2012). In the hTNF.Tg model of
inflammation, IL-33-treatment induced alternatively activated
macrophages (AAM) and inhibited TNFα-induced bone-loss
(Zaiss et al., 2011). Interestingly, IVIG treatment was shown
to suppress autoimmunity through IL-33 induced TH2 responses
(Anthony et al., 2011), suggesting that IL-33/ST2 pathway may
activate anti-inflammatory mechanisms in other settings. Prior
studies on IL-33 have established that recombinant IL-33, both
in vitro and in vivo, expanded ST2+ Tregs. In vitro, these ST2+

Tregs were more efficient in suppressing IL-12/IL-33 driven
CD8+ T cell IFNγ production than their ST2- counterpart
(Matta et al., 2014). Early IL-33 administration in lupus prone
NZB/W F1 mice was shown to induce regulatory B cells and
reduce autoantibody levels. Additionally, an M2 macrophage
signature was also induced implying a regulatory role of IL-33
in lupus onset (Mohd Jaya et al., 2020). Contrastingly, in a
previously published study, antibody-mediated IL-33
neutralization suppressed disease in lupus prone mice along
with an increase in Tregs and reduced IL-17 levels (Li et al.,
2014). There is thus a disconnect in the available literature on the
effects of IL-33 and its role in LN warrants further investigation.

IL-6: A PARADOXICAL TARGET FOR TREG
EXPANSION

IL-6 was originally identified as a B-cell differentiation factor that
affects the autoantibody and cytokine production. IL-6 plays a
key role in defense to infections by regulating the
proinflammatory and regulatory T cells as well as contribute
to autoimmunity. Elevated serum IL-6 levels correlate with
disease severity in SLE patients (Chun et al., 2007).
Pathological role of IL-6 has been demonstrated in disease
development via targeting IL-6 with anti-IL-6 antibodies or by
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gene knockout approaches by several investigators. Indeed, IL-6
suppression was shown to rescue from rheumatoid arthritis
(Narazaki et al., 2017), SLE (Tackey et al., 2004), scleroderma
(O’Reilly et al., 2013) and many other diseases. Both TH17 and
Tregs require TGFβ for their differentiation through induction of
both RORγt and Foxp3 expression, where IL-6 negatively
regulates Tregs by promoting TH17 (Zhou et al., 2008). The
regulation of TH17/Treg differentiation by IL-6 explains the
involvement of this pro-inflammatory cytokine in diseases that
exhibit a prominent TH17 signature as a causative factor. While
underlying mechanism for the observed efficacy of IL-6 blockade
therapies are yet to be uncovered, the paradigm that IL-6 is
associated with disease initiation and progression stands
challenged by recent observations from Steinmetz and
colleagues for a protective role of IL-6 in LN (Hagenstein
et al., 2019). In 2016, Tregs dually expressing the transcription
factors Foxp3 and RORγt were identified and were given the term
“biTregs” for their roles in nephrotoxic nephritis (NTN) model of
LN (Kluger et al., 2016). It was found that RORγt+Foxp3+ biTregs
expanded with LN in the spleens and kidneys. The expansion of
this subset of cells were higher than the expansion of conventional
Tregs (cTregs: Foxp3+ Tregs) and IL-17+ Tregs. Further
characterization also confirmed that the biTregs did not
differentiate into cTregs or Th17 cells and that the IL-17
production by these cells was dependent on RORγt. It was
concluded that the biTregs are a novel bifunctional Treg
lineage with distinct properties and maybe a novel therapeutic
target for LN. The observation that IL-6 did not inhibit Treg
development or activation in the disease setting, but rather
enhanced T effector activation that caused loss of Treg-
mediated suppression led Steinmetz group to focus on the
biTregs as an active effector Treg lineage (Nish et al., 2014;
Ohnmacht et al., 2015; Sefik et al., 2015; Kluger et al., 2016;
Yang et al., 2016). Utilizing IL-6 knockout mice, Hagenstein and
colleagues (Hagenstein et al., 2019) further showed that IL-6 is
required for the anti-inflammatory function of Tregs, as IL-6
treatment resulted in a significant expansion of RORγt+ biTregs
and correlating with protection against LN.

IL233: ANOVELHYBRIDCYTOKINE FORLN
REMISSION

IL-2 defect parallels with progression of autoimmunity and LN,
and also correlates with reduced levels of Tregs. We found that
IL-2 also regulates the expression of IL1RL1 (ST2; IL-33 receptor)
on CD4 T-cells (Sharma et al., 2011). In addition, it was found
that a major subset of Tregs expresses ST2 and that IL-33 expands
Tregs in vitro and in vivo. Importantly, a novel cooperation
between IL-2 and IL-33 was identified, which protected against
inflammatory diseases by expanding, activating and mobilizing
Tregs more efficiently than either cytokine alone. For more
efficient restriction of this cooperativity to Tregs, a fusion
cytokine of IL-2 and IL-33 (termed IL233) was generated
(Stremska et al., 2017). IL233 exerted a sustained increase in
Tregs, specifically in the renal lymph nodes and protected mice
from LN more efficiently than IL-2 and IL-33 injected either

alone or together. IL233 treatment not only prevented onset of
LN, but also induced lifelong remission in moderate to severely
proteinuric NZM2328 mice without any detectable side effects.
IL233 treatment also inhibited the progression of LN in
proteinuric MRL/lpr mice and protected them from early
mortality (Stremska et al., 2019). The mechanisms, in addition
to increasing Tregs, suggested restoring of IL-2 production by
T-cells and tolerance induction via reduced expression of CD80
and CD86 on macrophages and DC. Interestingly, autoAb
production and IC deposition were not significantly inhibited,
suggesting a disconnect between autoAb and end-organ failure
(Clynes et al., 1998; Ge et al., 2013). Thus, IL233 treatment
demonstrated therapeutic potential in IFNα-accelerated and
spontaneous LN in NZM2328 as well as MRL/lpr mice,
indicating its general applicability.

ALTERNATE STRATEGIES FOR TREG
EXPANSION

A number of alternate strategies are reported for in vivo Treg
activation and expansion. These included the use of Treg-related
cell surface proteins, signaling and epigenetic modulation by
small molecules, as well as approaches using auto-antigen
peptides and microbes. CD28 is a co-stimulatory molecule
expressed on T-cells and engaged by CD80/CD86 on antigen
presenting cells for activation and cell cycle. In a rat model of
anti-Thy1 nephritis, it was observed that CD28 super-agonists
(CD28SA) at low levels efficiently expanded Tregs, and decreased
proteinuria and serum creatinine levels (Miyasato et al., 2011).
The roles of TNFRs (Tumor Necrosis Factor Receptors) are being
recognized and TNFR2 is highly expressed in Tregs. TNF-α is a
pleiotropic cytokine, which exists in both membrane-bound and
soluble forms. The membrane bound TNF-α preferentially
interacts with TNFR2 and results in suppressive function due
to lack of cytoplasmic death domain. In a model of chronic
inflammation, use of TNFR2 specific agonist TNCscTNF80
resulted in Treg expansion and reduced inflammation in
mouse model of rheumatoid arthritis (Schmid et al., 2017).
Similar to TNRF2, Ox40 (CD134) is expressed on Tregs and
effector T cells. Ox-40 expression was elevated in several T-cell
subsets in proteinuric NZB/W F1 mice. While, treatment with
antagonistic Ox40 mAb accelerated autoAb and LN,
administration of an agonistic Ox40:Fc fusion protein in an
IFNα-accelerated lupus model significantly delayed the onset
of severe proteinuria and improved the survival, suggesting a
benefit of targeting this pathway (Sitrin et al., 2017). However, the
effect of Ox40:Fc on Tregs was not evaluated, despite earlier
observations that Ox40-deficient mice had reduced Tregs and
that Ox40L overexpression increased Tregs in the spleen without
disease suppression, probably due to evasion of Treg-mediated
suppression by Ox40 engagement on effector T-cells (Takeda
et al., 2004), Analogous to CD134, CD137 is highly expressed on
Tregs and a study by Sun et al., showed that treatment with
agonistic monoclonal antibody to CD137 blocked spontaneous
autoimmunity in MRL/lpr mice (Sun et al., 2002), likely by
promoting Treg expansion (Zhang et al., 2007).
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Baricitnib, a selective inhibitor of Janus kinase (JAK1) and
JAK2 is approved for use in rheumatoid arthritis. In a recent
study, Lee et al. observed that treatment with baricitnib could
effectively attenuate lupus-like phenotype in MRL/lpr mice. This
was accompanied by reduction of total, CD8+ and abnormal
double-negative T-cells along-with a greater proportion of
follicular (CXCR5+) and extra-follicular (CXCR5−) Tregs,
which could have afforded protection (Lee et al., 2021).
Checkpoint inhibitors are currently being tested for treatment
of several forms of cancer and their effects on Tregs remains
controversial. Interestingly, in NZB/W F1 mice, anti-PD1
antibody treatment reduced CD4+PD-1+ T cells, promoted
suppressive capability of Tregs and ameliorated LN (Wong
et al., 2013). Mesenchymal stem cells (MSCs) are multipotent
progenitor cells exerting immunosuppressive capacity with
respect to both innate and adaptive immune response. MSCs
are used in clinical settings to treat various lupus like conditions
for over a decade (Zhou et al., 2020). Gazdic et al. (2018)
demonstrated that indoleamine 2,3-dioxygenase (IDO)
secreted from MSCs stimulates expansion and activation of
Tregs to produce IL-10. Whether such effects can have
therapeutic efficacy in LN setting is yet to be explored.

Several autoantigen peptide-based approaches are being
developed to deliver these molecules to autoreactive T cells to
promote clonal deletion or to develop immunoregulation. Kang
et al. (2005) showed that a very low-dose of nucleosomal histone
peptide efficiently controlled lupus in SNF1 lupus prone mice and
induced Treg-subsets. The role of microbiome and probiotics in
immune-regulation of SLE is also being actively researched. It was
found that certain Clostridium strains reduced TH17 cells and
induced Tregs. Further, Bifidobacterium bifidum
supplementation prevented CD4 T-cell overactivation to

restore Treg/Th17/Th1 imbalance in SLE via expanding
Foxp3+IL-17+ populations, however, its effect on LN is still
pending (López et al., 2016).

CONCLUSIONS

As of today, there are 173 clinical trials ongoing for therapy of
LN. The field of lupus research, having seen some promising
therapeutics is now fraught with termination of ongoing trials
due to unwarranted effects. There still is no approved drug that
can be safely used long term to treat patients with LN. Tregs
can be targeted effectively for LN remission, however, there are
limited studies focusing on Treg supplementation and its
probable adverse effects, if any. With the identification of
key cytokines and alternative strategies to regulate Treg
function, expansion and activation, it is imperative to
continue research efforts on Treg-based strategies for
remission from LN.
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