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1 | PURPOSE AND APPROPRIATE
SAMPLE TYPES

This 19-parameter, 18-color flow cytometry panel was designed and

optimized to enable the comprehensive and simultaneous immuno-

phenotyping of distinct T-cell, B-cell, and antibody secreting cell (ASC)

subsets within murine tissues (Table 1). Cellular populations identified

by using this OMIP include two major subsets of B-cells (memory and

activated), two ASC subsets (plasma cells and plasmablasts), and seven

major subsets of CD4+ T-cells (naïve, central memory, effector mem-

ory, helper, regulatory, follicular helper, and follicular regulatory).

Staining was performed on freshly isolated splenocytes from 21-day-

old BALB/c mice, however, due to the omission of mouse strain-

specific markers, this OMIP can be implemented across a range of

murine models where in-depth immunophenotyping of the diverse

repertoire of T-cell, B-cell, and ASC populations is required.

2 | BACKGROUND

There is now considerable evidence demonstrating that both prenatal

and postnatal exposure to particular classes of microbial stimuli can pro-

vide beneficial signals during early life immune development, resulting

in the protection against future inflammatory disease [1-3]. The princi-

pal target of this beneficial immunostimulation appears to be the innate

immune system [4, 5], and the mechanisms driving protection underlay

the paradigm of innate immune training, whereby certain classes

of microbial stimuli can alter the functional state of innate immune cells,

leading to the optimization of immunocompetence [6]. Immune training

focuses on the phenotypic and transcriptional profiles of several

prototypical innate populations [6, 7], however, the characteriza-

tion of downstream adaptive responses associated with protection

via innate immune training are of critical importance for under-

standing disease pathogenesis, and the potential for therapeutic

mitigation. Due to this gap in our current understanding, the

broader protective mechanisms remain incompletely understood.

To address this requirement, we have developed and optimized a

novel 19-parameter flow cytometry panel to comprehensively and

simultaneously characterize distinct T-cell, B-cell, and ASC subsets

localized within tissues of BALB/c mice in response to immune

training during early life.

The developmental phase of this flow cytometry panel involved

the prioritization of T-cell, B-cell, and ASC subsets central to the main-

tenance of immunological homeostasis, as based on the current litera-

ture and forerunner studies. As such, a degree of emphasis was placed

on effector, regulatory, and memory subsets within T-cell and B-cell

populations. In regard to T-cells, the conversion of peripheral naïve

CD4+ T-cells to effector T (Teff) cells is denoted by upregulation of

the activation marker CD25, while concomitant upregulation of both

CD25 and intracellular Foxp3 expression is essential for the peripheral

induction of regulatory T-cells (Treg) [8], a process previously recog-

nized in the protection against allergic airways inflammation following

microbial-derived immunomodulation [9, 10]. Furthermore, the

expression of CD44 on Treg has been implicated in promoting

enhanced function [11, 12], while inducible costimulator (ICOS)+

Tregs are recognized to have superior suppressive capacity and inter-

leukin (IL)-10 production compared to ICOS� Tregs [13, 14]. Follow-

ing activation and contraction, CD4+ T-cells transition toward a
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memory phenotype via the gradual upregulation of CD44 expression

in parallel with transient expression of CD62L, driving the establish-

ment of a dynamic repository of central memory (TCM) and effector

memory (TEM) T-cells [15-17]. In addition to establishing peripheral

memory, activated CD4+ T-cells have the capacity to upregulate

extracellular expression of CXCR5, ICOS, and programmed cell death

protein 1 (PD-1) [18, 19], resulting in the generation of a highly spe-

cialized population of T follicular helper (TFH) cells required for the for-

mation of germinal centers within secondary lymphoid organs, while

also providing crucial survival signals to support high-affinity B-cells

during affinity maturation and proliferation [20, 21]. A separate subset

of thymic-derived cells that share homology with the TFH phenotype

in addition to Foxp3 and bimodal CD25 expression, termed follicular

regulatory T (TFR) cells, have also been identified, however, this subset

has been attributed to the inhibition of TFH activity and subsequent

generation of humoral immunity [22, 23]. The immunophenotypic

characterization of B-cell and ASC subsets for this OMIP was cen-

tered around the classic expression of CD19 and B220. To maximize

the capacity of a 5-laser BD LSRFortessa™, CD19 (B-cell and ASC

subsets) and CD4 (T-cell) antibodies were conjugated to the same

fluorochrome, since co-expression is essentially absent in single-cell

analysis. Within secondary lymphoid tissues, the antigen-specific acti-

vation of B-cells involves the constitutive upregulation of major histo-

compatibility complex class-II (MHC class II; mouse I-A/I-E) and CD80

expression, in conjunction with the membrane-bound expression of

both immunoglobulin (Ig) M and IgD [24-26]. Following antigen-

specific activation, B-cells upregulate Synd-1 expression and differen-

tiate into the two major classes of ASC; the rapidly produced and

short-lived plasmablasts and the short-lived peripheral plasma cells,

both of which have the capacity to secrete IgM [27-30]. A major dif-

ference between these two antibody-secreting subsets, however, is

the absence of classic mature B-cell markers CD19, B220, and MHC-

II on plasma cells [28, 31]. The eventual transition of B-cells toward a

memory phenotype results in the loss of Synd-1 expression with par-

allel upregulation of programmed cell death protein 1 ligand 2 (PD-

L2), generating a long-lived secondary lymphoid population expressing

IgM +/� IgD that can rapidly differentiate into ASC upon re-

stimulation [32-36].

Panel optimization was performed on a BD LSRFortessa™, with

all fluorochrome-conjugated antibodies (Table 2) titrated during the

optimization phase (Figure S1). Prior to multicolor extracellular

staining, splenocytes were incubated in Fc Block™ (Purified recombi-

nant CD16/32) to inhibit non-antigen-specific binding of

fluorochrome-conjugated antibodies to the nonpolymorphic epitope

of FcγIII (CD16) and FcγII (CD32) receptors expressed on multiple

myeloid populations and B-cells. A representative gating strategy to

delineate the T-cell, B-cell, and ASC subsets described above is

detailed in Figure 1. Briefly, splenocytes were first gated on side-

scatter (SSC) and forward-scatter (FSC) parameters (Figure 1A) to

TABLE 1 Summary table

Purpose
Comprehensive immunophenotyping of T-cell,
B-cell, and ASC subsets

Species Mouse

Cell types Murine tissues containing lymphocyte populations

Cross-reference OMIP-031, OMIP-032, OMIP-054, OMIP-061

TABLE 2 Reagents used for OMIP
Specificity Fluorochrome Clone Purpose

PD-L2 (CD273) BUV395 TY25 Memory B-cells

IgD BUV496 AMS 9.1 Activated/memory B-cells

CD44 BUV737 IM7 T-cell subsets

ICOS (CD278) BV421 7E.17G9 T Follicular helper/Treg

PD-1 (CD279) BV480 J43 T Follicular helper cells

Live/Dead FVS575 N/A Viable cells

CD80 BV650 16-10A1 Activated B-cells

IgM BV711 R6.60.2 B-cell/ASC subsets

CD4 BV786 RM4-5 CD4+ T-cells

CD19 BV786 1D3 B-cell subsets

Synd-1 (CD138) BB515 281-2 Plasmablasts/Plasma cells

TCRβ BB700 H57-597 Pan T-cells

Foxp3 PE FJK-16s Regulatory T-cells

B220 (CD45R) PE-CF594 RA3-6B2 B-cell subsets

CD25 PE-Cy5 PC61 Activated T-cells

CXCR5 (CD185) PE-Cy7 2G8 T Follicular helper cells

MHC class II (I-A/I-E) AF647 M5/114.15.2 B-cell subsets

CD62L APC-R700 MEL-14 T-cell subsets

CD45 APC-Cy7 30-F11 Pan leukocyte
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F IGURE 1 Overview of 19-parameter gating strategy developed for the characterization of T-cell, B-cell, and ASC subsets within freshly
isolated splenocytes from 21-day-old BALB/c mice. 1 � 106 splenocytes were incubated in Fc Block™, followed by fixable viability stain (FVS)
and a 17-parameter extracellular antibody cocktail containing 10% brilliant stain buffer plus (BD biosciences). Intracellular staining was performed
following fixation-permeabilization of extracellular stained splenocytes. Data were acquired on a BD LSRFortessa™ (BD Biosciences). (A–C)
Removal of cellular debris, doublets, nonviable cells and stromal cells. (D) Primary delineation of TCRβ�CD19+, TCRβ+CD4+, and TCRβ�CD4/

CD19� cells. (E–M) Characterization of (E) plasma cells, (F) plasmablasts, (G) activated B-cells, (H) memory B-cells, (I) naïve, effector memory and
central memory T-cells, (J) effector and regulatory T-cells, (K) ICOS+CD44+ Treg, (L) T follicular helper cells, and (M) follicular regulatory T-cells.
All plots are representative of individual samples. Manual gating was determined using fluorescence minus one (FMO) controls where necessary
(Figure S4) [Color figure can be viewed at wileyonlinelibrary.com]
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remove sample debris, followed by single-cell gating (Figure 1B)

to remove doublets. Gating was then performed on viable CD45+

cells (Figure 1C) to remove dead/dying cells and stromal cells from the

analysis. The primary T-cell/B-cell/ASC separation involved delinea-

tion of TCRβ and CD4/CD19 expression (Figure 1D). Double positive

cells were classified as CD4+ T-cells, as CD19+ B-cells and ASC sub-

sets will be present within the TCRβ� population (Figure 1D) due to

the absence of TCRβ/CD19 co-expression (Figure S2A). An additional

TCRβ�CD4/CD19� gate was included to enable the characterization

of B220�Synd-1+MHC class II�IgM+ plasma cells (PC; Figure 1E).

CD19+ B-cells and ASC subsets were then defined as B220lo/+Synd-

1+MHC class II+IgM+ plasmablasts (PB; Figure 1F), B220+Synd-

1�CD80+PD-L2�MHC class II+IgM+IgD+ activated B-cells

(Figure 1G) and B220+Synd-1�CD80+PD-L2+IgM+IgD+/� memory

B-cells (Figure 1H). CD4+ T-cells were defined as CD62L+CD44lo/�

naïve T-cells (Figure 1I), CD62L+CD44hi TCM (Figure 1I),

CD62L�CD44hi TEM (Figure 1I), CD25+Foxp3� Teff (Figure 1J),

CD25+Foxp3+ Treg (Figure 1J) ICOS+CD44+ Treg (Figure 1K),

CXCR5+ICOS+PD-1+ TFH (Figure 1L), and CXCR5+ICOS+PD-

1+CD25+/-Foxp3+ TFR (Figure 1M).

To perform high-dimensional analysis on 21-day-old naïve

splenocytes, viable CD45+ cells (Figure 1C) underwent high-

resolution FlowSOM clustering to define cell populations, followed by

metaclustering for visualization with Uniform Manifold Approximation

and Projection (UMAP) [37] using the Cytometry Data Analysis Tool

(CATALYST) pipeline [38, 39]. Primary unsupervised analysis was per-

formed to identify CD4+ T-cell and B-cell/ASC clusters based on

extracellular receptor co-expression (Figure S3A). CD4+ T-cell

(Figure S3B), and B-cell/ASC (Figure S3C) clusters were then isolated

for secondary subset analysis.

3 | SIMILARITIES TO OTHER OMIPS

The OMIP described here shares a small degree of marker similarity

(TCRβ, CD4, CD44, CD62L, PD-1, CD19, B220) with OMIP-031 [40],

OMIP-032 [41], and OMIP-061 [42], which are focused on immuno-

logic checkpoint expression on murine T-cell subsets, the characteri-

zation of innate and adaptive populations within the murine mammary

gland and murine antigen-presenting cells, respectively. While both

OMIP-031 and OMIP-032 characterize TCRβ+CD4+ effector and

memory T-cell subsets based on a combination of CD44 and/or

CD62L expression, OMIP-032 employs an additional CD19+ gate to

delineate B-cells. OMIP-061 utilized B220 to identify B-cells. A dis-

tinct difference between these OMIPs and the OMIP described here

is that our panel was developed for the sole purpose of comprehen-

sively immunophenotyping T-cell, B-cell, and ASC subsets simulta-

neously, and we therefore include an additional 12 markers to allow

the characterization of two major B-cell, two ASC and seven major

T-cell populations within a single sample. The OMIP described here

also exhibits minor overlap with OMIP-054 [43], however, our panel

was developed to maximize the potential of a 5-laser BD LSRFortessa™

in facilities without the capacity to perform mass cytometry.
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