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Abstract: Systemic treatment options for bone and soft tissue sarcomas remained unchanged until
the 2000s. These cancers presented challenges in new drug development partly because of their rarity
and heterogeneity. Many new molecular targeting drugs have been tried in the 2010s, and some were
approved for bone and soft tissue sarcoma. As one of the first molecular targeted drugs approved
for solid malignant tumors, imatinib’s approval as a treatment for gastrointestinal stromal tumors
(GISTs) has been a great achievement. Following imatinib, other tyrosine kinase inhibitors (TKIs)
have been approved for GISTs such as sunitinib and regorafenib, and pazopanib was approved for
non-GIST soft tissue sarcomas. Olaratumab, the monoclonal antibody that targets platelet-derived
growth factor receptor (PDGFR)-α, was shown to extend the overall survival of soft tissue sarcoma
patients and was approved in 2016 in the U.S. as a breakthrough therapy. For bone tumors, new
drugs are limited to denosumab, a receptor activator of nuclear factor κB ligand (RANKL) inhibitor,
for treating giant cell tumors of bone. In this review, we explain and summarize the current molecular
targeting therapies approved and in development for bone and soft tissue sarcomas.
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1. Introduction

Bone and soft tissue sarcomas are malignant diseases that originate from mesenchymal tissues,
regardless of organs. They comprise only approximately 1% of all malignant diseases, but they present
more than 50 diagnoses, with heterogenic features in terms of both pathologies and clinical courses [1].

Most bone sarcomas and about half of soft tissue sarcomas originate from extremities (arms
and legs) and trunk area surgically treated by orthopedists; however, bone and soft tissue
sarcomas also arise from head and neck, gastrointestinal tracts and retroperitoneum, urological and
gynecological organs. As for pathological diagnoses, sarcomas are broadly divided into two types;
small round cell sarcoma and non-small round cell sarcoma. The former, such as Ewing sarcoma
and rhabdomyosarcoma, occurs mainly in young patients and is known to be sensitive to cytotoxic
chemotherapies; the latter, on the other hand, is mainly observed in adult patients, and resistant to
cytotoxic chemotherapies. Liposarcoma, leiomyosarcoma, synovial sarcoma, and angiosarcoma are
representative non-small round cell sarcomas.

Because of the rarity and diversity of bone and soft tissue sarcomas, multidisciplinary approaches
are recommended for their treatment [2,3]. Systemic chemotherapies have had an important role in
the multidisciplinary care of bone and tissue sarcomas, but for a long time, cytotoxic agents such
as doxorubicin were the mainstream systemic therapy for bone and soft tissue sarcomas, except for
gastrointestinal stromal tumors (GISTs) [4].

These days, however, investigations of sarcoma genomics and molecular targeted therapy
development have brought about a new era of drug treatments for bone and soft tissue sarcoma [5].
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The concept of precision medicine and new clinical trial designs have also enabled bone and soft tissue
sarcoma patients to participate in individualized clinical trials based on their peculiar mutations [6,7].
Updates of cancer registries and patient consolidation have also contributed to clinical trials [8].

In this review, we provide an overview of the development of molecular targeted therapies for
bone and soft tissue sarcomas and the potential targets and challenges.

2. Molecular Targeting Therapy for GISTs

2.1. Imatinib for GISTs: A Pioneer Targeting Therapy for Sarcomas

GIST account for approx. 8% of soft tissue sarcomas, and they arise from the gastrointestinal
submucous tissues, mostly from the submucosa of the stomach [9]. Before the development of
molecular targeting drugs, GIST was known to have a poorer prognosis than other soft tissue sarcomas,
and to be resistant to cytotoxic chemotherapies; overall survival (OS) of recurrent/metastatic GIST
patients were less than one year at that time [10,11].

In the late 1990s, a c-kit (CD117) mutation was identified as a characteristic of GIST, and c-kit
was focused on as the target of new drugs [12,13]. Imatinib, a tyrosine kinase inhibitor (TKI), was
known to inhibit c-kit as well as BCR-ABL fusion protein, the target of chronic myeloid leukemia
(CML). The first case report of a patient with GIST treated by imatinib showed an apparent clinical
response and tolerable toxicity, which accelerated the clinical trials of imatinib for GIST patients [14].
In an early-phase clinical trial, imatinib treatment resulted in both a high rate of response by
recurrent/metastatic GIST patients and controllable adverse events, and subsequent randomized
clinical trials confirmed the clinical benefits of extending the survival of GIST patients by imatinib
treatment; in these clinical trials, median OS of recurrent/metastatic GIST patients reached nearly to 5
years [15–17].

For surgically resectable GIST patients too, a randomized trial showed that imatinib treatment
resulted in an improvement of progression-free survival (PFS) in the adjuvant setting [18].
A comparison of different imatinib treatment periods (three years vs. one year) showed that the
longer treatment resulted in longer PFS; now, the 3-year continuation of imatinib in adjuvant settings
is now recommended [3,19]. The survival benefit of an even longer continuation of adjuvant imatinib
is being evaluated [20].

Based on sub-analyses of those clinical trials, predictive factors of imatinib resistance have been
unveiled. Most major KIT mutations occur in exon 11, and this mutation is favorable for imatinib
therapy; however, patients with a KIT mutation in exon 9, which accounts for 10–20% of GIST cases,
were poor responders to imatinib therapy [21,22]. For GIST patients with exon 9 mutation, dose
escalation of imatinib up to 800 mg would be the beneficial option [21].

2.2. Next to Imatinib: Clinical Trials of New TKIs for GISTs

Clinical trials of several new TKIs have been conducted for GIST patients resistant to imatinib,
and as a result, the new TKIs sunitinib and regorafenib were approved. Sunitinib showed significant
prolongation of PFS to placebo for imatinib-resistant GIST patients in a randomized clinical trial
(27.3 weeks versus 6.4 weeks; p < 0.0001) [23]. Regorafenib was a TKI which extended PFS for
GIST patients who were resistant to both imatinib and sunitinib; in phase III trial (GRID), median
PFS of regorafenib was 4.8 months compared to 0.9 months of placebo (p < 0.0001) [24]. The new
TKIs are known to inhibit multiple tyrosine kinases in addition to c-kit, such as vascular endothelial
growth factor receptor (VEGFR), platelet-derived growth factor (PDGFR), fibroblast growth factor
receptor (FGFR), and more. Of them, PDGFR has been known as the main mutation of GIST along
with c-kit [13]. Therefore, the anti-PDGFR-specific agents crenolanib and olaratumab were tested
as treatments for patients with imatinib-resistant GIST, mainly those with PDGFR mutation [25,26].
Second- or third-generation TKIs that are approved for treating CML such as dasatinib, nilotinib
and ponatinib have also been examined as treatment for GIST, but the targets of those TKIs focus on
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BCR-ABL and its related mutations, specific targets of CML, and the patient responses in clinical trials
have been modest [27,28].

3. Molecular Targeting Therapy for Non-GIST Soft Tissue Sarcoma (STS)

3.1. Pazopanib: First Targeting Therapy for Non-GIST STS

The developments of molecular targeted therapy for non-GIST soft tissue sarcomas (STSs) lagged
behind those for GISTs by about 10 years; the main reasons for this lag are the diversity of the
heterogeneity of STSs and the lack of driver mutations such as c-kit in GISTs. Though there were some
patients who responded to cytotoxic agents and/or successfully treated by salvage curative surgeries,
median OS of non-GIST STS patients remains less than two years [29]. However, the investigations of
sarcoma genomics and mutations of signaling pathways have indicated several candidates for targeted
therapy for non-GIST STSs, and the angiogenetic pathway was revealed to be one of the promising
targets, as in many solid tumors [5,30,31].

Pazopanib is an oral anti-angiogenic drug that inhibits VEGFR, PDGFR, FGFR, c-kit and many
other tyrosine kinases [32,33]. It is also approved for the treatment of renal cell carcinomas [34].

Based on the results of phase I trials in which six sarcoma patients out of 63 solid malignant
tumor patients participated, the tolerability and recommended dose of pazopanib were evaluated [35].
In the phase II study EORTC 62043, soft tissue sarcomas patients were enrolled as four cohorts
divided by their pathological diagnoses: leiomyosarcoma, synovial sarcoma, liposarcoma, and other
histologies [36]. The primary end point was the progression-free rate at 12 weeks, and the outcomes
were evaluated in each cohort; 18 of 41 (44%) patients in leiomyosarcoma cohort, 18 of 37 (49%)
patients in synovial sarcoma cohort, 16 of 41 (39%) patients in other histologies cohort reached the
progression-free at 12 weeks. On the other hand, accrual for liposarcoma cohort was stopped because
of only three of the first 17 patients met progression-free at 12 weeks; with the central histopathologic
reviews, however, two other patients who showed the progression-free at 12 weeks added to the
liposarcoma cohort, so in the final results, five of 19 (26%) patients in liposarcoma cohorts reached
the progression-free at 12 weeks. As a result, the STS without liposarcoma patients were enrolled
in a phase III study (PALETTE). The median PFS was 4.6 months for the pazopanib-treated patients
compared to 1.6 months for the placebo-treated patients (p < 0.0001), and the results of the PALETTE
study were the foundation of the approval of pazopanib for STSs, as the first molecular targeted
therapy for STS [37].

Liposarcoma patients were excluded from the PALETTE study based on the provisional results
of the EORTC 62043 phase II study. However, in the final results of the EORTC study, the primary
end point was also met in the liposarcoma cohort. As a result, some countries as Japan approved
pazopanib for STSs including liposarcoma, and objective responses to liposarcoma were observed
and reported in clinical practices [38,39]. Toward the approval of pazopanib for liposarcomas,
preclinical investigations and prospective clinical trials for liposarcomas were conducted, and the
results suggested that pazopanib has potential antitumor activities against liposarcoma, especially
dedifferentiated liposarcoma; the phase II study of pazopanib for liposarcoma, in which well
differentiated liposarcoma was excluded, showed 68.3% progression-free rate at 12 weeks and median
PFS of 4.4 months [40,41].

A clinical biomarker of the response to pazopanib treatment for STS has not been established,
but some predictive markers such as performance status, hemoglobin, and pathological grade were
suggested based on the collected data from EORTC clinical trials [42]. The relationship of TP53
mutational status and response to pazopanib was evaluated in a small study; the TP53 mutant STS
patients showed longer PFS, but a verification of that study’s results in a large-scale cohort has not
been conducted [43].
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3.2. Emerging Targeting Therapies for STS—New TKIs, New Antibodies, New Targets

After the introduction of pazopanib, many clinical trials have been performed for other
antiangiogenic TKIs as treatments for non-GIST STSs: sorafenib, sunitinib, regorafenib, and more.

The TKIs sorafenib and sunitinib showed clinical benefits against many solid tumors approved
prior to pazopanib, but the clinical trials of these agents as STS treatment are limited to single-arm phase
II trials [44–46]. Regorafenib was already approved as a GIST treatment, as stated above [24], and a
randomized phase II trial (REGOSARC) was also performed for non-GIST STSs: like the EORTC 62043
study of pazopanib, the response and survival benefit of regorafenib were evaluated in four cohorts
(leiomyosarcoma, synovial sarcoma, liposarcoma, other histologies), and in each cohort, a control
arm using a placebo was examined. The three cohorts other than the liposarcoma cohort showed PFS
prolongation compared to the placebo arm [47]. The REGOSARC trial also showed the benefits of
quality-adjusted survival [48]. However, the survival benefits of regorafenib in the REGOSARC trial
were not very different from those of pazopanib; the median PFS of the regorafenib-treated patients
in the non-liposarcoma cohorts was limited to four months and the overall survival to 13.4 months;
moreover, regorafenib treatment for liposarcoma failed to result in PFS prolongation as pazopanib did.

Focusing on some particular histologies, it is possible that TKIs could achieve high responses.
There are several case series of patients with alveolar soft part sarcoma (ASPS) in whom a high objective
response rate (ORR) to sunitinib was obtained [49–51]. ASPS is known to be resistant to cytotoxic
chemotherapy [52]. Subsequent to those case series, a clinical trial of ASPS patients treated with
cediranib (known as a potent VEGFR inhibitor) was performed; in the phase 2 trial, 46 ASPS patients
were enrolled and of them, 15 patients (35%) had a partial response [53]. This was a clearly higher
ORR than those of other TKIs and even those of cediranib in other STS histologies [54].

The differences in the half maximal inhibitory concentration (IC50) of each TKI [33,55–59] are
shown in Table 1. The inhibitory effects of each tyrosine kinase differ among the TKIs, but the critical
points of their differences related to responses to STS are not yet clear.

Many more TKIs are now being investigated as STS treatment, such as anlotinib from China;
though detailed function profiles of anlotinib were not proven, their responses for STSs are comparative
to other TKIs (ORR 11.45%, median PFS 5.63 months) [60,61]. The appropriate selection and use of
TKIs remain to be established.

In addition to TKIs, monoclonal antibodies have also been approved for STS. As is true of GISTs,
PDGFR overexpression is observed in STSs, and this overexpression is related to poor prognoses [62,63].
As noted above, many TKIs can inhibit PDGFR, and the PDGFR-focused targeted drug olaratumab,
a monoclonal antibody, has been approved for treating STSs.

In phase I clinical trials for solid tumors, olaratumab monotherapy provided 5.6 months of
disease control in leiomyosarcoma patients [64]. For more intensive disease control, a combination
of olaratumab and doxorubicin (the standard treatment agent for STS) was investigated, and a
phase Ib/randomized phase II trial showed a higher ORR and the prolongation of overall survival
by the olaratumab/doxorubicin combination compared to doxorubicin alone; 26.5 months for the
olaratumab/doxorubicin combination versus 14.7 months for doxorubicin alone (p = 0.0003) [65].
Superiority to doxorubicin in OS is a milestone many other clinical trials and drugs had failed to get
over. Based on those results, the U.S. Food and Drug Administration (FDA) approved olaratumab as
breakthrough therapy, and the European Medicines Agency (EMA) also approved olaratumab before
the completion of a phase III trial.

Though categorized as parts of traditional cytotoxic drugs, other new agents, trabectedin and
eribulin, were also approved for STS treatments. Trabectedin is a marine-derived compound isolated
from Ecteinascidia turbinata, which binds a guanine residue in the DNA minor groove and alters DNA
interactions with transcription factors. Trabectedin was first approved in Europe based on the phase 2
trial, and the clinical data from practices showed that the clinical benefit of trabectedin was observed
especially in L-sarcoma—leiomyosarcoma and liposarcoma [66,67]. That was the reason why the
phase 3 trial of trabectedin was performed for leiomyosarcoma and liposarcoma. In the phase 3 trial,
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the median PFS of trabectedin arm was 4.2 months, which was significantly longer than those of
control arm, dacarbazine (1.5 months, p < 0.001); however, there were no significant differences in
the median OS (12.4 months in trabectedin arm and 12.9 months in dacarbazine arm; p = 0.37) [68].
In contrast to trabectedin, eribulin showed OS improvement without PFS prolongation. Eribulin was
similar to trabectedin in some points; which is also marine-derived compound (Halichondria okadai)
and shows clinical benefit to L-sarcomas [69,70]. The subject of phase 3 trial of eribulin was limited
to L-sarcoma same as trabectedin; the result, as described before, showed the OS prolongation of
eribulin arm compare to dacarbazine (13.5 months vs. 11.5 months, p = 0.0169), but not the PFS
improvement (2.6 months vs. 2.6 months; p = 0.23) [71]. By the subanalysis of the phase 3 trial the PFS
and OS prolongation of eribulin were observed in liposarcoma, but not in leiomyosarcoma; thus, FDA
approved eribulin only to liposarcoma, though in some countries such as Japan eribulin is approved to
STS other than liposarcoma [72,73].

Table 1. Differences in the IC50 of TKIs tried or approved to treat STS (µmol/L).

Tyrosine
Kinase

Pazopanib
[33]

Sorafenib
[55,56]

Sunitinib
[56,57]

Cediranib
[56]

Regorafenib
[56–59]

VEGFR-1 0.01 - 0.002 0.005 0.013
VEGFR-2 0.03 0.09 0.009 <0.001 0.0042
VEGFR-3 0.047 0.02 0.017 <0.003 0.046
PDGFR-α 0.071 - 0.069 - 0.136
PDGFR-β 0.084 0.057 0.002 0.005 0.022

c-Kit 0.074 0.068 0.022 0.002 0.007
FGFR-1 0.14 0.58 0.88 - 0.202
FGFR-3 0.13 - - - -
FGFR-4 0.8 - - - -
c-fms 0.146 - - - -
LCK 0.411 - - - -
ITK 0.43 - - - -
FAK 0.8 - - - -
p38α 1.056 - - - -
Abl1 2 - - - -
JNK1 2.466 - - - -
Ret 2.8 - - - 0.0015
Src 3.09 - - - -

GSK3 3.46 - - - -
JNK3 4.065 - - - -
ALK6 4.266 - - - -
Tie-2 4.52 - - - -
Met 6 - - - -

IGF-1R 8 - - - -
CSF-1R - - 0.05–0.10 - -
JNK2 10.233 - - - -
Flt-3 >20 0.058 0.25 >1 -
Raf - 0.006 - - -

Molecules of intracellular signaling pathways are also potential targets for new drugs;
these include phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR),
and intranuclear mouse double minute 2 homolog (MDM2) and cyclin-dependent kinase (CDK)4/6 [5].
Nuclear export compound of oncogenic proteins and epigenetic regulation systems by histone
deacetylases (HDACs) might be a treatment target for STS based on preclinical data.

Regarding the PI3K/AKT/mTOR pathway, the mTOR inhibitor ridaforolimus was investigated
mainly for sarcoma; a phase 3 trial of ridaforolimus showed the prolongation of PFS in sarcoma patients
(mainly STS patients, but some bone sarcoma patients were included in this study) in the maintenance
setting after chemotherapy, but the clinical benefit was too small to result in approval [74]. In only
perivascular epithelioid cell tumors (PEComas), which are known to be linked through activation
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of the mTOR pathway, a high rate of response to the mTOR inhibitor sirolimus was observed, and
small case series and case reports have been reported [75]. MDM2 and CDK4/6 are highly amplified
in well-differentiated/dedifferentiated liposarcoma [76,77]. The CDK4/6 inhibitor palbociclib is
approved for treating hormone-receptor-positive breast cancer [78]. Palbociclib also showed modest
disease control effects in liposarcoma, but the clinical evidence is limited to phase II trials [79,80].
The evidence regarding MDM2 inhibitors as a treatment for liposarcoma is limited to preclinical data
and a phase I trial [81,82], but the double inhibition by MDM2 and CDK4 might be synergic, which
would be worth evaluating [83]. In a preclinical study, an HDAC inhibitor showed the potential
to be effective against sarcoma cell lines [84], but the clinical evidence shown by monotherapy or
combinations is limited to phase I and II trials [85–87]. As for a nuclear export inhibitor, based on the
promising result of the preclinical trial, in which XPO1 inhibitor selinexor showed antitumor effects
in sarcoma cell line, a clinical trial of selinexor has just started; in a recent phase Ib trial, its disease
control against liposarcoma is especially noted [88,89].

Approximately 20–25% of STS patients have chromosomal translocations [3]. These translocations
have had an important role in the diagnosis of STS subtypes, but there had been no targeted therapies
that focus on the translocation or fusion proteins of STS until recently. Trabectedin, already described as
an cytotoxicagent to L-sarcoma, has been demonstrated to modulate the transcription of the oncogenic
fusion proteins, FUS-CHOP of myxoid/round cell liposarcoma in particular, and translocation-related
sarcoma were shown to respond to trabectedin in clinical practice [90,91].

More therapies targeted to specific fusion gene/proteins have been emerging; anaplastic
lymphoma kinase (ALK) is well known as a treatment target of non-small cell lung cancer, and
ALK-related fusion gene is also observed in an paricular STS, i.e., inflammatory myofibroblastic
tumor (IMT). From the early period of the development of ALK-targeted therapy, there were
case reports of IMT patients who responded to an ALK inhibitor, crizotinib [92]. Because of
their rarity, prospective clinical trials of ALK inhibitors as treatment for ALK-arranged sarcomas
have been difficult to perform, but due to the Children’s Oncology Group’s perseverance, phase I
and II crizotinib trials were completed and high responses with good prognoses were certified
for pediatric IMT patients; in the phase II trial, complete response rate was observed in five of
14 (36%) patients [93,94]. Rhabdomyosarcoma is also known to show ALK aberrations, but these are
different from the translocation; in a preclinical trial an ALK inhibitor seemed to be inactive against
rhabdomyosarcoma [95,96]. Instead, PAX3-FOXO1 translocation, an indicator of poor prognosis of
alveolar rhabdomyosarcoma, is considered to be a treatment target; in preclinical study, PAX3-FOXO1
requires the BET bromodomain protein BRD4 to function at super enhances, so BRD4 inhibitor is
suggested to be a new targeted drug for alveolar rhabdomyosarcoma [97,98]. Translocation related to
tropomysin receptor kinase (TRK) was recently detected in broad malignancies at low frequency, but
this appears to be very promising treatment target [99,100]. In fact, treatment with the TRK inhibitor
LOXO-101 (larotrectinib) resulted in promising responses by STS patients with TRK fusion [101,102].

To date, clinical trials of STS have tended to enroll patients with specific histologies or targets
rather than all or nearly all STS histologies, as is the case for pazopanib or olaratumab described above.
The fact mTOR inhibitor ridaforolimus failed to be approved after the randomized clinical trials for all
sarcomas, though that the drug responses to a particularly effective subtype (PEComa) was an also
lesson. Recently new clinical trials of new targeted therapies for STSs, such as CDK4 inhibitors and a
nuclear export inhibitor, the subtypes of STS targeted could be narrowed down from early phase of
clinical trials.

4. Molecular Targeted Therapy for Bone Sarcoma

The introduction of systemic chemotherapy has improved the outcomes of bone sarcoma patients,
mainly as neoadjuvant/adjuvant therapy; methotrexate, cisplatin and doxorubicin combination
chemotherapy for osteosarcoma, and alternating chemotherapy of vincristine, doxorubicin,
cyclophosphamide and ifosfamide, etoposide for Ewing sarcoma [103,104]. These benefits were
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brought from traditional cytotoxic agents, however, and for recurrent/metastatic bone sarcoma patients,
salvage chemotherapy has produced only poor responses. Many clinical trials of new targeted drugs
have been conducted, but none of the investigated agents showed survival benefits [105].

Single angiogenic agents or their combinations have been revealed to be inactive in clinical
trials of bone sarcomas [106–108], and many potential mutations which are meaningful targets in
other malignancies did not work in bone sarcoma; human epidermal growth factor 2 (HER2) is a
representative example. HER2-targeted therapies are now essential components of breast cancer
and gastric cancer treatments, but HER2-targeted therapy did not show any clinical benefit for bone
sarcomas [109]. Insulin-like growth factor 1 receptor (IGF-1R) was a candidate as a treatment target
of Ewing sarcoma, and early-phase clinical trials of IGF-1F inhibitors, especially of figitumumab,
showed a modest response among recurrent/metastatic Ewing sarcoma patients, including complete
remission [110–112]. However, further clinical trials of figitumumab were discontinued after the
negative results of a phase III trial in non-small cell lung cancer [113].

Patients with giant-cell tumors of the bone showed clinical responses to a receptor activator of
nuclear factor kappa-B ligand (RANKL) inhibitor and RANKL inhibitor; denosumab is approved
now [114]. However, clinical evidence of effectiveness of RANKL inhibitors against osteosarcoma
or other high-grade malignant bone sarcomas are lacking, even though RANKL expression in
bone sarcoma was observed and an antitumor effect in a preclinical model was reported [115–117].
The clinical effects of bone-modifying agents must be evaluated cautiously; for example, a randomized
clinical trial examining zoledronic acid treatment for osteosarcoma showed no survival benefits [118].

New molecular targeted drugs for bone and soft tissue sarcomas described are summarized in
Table 2 below.
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Table 2. Current targeted therapies to bone and soft tissue sarcomas.

Drug Molecular Targets Pathology Phase Clinical Outcomes References

anlotinib c-kit, FGFR1-4, PDGFR α/β,
Ret, VEGFR2/3 non-GIST STS P2 ORR 11.45%, PFS 5.63 months [60,61]

cediranib VEGFR1-3 ASPS P2 ORR 35%, disease control rates 84% at 24 weeks [53]

crizotinib ALK IMT P2 ORR 86% (36% of complete remission), median duration of treatment
1.63 years [94]

denosumab RANKL Giant cell tumor of bone approved Tumor response * 86% [114]

figitumumab IGF-1R Ewing sarcoma, osteosarcoma P2 ORR 14.2%, OS 8.9 months [112]

imatinib BCR-ABL, c-kit, PDGFR GIST approved

For recurrent/metastatic:

- PFS 18 months, OS 55 months

In the adjuvant setting:

- 1-year continuation: 98% of 1-year recurrence free survival;
47.9% of 5-year recurrence free survival

- 3-year continuation: 65.6% of 5-years recurrence free survival

[15–19]

larotrectinib TRK fusion STS with TRK fusion P1 Some cases with drastic responses are reported [101,102]

nilotinib BCR-ABL, c-kit, PDGFR GIST P3 Two-year PFS 51.6% (significantly lower than 59.2% in imatinib) [27]

olaratumab PDGFR α

non-GIST STS, particularly
leiomyosarcoma P1-2 ORR 18.2% **, PFS 6.6 months **, OS 26.5 months ** [65]

GIST P2 PFS 32.1 weeks (PDGFR α mutant)
PFS 6.1 weeks (PDGFR α wild type) [26]

palbociclib CDK4/6 liposarcoma P2 PFS 17.9 weeks [79,80]

pazopanib c-kit, FGFR, PDGFR, VEGFR
non-GIST STS other than liposarcoma approved ORR 9%, PFS 4.6 months, OS 12.5 months [37]

liposarcoma P2 PFS 4.4 months, OS 12.6 months [41]

regorafenib c-kit, FGFR, PDGFR, VEGFR

GIST approved ORR 4.5%, PFS 4.8 months [24]

non-GIST STS P2

Leiomyosarcoma: PFS 3.7 months
liposarcoma: PFS 1.1 months
synovial sarcoma: 5.6 months
other sarcoma: 2.9 months

[47]

ridaforolimus mTOR bone sarcoma and STS P3 PFS 17.7 weeks (maintenance after chemotherapy) [74]

selinexor XPO1 non-GIST STS, particulary liposarcoma P1 ORR 0%, stable disease ≥ 4 months in 33% [89]
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Table 2. Cont.

Drug Molecular Targets Pathology Phase Clinical Outcomes References

sorafenib c-kit, FGFR, PDGFR,
Ret, VEGFR

non-GIST STS P2
angio/vascular sarcoma: PFS 5.6 months, OS 12.2 months
leiomyosarcoma: PFS 5.2 months, OS 12.5 months
other sarcoma: PFS 2.8 months, OS 10.1 months

[45]

osteosarcoma P2 PFS 4 months, OS 7 months [106]

Sunitinib c-kit, FGFR, PDGFR, VEGFR

GIST approved ORR 7%, PFS 27.3 weeks [23]

non-GIST STS P2
Liposarcoma: PFS 3.9 months, OS 18.6 months
Leiomyosarcoma: PFS 4.2 months, OS 10.1 months
Malignant fibrous histiocytoma: PFS 2.5 months, OS 13.6 months

[46]

Trastuzumab HER2 osteosarcoma P2 30 months event free survival rates 32% ***, 30 months OS 59% *** [109]

vorinostat HDAC non-GIST STS P2 ORR 0%, PFS 3.2 months, PS 12.3 months [86]

* defined as elimination of at least 90% of giant cells or no radiological progression of the target lesion up to week 25; ** results by combination with doxorubicin; *** results by combination
with chemotherapy.
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5. Immunotherapy for Bone and Soft Tissue Sarcoma

In the 2010s, immune-checkpoint inhibitors emerged in the field of oncology and immediately
became new standard therapies for many malignancies [119]. The expression of ligand of programmed
death-1 (PD-1; i.e., PD-L1) and/or PD-L2 was considered as one of the most important biomarkers
of PD-1 inhibitors; a high expression of PD-L1 could be a predictive factor of response to anti-PD-1
therapy, and in some malignancies such as non-small cell lung cancers, the evaluation of PD-L1
expression was inseparably linked to the indication of immunotherapy [120,121].

The expression of PD-L1 in bone and soft tissue sarcomas has been evaluated, and the PD-L1
expression was as high as that in other malignancies in which anti-PD-1/PD-L1 therapies showed
clinical evidence of benefit [122–125]. However, in prospective clinical trials, anti-PD-1 therapy for
bone and soft tissue sarcomas resulted in minimal patient responses [126–129]. In a phase 2 trial of
pembrolizumab (SARC028), only seven of 40 (18%) STS patients and two of 40 (5%) bone sarcoma
patients showed objective clinical responses; the reason of dissociation of PD-L1 expression and clinical
responses in sarcomas are not clear. In SARC028, undifferentiated pleomorphic sarcoma (UPS) patients
showed a high response rate to anti-PD-1 therapy; 4 of 10 (40%) patients responded to pembrolizumab,
which might be due to high mutation burden in UPS [130]. In fact, however, there are also some case
reports of STS patients with histologies other than UPS who responded to anti-PD-1 therapy [131,132].
A report from clinical trials suggests that the use of PD-1 targeted therapy might bring about the
activation of indoleamine 2,3-dioxygenase 1 (IDO1), which could be a new target of combination
immunotherapy [133].

Immunotherapy with chimeric antigen receptor-modified T cells (CART) or dendritic cells is also
being investigated [134,135]. Targeted immunotherapy with the cancer-testis antigen NY-ESO-1 for
synovial sarcoma has shown especially promising results, with the objective response to 11 of 18 (61%)
patients; a limitation is that the indication for this immunotherapy is limited to patients with a specific
human leukocyte antigen (HLA) haplotype, HLA-A*0201 [136], but to selected patients, CART would
be a powerful treatment option.

6. Future of Targeted Therapy for Sarcomas: New Clinical Trial Designs Adapted to Sarcomas

As a result of the development of treatment targets in preclinical trials, the candidate cancers from
each clinical trial have narrowed from whole bone and/or soft tissue sarcomas to specific histologies
or sarcomas with specific mutations. It would be of great benefit for patients to avoid receiving futile
treatments, but for rare diseases such as bone and soft tissue sarcomas, a sufficient patient enrollment
and even the planning of clinical trials would be more difficult based on the traditional clinical trial
design for the evaluations of data. Performing clinical trials for these ‘ultrarare’ disease groups is
challenging for the pharmaceutical industry, too. Both positive and negative results of clinical trials for
other major malignancies might bring discontinuation the investigations of drugs for rare diseases,
like CDK4 inhibitor palbociclib and IGF-1R inhibitor figitumumab as stated above.

A new paradigm for clinical evidence emerged recently, precision medicine [6]. Based on precision
medicine, regardless of the amount of disease, therapies targeted to individual patients’ own mutation
or target can be performed. The design of clinical trials can also be arranged to work within this
paradigm, from large-scale randomized clinical trials to basket and umbrella trials [7]. A basket trial
evaluates multiple diseases with a single target or mutation for specific targeted treatment, and an
umbrella trial evaluates various subgroups within a single disease for multiple targeted therapies fitted
to their own target. Of them, for sarcoma patients, enrollment in a basket trial according to their targets
is ideal. The clinical trial of the TRK inhibitor larotrectinib is an excellent example, in which clinical
responses including complete remission were observed in sarcoma patients with TRK fusions [101,102].
As for clinical trials in progress, CREATE trial (EORTC 90101), which evaluates the clinical effects of
crizotinib for rare sarcomas classified by MET mutation, is designed on a similar concept [137,138].

For appropriate enrollments of bone and soft sarcoma patients to clinical trials of targeted drugs,
the importance of accurate pathological diagnoses continues to increase. In sarcoma, discordances
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of pathological diagnoses between different pathologists are not rare; there is a report that more
than 40% of pathological diagnoses changed by the review of a second opinion [139]. Many reasons
obstruct accurate, concordant diagnoses; complexity and diversity of sarcoma diagnoses, insufficiency
of specimens, and so on. Even heterogeneity of tumors in one patients might be often observed in
sarcomas. Investigation of methods of diagnoses which have less discordances to evaluate are in need,
for both accurate diagnoses and detecting treatment targets.

In addition, for the appropriate enrollment of rare-disease patients (such as those with bone and
soft tissue sarcomas) in clinical trials using this new paradigm, social systems must increase their ability
to quickly make use of the products of preclinical and clinical trials. One example of new coping with
the social system is NETSARC: the French National Cancer Institute funded a network of 26 reference
sarcoma centers with specialized multidisciplinary tumor board. Five years after the construction of
NETSARC, it is reported that the compliance with clinical practice guidelines and actual prognoses
of sarcoma patients were getting better [8]. Nationwide networks and centralization could improve
prognoses of patients at present, more than improving the accrual of clinical trials. The construction of
a global registry of rare diseases would contribute significantly to future investigations in this field.

Incorporation of adolescent and young adult (AYA) patients, which usually indicates patients of
15–39 years old, to clinical trials is also an important problem for the developments of clinical trials
to bone and soft tissue sarcomas; incidence of bone sarcomas peaks in late teens and about 20% of
all STS are diagnosed at AYA ages, and some histological types of sarcoma like dermatofibrosarcoma
protuberans appear most frequently in this population [140]. In general, prognoses of AYA cancer
patients are not inferior to those of children and older adults, but their improvement has been slower
than those of other ages [141]. One reason for the stagnation of improvement of AYA cancer patients’
outcomes would be a low rate of enrollments in clinical trials; from pediatric to AYA ages, accrual
rates of clinical trials rapidly fall, and is even referred to as “AYA cliff” [140,142]. In fact, there might
be disparities in access to cancer centers for AYA cancer patients [143]. As pediatric oncologists
have been successful in keeping high rates of clinical trials for pediatric cancer patients, cooperation
with pediatric oncologists and medical oncologists who see adult patients is necessary to improve
quantity and quality of registry and clinical trials for AYA sarcoma patients. In addition to the diseases
themselves, many AYA cancer patients have social problems, such as issues of employment, education
and financial stability [144]; so, constructions of social support for these patients are urgent.
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ALK anaplastic lymphoma kinase
ASPS alveolar soft part sarcoma
AYA adolescent and young adult
CART chimeric antigen receptor T cell
CDK cyclin-dependent kinase
CML chronic myeloid leukemia
FGFR fibroblast growth factor receptor
GIST gastrointestinal stromal tumor
HDAC histone deacetylases
HER2 human epidermal growth factor 2
HLA human leukocyte antigen
IC50 half maximal inhibitory concentration
IDO1 indoleamine 2,3-dioxygenase 1
IGF-1R insulin-like growth factor 1 receptor
IMT inflammatory myofibroblastic tumor
mTOR mammalian target of rapamycin
ORR objective response rate
OS overall survival
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PD-1 programmed death-1
PDGFR platelet-derived growth factor receptor
PEComa perivascular epithelioid cell tumor
PFS progression-free survival
PI3K phosphatidylinositol 3-kinase
RANKL receptor activator of nuclear factor κB ligand
STS soft tissue sarcoma
TKI tyrosine kinase inhibitor
TRK tropomysin receptor kinase
UPS undifferentiated pleomorphic sarcoma
VEGFR vascular endothelial growth factor receptor
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