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Parkinson’s disease is the second most common neurodegenerative disease

after Alzheimer’s disease, which imposes an ever-increasing burden on

society. Many studies have indicated that oxidative stress may play an

important role in Parkinson’s disease through multiple processes related to

dysfunction or loss of neurons. Besides, several subtypes of non-coding

RNAs are found to be involved in this neurodegenerative disorder. However,

the interplay between oxidative stress and regulatory non-coding RNAs in

Parkinson’s disease remains to be clarified. In this article, we comprehensively

survey and overview the role of regulatory ncRNAs in combination with

oxidative stress in Parkinson’s disease. The interaction between them is also

summarized. We aim to provide readers with a relatively novel insight into

the pathogenesis of Parkinson’s disease, which would contribute to the

development of pre-clinical diagnosis and treatment.
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Introduction

Parkinson’s disease (PD) is a common neurologic disease,
which affected about 6.1 million people around the world
in 2016 (Bloem et al., 2021). The elderly are more likely to
suffer from this disease, with most cases occurring after the
age of 50 (Opara et al., 2017). PD is mainly characterized

by the loss of dopaminergic neurons and the presence of
Lewy bodies in surviving neurons, while its exact cause is
unknown (Antony et al., 2013; Raza et al., 2019; Li W.
et al., 2020). The disease can be intolerable because it is
a progressive disease and can severely damage the somatic
motor system, making it difficult for PD patients to use their
hands or walk normally (Schneider et al., 2017; Cerri et al.,
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2019; Hayes, 2019). They may also exhibit multiple non-motor
symptoms, including cognitive decline, depression, anxiety, and
sleep disorders (Reich and Savitt, 2019). A number of studies
illustrated that many types of RNA have been deeply involved
in the whole disease progression even after onset, including but
not limited to long non-coding RNAs (lncRNAs), microRNAs
(miRNAs), and circularRNAs (circRNAs; Choi et al., 2018,
Liu N. et al., 2020; Liu et al., 2021; Wu and Kuo, 2020;
Wang W. et al., 2021). All of the three most well-known
and most commonly studied RNAs belong to the regulatory
non-coding RNAs (ncRNAs), a category of ncRNAs that are
transcribed from DNA and not involved in coding proteins
(Szymański and Barciszewski, 2002).

lncRNAs are a collective term for a group of highly
heterogeneous regulatory ncRNAs (Hombach and Kretz,
2016). The common characteristics of lncRNA mainly include
transcripts longer than 200 and a lack of ability to encode
proteins (Yang et al., 2021). Given their wide variety, their
biological roles can be quite diverse. An important function of
lncRNA is to regulate gene expression at the transcriptional,
post-transcriptional, and epigenetic levels (Panni et al., 2020).
lncRNAs can bind certain RNAs and proteins to prevent them
from interacting with other molecules (Wang, 2018). They can
also affect epigenetic modifications of genes and histones. In
addition, several lncRNAs have been found to have a role in the
maintenance of chromosome stability and the regulation of the
cell cycle (Lee et al., 2016; Munschauer et al., 2018; Wang R. et al.,
2018; Zhang et al., 2018).

miRNAs, small RNA molecules with an average length
of 22 nt, must be the most extensively studied and best
understood small non-coding RNAs (sncRNAs; Zhang P. et al.,
2019). The major function of miRNAs is to control mRNA
translation, which is usually based on the complementary base
pairing between seed regions of miRNAs and 3’ untranslated
regions of mRNAs (Wei J. W. et al., 2017). The miRNA first
incorporates Argonaute proteins to form an RNA-induced
silencing complex (RISC; Scott and Ono, 2011). Then, if
miRNAs show imperfect complementarity to their target
mRNAs, which is usually the case in animals, deadenylation of
the mRNA will occur, leading to translation inhibition (Carvalho
Barbosa et al., 2020). Furthermore, a small number of miRNAs
can upregulate gene expression, though this process is fairly rare
(Gerin et al., 2010).

circRNAs, a unique group of regulatory ncRNAs, are
characterized by their covalently closed structures (Zhou W. Y.
et al., 2020). Due to a lack of capping and polyadenylation,
circRNAs are resistant to RNA exonucleases and more stable
than linear RNAs (Huang et al., 2020). The size of circRNA
range from 100 nt to over 4 kb, so it might belong to
lncRNA and sncRNA at the same time (Zhang P. et al., 2019).
Increasing evidence has demonstrated that a subset of circRNAs
exerts their functions by functioning as competing endogenous
RNA (ceRNA) or miRNA sponges (Cao et al., 2020; Jiang Q.

et al., 2020; Li L. et al., 2020; Peng et al., 2021). miRNAs
captured by circRNAsare unable to regulate gene expression
(Jin et al., 2020). In addition, several circRNAs can act as
protein decoys. Through the interaction with these circRNAs,
the biological functions of a variety of proteins can be changed
(Altesha et al., 2019).

In addition to the aforementioned regulatory ncRNAs,
oxidative stress is believed to have a notable effect on the
pathological progression of PD (Wang X. et al., 2020). It
results from an imbalance between oxidant production
and antioxidative defenses (Forman and Zhang, 2021).
The oxidant refers to reactive oxygen species (ROS) and
reactive nitrogen species (RNS), which are mainly produced
in mitochondria (Turrens, 2003). ROS includes superoxide
(O•−2 ), hydrogen peroxide (H2O2), hydroxyl radical (•OH),
ozone, and singlet oxygen. These small molecules are all
derived from the reaction of oxygen with electrons (Brieger
et al., 2012). The primary intermediate in the biosynthesis
of RNS is nitric oxide (NO; Lushchak and Lushchak,
2021). NO reacts with ROS, thereby giving rise to other
forms of RNS such as peroxynitrite and peroxynitrous acid
(ONOOH; Tharmalingam et al., 2017). Disruption of the ATP
production function of mitochondria as well as inflammation
may cause an increase in oxidant production (Brand and
Nicholls, 2011; Islam, 2017). In response to ROS and RON,
organisms have evolved antioxidant defense systems. Such
antioxidant defenses are largely provided by antioxidant
enzymes, including superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx; Prasad et al., 2017).
By catalyzing specific reactions, these enzymes can scavenge
oxidants and repair oxidative damage. Excessive oxidant
production combined with decreased expression and activity
of antioxidant enzymes will induce oxidative stress, which can
greatly impair cell viability (Nunomura et al., 2012; Chen and
Zhong, 2014).

It is undeniable that a lot of research has been conducted
on the role of regulatory ncRNAs or oxidative stress in PD (Lu
et al., 2017, 2019; Pavlou and Outeiro, 2017; Cao et al., 2019;
Nies et al., 2021; Zhu et al., 2021). However, the interaction
between the minPD has not been well studied. It is worth
noting that both regulatory ncRNAs and oxidative stress are
closely involved in neurodegenerative disorders (Nunomura
and Perry, 2020). On the one hand, oxidative stress can cause
damage to nucleic acids and affect the expression levels of
varieties of regulatory ncRNAs (Radi et al., 2014). On the other
hand, several regulatory ncRNAs have the potential to regulate
oxidative stress-related pathways, which represent promising
therapeutic targets (Geng et al., 2017; Song et al., 2019; Li Y. et al.,
2020; Li et al., 2021). Hence, further research on this molecular
mechanism in PD may be beneficial to our understanding
of the neurodegenerative disorder in conjunction with the
development of novel strategies for pre-clinical diagnosis and
therapeutic intervention.
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How do the ncRNAs regulate
Parkinson’s disease?

Once it was thought that ncRNAs did not have any biological
function. Only recently has it been discovered that the roles
of RNAs are not limited to bridging genes and proteins
(Carvalho Barbosa et al., 2020). The last decade has witnessed
the discovery and annotation of thousands of both housekeeping
and regulatory ncRNAs, which are emerging as key regulators
of gene expression at the transcriptional or post-transcriptional
level (Li et al., 2015; Merry et al., 2015; Yildirim et al., 2020;
Rezaei et al., 2021). Several subtypes of regulatory ncRNAs,
including miRNAs, lncRNAs, and circRNAs, are involved in the
pathogenesis of PD (Majidinia et al., 2016). The PD models used
and the regulatory ncRNAs identified are shown in Table 1.

Effects of miRNAs in Parkinson’s disease

PD is characterized by the loss of dopaminergic neurons
(DAs) in the substantia nigra (Goh et al., 2019). Convincing
evidence indicated that neuroinflammation was involved in
DA death (Gordon et al., 2018; Rodriguez-Perez et al., 2018).
Activated microglia may initiate the inflammatory process
in the central nervous system (CNS). The upregulation of
microRNA-132-3p (miR-132-3p) and microRNA-873 (miR-
873) in PD led to the deficiency of ATP-binding cassette
transporter A1 (ABCA1) and GLRX, which may give rise to
the activation of microglial cells and subsequent neuronal death
(Wu et al., 2020; Gong et al., 2022). microRNA-29b2/c (miR-
29b2/c) and microRNA-124 (miR-124) played contrasting roles
in microglia activation. Knockout of miR-29b2/c would inhibit
microglia activation, whereas decreased expression of miR-124
correlated with the progression of microglia activation (Yao
et al., 2018; Bai et al., 2021). Feng et al. found that activated
microglia can be transformed into two different phenotypes,
i.e., M1 polarization and M2 polarization. M1 microglia
could produce proinflammatory cytokines to maintain the
homeostasis of the central nervous system. However, this process
may be prolonged by microRNA-330 (miR-330), which in
turn caused inflammatory damage to neuronal cells (Feng
et al., 2021). TNF-α was a proinflammatory factor released
by M1 polarization, whose production was downregulated by
micro-RNA-7116-5p (miR-7116-5p; He et al., 2017). Nod-
like receptor protein 3 (Nlrp3) functioned in regulating
proinflammatory cytokines. Both microRNA-30e (miR-30e) and
microRNA-190 (miR-190) targeted the 3’ UTR of Nlrp3 mRNA
and thus inhibited neuroinflammation (Li D. et al., 2018; Sun
et al., 2019). Furthermore, Specific protein-1 (SP1), nuclear
factor of activated T cells 5 (NFAT5), Rho-associated kinase 1
(ROCK1), and transcriptional activator 3 (STAT3) participated
in regulating neuroinflammation. By suppressing the expression

of SP1, NFAT5, ROCK1, and STAT3, microRNA-29c (miR-
29c), microRNA-195 (miR-195), microRNA-93 (miR-93), and
microRNA-let-7a (miR-let-7a) may reduce neuronal damage
caused by inflammatory responses (Ren et al., 2019; Zhang J.
et al., 2019; Wang et al., 2020a,b; Wang X. et al., 2021).

Another hallmark of PD is the formation of Lewy bodies
in neurons (Singh and Sen, 2017). The main component of
Lewy bodies was α-synuclein fibrils (α-syn) toxic to DA neurons.
Apoptosis was induced when the formation of α-syn aggregates
exceeded the limit of what the cell can tolerate, suggesting
α-syn is an essential player in the PD neurodegenerative process
(Rocha et al., 2018). miRNA-7 (miR-7) was found to not only
inhibit α-syn expression by interacting with its messenger RNA
(mRNA) but also help remove α-syn by promoting autophagy
(Choi et al., 2018). As McMillan et al. stated in their study,
miR-7 may promote autophagy by suppressing the expression
of epidermal growth factor receptor (EGFR), since the activated
EGFR was able to inhibit autophagy. Then, α-syn can be
degraded by autophagy (McMillan et al., 2017). In addition
to promoting α-syn degradation, researchers found that two
RNAs affected the toxicity of α-syn. Both phosphorylation
and acetylation were essential mechanisms regulating the
neurotoxicity of α-syn. Su et al. discovered that miRNA-26a
(miR-26a) directly downregulated the expression level of death-
associated protein kinase 1 (DAPK1), and DAPK1 was capable of
promoting the phosphorylation of α-syn (Su et al., 2019). Also,
sirtuin 2 (SIRT2) was identified to catalyze the deacetylation
reaction of α-syn, and miRNA-486-3p (miR-486-3p) may affect
the toxicity of α-syn by regulating the expression of SIRT2 (Wang
Y. et al., 2018).

Accumulating evidence suggested that autophagy
participated in the pathogenesis of PD. Autophagy dysregulation
can impair many subcellular functions, including α-syn
degradation (Lu J. et al., 2020). Based on the findings of
Zhao et al., UNC51-like kinase (ULK1), a serine/threonine
kinase responsible for promoting cell autophagy, was positively
regulated by miRNA-132-5p (miR-132-5p; Zhao et al., 2020a).
In addition, both miRNA-181b and miRNA-199a were able to
mediate autophagy by targeting the PTEN/Akt/mTOR pathway.
The downregulation of miRNA-181b in PD inhibited the
Akt/mTOR signaling pathway, thereby improving autophagy (Li
W. et al., 2018). Similarly, the downregulation of miRNA-199a
in PD enhanced autophagy by regulating the activity of
mTOR (Ba et al., 2020). Mitophagy is a form of autophagy
in which cells remove damaged mitochondria to maintain
cellular homeostasis. It has been reported that the accumulation
of dysfunctional mitochondria would lead to the death of
DA neurons (John et al., 2020). According to the research
conducted by Zhou et al., miRNA-103a-3p (miR-103a-3p)
was able to regulate mitophagy by mediating Parkin at the
post-transcriptional level. Since Parkin is an E3 ubiquitin
ligase that function in promoting the removal of damaged
mitochondria via mitophagy, the upregulated level of miR-
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TABLE 1 Summary of regulatory non-coding RNAs that regulate Parkinson’s disease.

Model/ Cell Type Name Target Potential Role References

Human pluripotent H9 cells and neural
progenitor ReNcell VM cells, HEK293T
cells, C57BL/6J mice

miRNA-7 ↓ SNCA Suppressed α-synuclein expression (McMillan et al., 2017; Choi
et al., 2018; Adusumilli et al.,
2020)

C57BL/6 mice miRNA-26a ↓ DAPK1 Alleviated DA neuron loss (Su et al., 2019)
A mouse model of PD miRNA-29b2/c ↓ AMPK Promoted neuroinflammation (Bai et al., 2021)
SH-SY5Y cells, C57BL/6 mice miRNA-29c ↓ SP1, NFAT5 Attenuated the neuroinflammation and

apoptosis of PD
(Wang X. et al., 2020)

C57BL/6 mice miRNA-30a-5p ↑ PKCα Downregulated GLT-1 and caused glutamate
excitotoxicity

(Meng X. et al., 2021)

Human neuroblastoma SH-SY5Y cells miRNA-30b ↓ SNCA Inhibited MPP+-induced neuronal apoptosis (Shen et al., 2020)
C57BL/6 mice miRNA-30e ↓ Nlrp3 Attenuated neuroinflammation (Li D. et al., 2018)
BV-2 and HEK-293T cells, C57BL/6J mice miRNA-93 ↓ STAT3 Reduced neuronal injuries and suppressed

inflammatory reaction
(Wang X. et al., 2021)

C57BL/6J mice miRNA-103a-3p ↑ Parkin Prevented mitophagy (Zhou J. et al., 2020)
C57BL/6 mice miRNA-124 ↓ MEKK3, EDN2 Inhibited neuroinflammation and

suppressed neuronal apoptosis
(Yao et al., 2018; Wang J. et al.,
2019)

C57BL/6 mice miRNA-128 ↓ AXIN1 Reduced DA neuron apoptosis (Zhou et al., 2018)
Human SH-SY5Y cells, a mouse model of
PD

miRNA-132 ↑ SIRT1 Induced apoptosis (Qazi et al., 2021)

PD patients, C57BL/6J mice, BV-2 microglial
cells

miRNA-132-3p ↑ GLRX Aggravated neuroinflammation (Gong et al., 2022)

C57BL/6 mice miRNA-132-5p ↑ ULK1 Induced autophagy (Zhao et al., 2020a)
PC-12 rat adrenal pheochromocytoma cells miRNA-133a ↓ RAC1 Inhibited cell apoptosis and autophagy (Lu W. et al., 2020)
PC-12 cells miRNA-133b ↓ ERK1/2 Inhibited nerve cell apoptosis (Dong et al., 2020)
Human neuroblastoma SK-N-SH cells miRNA-181a ↓ p38, JNK Inhibited apoptosis and autophagy (Liu Y. et al., 2017)
PC-12 cells miRNA-181b ↓ PTEN Inhibited autophagy and promoted cell

viability
(Li W. et al., 2018)

PC-12 cells miRNA-181c ↓ BCL2L11 Inhibited cell apoptosis and promoted cell
viability

(Wei M. et al., 2017)

C57BL/6 mice miRNA-183 ↑ OSMR Promoted the apoptosis of substantia nigra
neurons

(Gao et al., 2019)

(Continued)
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TABLE 1 Continued

Model/ Cell Type Name Target Potential Role References

Human neuroblastoma SH-SY5Y cells miRNA-185 ↓ AMPK, mTOR Inhibited autophagy and apoptosis of
dopaminergic cells

(Wen et al., 2018)

BV2, HEK293, and SH-SY5Y cells, C57BL/6J
mice

miRNA-190 ↓ Nlrp3 Alleviated neuronal damage and inhibited
inflammation

(Sun et al., 2019)

BV2 microglial cells miRNA-195 ↓ ROCK1 Inhibited neuroinflammation (Ren et al., 2019)
MPP+-induced mouse model of PD miRNA-199a ↓ GSK3β Reduced autophagy and alleviated

PD-related phenotypes
(Ba et al., 2020)

Humandopaminergic neuroblastoma
SH-SY5Y cells

miRNA-216a ↑ Bax Reduced MPP+-induced neuronal apoptosis (Yang et al., 2020)

Ratadrenal pheochromocytoma PC-12cells miRNA-221 ↓ PTEN Promoted cell proliferation and inhibited
cell apoptosis

(Li L. et al., 2018)

C57BL/6 mice miRNA-330 ↑ SHIP1 Suppressed chronic neuroinflammation (Feng et al., 2021)
SH-SY5Y cells, C57BL/6 mice miRNA-384-5p ↑ SIRT1 Promoted the progression of PD (Tao et al., 2020)
Mouse embryonic substantial nigra–derived
SN4741 cells

miRNA-421 ↑ MEF2D Promoted DA neuron death (Dong et al., 2021)

HEK293T, SH-SY5Y, and U87 cells miRNA-486-3p ↓ SIRT2 Reduced α-Syn aggregation and suppressed
α-Syn

(Wang Y. et al., 2018)

C57BL/6 mice miRNA-543-3p ↑ Slc1a2 Down-regulated GLT-1 and caused
glutamate excitotoxicity

(Wu X. et al., 2019)

C57BL/6 mice miRNA-599 ↓ LRRK2 Suppressed cell apoptosis (Wu Q. et al., 2019)
A mouse model of PD miRNA-873 ↑ A20 Aggravated neuroinflammation (Wu et al., 2020)
C57BL/6 mice miRNA-7116-5p ↓ TNF-α Prevented loss of DA neurons (He et al., 2017)
BV2 microglial cells, C57BL/ 6 mice miRNA-let-7a ↓ STAT3 Inhibited microglial activation and

inflammation
(Zhang J. et al., 2019)

MN9D cells miRNA-let-7d ↓ Caspase-3 Enhanced cell viability and inhibited cell
apoptosis

(Li et al., 2017)

Human dopaminergic neuronal SH-SY5Y
cells, a mouse model of PD

BDNF-AS ↑ miRNA-125b-5p Inhibited cell apoptosis and autophagy (Fan Y. et al., 2020)

BV2 microglia cells, C57BL/ 6 mice GAS5 ↑ miRNA-223-3p,
miRNA-150

Promoted the release of inflammatory
cytokines and contributed to the neuron loss

(Xu et al., 2020; Ma et al., 2022)

N27 dopaminergic neurons, C57BL/6 mice H19 ↓ miRNA-301b-3p,
miRNA-585-3p

Protected against dopaminergic neuron loss (Jiang J. et al., 2020)

(Continued)
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TABLE 1 Continued

Model/ Cell Type Name Target Potential Role References

Human neuroblastoma SH-SY5Y cells,
C57BL/6 mice

HOTAIR ↑ miRNA-126-5p Induced cell apoptosis (Wang et al., 2017; Lin et al.,
2019)

Dopaminergic neuron SH-SY5Ycells and
BV2 microglial cells, C57BL/6 mice

HOXA11-AS ↑ miRNA-124-3p Induced neuroinflammation (Cao et al., 2021)

Human neuroblastoma SK-N-SH cells,
C57BL/6 mice

LINC-00943 ↑ miRNA-7-5p Regulated the apoptosis and inflammation of
nerve cells

(Meng C. et al., 2021; Sun et al.,
2022)

Human neuroblastoma SH-SY5Y cells,
C57BL/6 mice

LincRNA-p21 ↑ miRNA-1277-5p Inhibited viability and promoted apoptosis
of cells

(Xu et al., 2018)

Human neuroblastoma SK-N-SH, SK-N-BE,
and SH-SY5Y cells, human embryonic
kidneyHEK293 cells, MN9D dopaminergic
neuronal cells, C57BL/6 mice

MALAT1 ↑ miRNA-135b-5p,
miRNA-124,
miRNA-205-5p

Promoted cell apoptosis (Liu W. et al., 2017; Chen Q.
et al., 2018; Lv et al., 2021)

BALB/c mice MIAT ↓ miRNA-34-5p Exerted neuroprotective effects in PD (Shen et al., 2021a)
Human neuroblastoma SH-SY5Y, SK-N-SH,
and SK-N-AS cells, embryonic kidney
epithelialHEK293T cells, C57BL/6 mice

NEAT1 ↑ miRNA-124,
miRNA-212-5p,
miRNA-1301-3p,
miRNA-519a-3p,
miRNA-213-3p

Promoted inflammatory response and
neuronal apoptosis

(Yan et al., 2018; Xie S. P. et al.,
2019; Liu R. et al., 2020, Liu et al.,
2021; Chen M. Y. et al., 2021)

SH-SY5Y cells OIP5-AS1 ↓ miRNA-137 Promoted mitochondrial autophagy,
reduced the level and toxicity of α-syn

(Song and Xie, 2021; Zhao et al.,
2022)

Human neuroblastoma SK-N-SH, SK-N-AS
cells, SH-SY5Y cells, MN9Ddopaminergic
neurons, C57BL/6 mice

SNHG1 ↑ miRNA-7,
miRNA-15b-5p,
miRNA-181a-5p,
miRNA-221/222,
miRNA-216-3p

Affected neuroinflammation, autophagy,
and apoptosis in PD

(Cao et al., 2018; Chen Y. et al.,
2018; Qian et al., 2019; Wang C.
et al., 2021; Wang et al., 2021a,b)

C57BL/6 mice SNHG14 ↑ miRNA-214-3p Exacerbated damage to DA neurons,
accelerated the progression of PD

(Zhang L. M. et al., 2019; Zhou S.
et al., 2020)

SH-SY5Ycells, C57BL/6 mice UCA1 ↑ miRNA-423-5p Promoted α-Syn accumulation (Lu et al., 2018)
Human neuroblastoma SH-SY5Y cells and
rat adrenal pheochromocytoma PC-12 cells

XIST ↑ miRNA-199a-3p Contributed to the apoptosis of DA neurons (Zhou Q. et al., 2021)

Human neuroblastomaSH-SY5Y cellsand
mice dopaminergic neuronal MN9D cells,
C57BL/6 mice

circDLGAP4 ↓ miRNA-134-5p Induced apoptosis and enhanced autophagy (Feng et al., 2020)

SH-SY5Yneuroblastoma cells and BV-2
microglial cells, C57BL/6 mice

circSAMD4A ↑ miRNA-29c-3p Affected the apoptosis and autophagy of DAs (Wang W. et al., 2021)

The upward arrows indicate that the levels of non-coding RNAs are significantly higher in PD patients than in healthy individuals and vice versa.
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103a-3p in PD may harm the nervous system (Zhou J. et al.,
2020).

In addition to autophagy dysregulation, dysregulated
apoptosis had a crucial role in the pathogenesis of PD
(Li D. et al., 2020). Although apoptosis was necessary for
building neural networks, excessive apoptosis would accelerate
the progression of PD (Liu et al., 2019). Three miRNAs
were found to downregulate neuroprotective factors, including
miRNA-183 (miR-183), miRNA-384-5p (miR-384-5p), and
miRNA-421 (miR-421; Gao et al., 2019; Tao et al., 2020; Dong
et al., 2021). Conversely, several miRNAs were able to inhibit
neuronal apoptosis and therefore played a protective role in PD.
Increasing evidence has shown that SNCA, Bcl-2-like protein
11 (BCL2L11), Ras-related C3 botulinum toxin substrate 1
(RAC1), Bax, caspase-3, and p53 were apoptotic activators.
Their overexpression can be attenuated by microRNA-30b (miR-
30b), microRNA-181c (miR-181c), microRNA-133a (miR-133a),
microRNA-216a (miR-216a), let-7d, and microRNA-132 (miR-
132), respectively (Li et al., 2017; Wei M. et al., 2017; Lu W.
et al., 2020; Shen et al., 2020; Yang et al., 2020; Qazi et al.,
2021). However, this effect may be diminished due to the
downregulation of these six miRNAs in PD. p38 MAPK pathway
has been proven to be important in regulating cell apoptosis.
microRNA-599 (miR-599) and microRNA-181a (miR-181a)
functioned in inactivating the p38 MAPK pathway, thereby
protecting neurons (Liu Y. et al., 2017; Wu Q. et al., 2019). In
addition, the activation of ERK1/2 and AMPK/mTOR pathways
were essential to cell proliferation, which could be suppressed
by microRNA-133b (miR-133b) and microRNA-185 (miR-185;
Wen et al., 2018; Dong et al., 2020). miR-7 and microRNA-128
(miR-128) regulated the Wnt/beta-catenin signaling pathway
differently. miR-7 suppressed the proliferation of DAs by
inhibiting Wnt/beta-catenin pathway, whereas microRNA-128
(miR-128) alleviated the inhibiting effect of axis inhibition
protein 1 (AXIN1) on this pathway and blocked DA apoptosis
(Zhou et al., 2018; Adusumilli et al., 2020). microRNA-221
(miR-221) and miR-124 could extend cell lifespan via indirect
regulation of PI3K/Akt and Hedgehog pathways (Li L. et al.,
2018; Wang J. et al., 2019).

In recent years, the neuropathological consequences of
dysregulated glutamate homeostasis have been recognized, and
glutamate excitotoxicity has been associated with PD. Glutamate
is an essential neurotransmitter in the mammalian central
nervous system, responsible for transmitting excitatory signals
between neurons. The amount of glutamate at the synapse
above the physiological range was toxic and could have a
detrimental effect on neuron cells, which was termed glutamate
excitotoxicity (Iovino et al., 2020). Glutamate transporter-1
(GLT-1) was responsible for clearing excess glutamate from
the synaptic gap to maintain glutamate homeostasis. It was
found that GLT-1 mRNA was directly targeted by miRNA-543-
3p (miR-543-3p). The overexpression of miR-543-3p in PD
was able to suppress the expression and function of GLT-1

protein (Wu X. et al., 2019). miRNA-30a-5p (miR-30a-5p)
was also upregulated in a mouse model of PD, while the
regulatory mechanism of PKCα by miR-30a-5p needs further
research. Meng et al. revealed that once PKCα was activated,
it could induce ubiquitination and subsequent degradation
of GLT-1 (Meng X. et al., 2021). Hence, both miR-543-
3p and miR-30a-5p contributed to the pathology of PD by
reducing the level of GLT-1, making them promising targets
for treatment.

Briefly, numerous studies have validated those miRNAs
were capable of regulating recognized causative factors of
PD such as neuronal cell damage, microglia activation, and
α-syn production, and chemical modifications by repressing the
expression of target genes. The lncRNA can also influence the
progress of this disease, however, it does not do so in the same
way as the miRNA.

Effects of lncRNAs in Parkinson’s disease

The progression of PD is normally accompanied by
apoptosis and inflammation of nerve cells (Bhattacharyya
et al., 2021). Two lncRNAs, namely nuclear-enriched abundant
transcript 1 (NEAT1) and SNHG gene 14 (SNHG14), were
identified to accelerate this progression (Zhou S. et al., 2020; Liu
et al., 2021). The main hallmark of PD is the loss of dopaminergic
neurons (DAs) in the substantia nigra, which correlates
with typical PD symptoms including resting tremors and
bradykinesia (Xin and Liu, 2021). SNHG14 reduced the number
of DAsby sponging miR-133b, whereas H19 exerted a protective
role against DAneuron damage (Zhang L. M. et al., 2019; Jiang J.
et al., 2020). This protection was based on the overexpression
of hypoxanthine-guanine phosphoribosyltransferase (HPRT),
which was prompted by H19 sponging microRNA-301b-3p
(miR-301b-3p; Jiang J. et al., 2020).

In PD, the main form of DA neuron death is apoptosis.
Abnormalities in apoptosis are a sign of the loss of DAs
in the substantia nigra, which have a notable effect on the
development of PD. Zhang et al. found that microRNA-583-
3p (miR-583-3p) downregulated the expression of PIK3R3.
lncRNA H19 could attenuate the apoptosis of neurons by
interacting with miR-583-3p (Zhang Y. et al., 2020). lncRNA
myocardial infarction-associated transcript (MIAT) also exerted
a neuroprotective role in PD. Shen et al. revealed that MIAT
regulated synaptotagmin-1 (SYT1) by binding to microRNA-
34-5p (miR-34-5p), which enhanced cell viability and inhibited
apoptosis (Shen et al., 2021a). In contrast, growth arrest-
specific 5 (GAS5) may cause loss of neuronal cells. The
underlying mechanism was that GAS5 negatively regulated
microRNA-150 (miR-150) and positively regulated fos-like
antigen-1 (Fosl1), which resulted in cell apoptosis (Ma et al.,
2022). In addition, a number of evidence indicated that
LINC00943, long intergenic noncoding RNA-p21 (lincRNA-
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p21), NEAT1, and small molecule RNA host gene 1 (SNHG1)
acted as molecular sponges of microRNA-338-3p (miR-338-
3p), microRNA-1277-5p (miR-1277-5p), miR-124, microRNA-
1301-3p (miR-1301-3p), and microRNA-216-3p (miR-216-3p),
thereby inhibiting cell viability (Xu et al., 2018, Liu J. et al., 2020;
Meng C. et al., 2021; Wang et al., 2021b). LRRK2 gene has been
acknowledged to be associated with PD. Researchers found that
Hox transcript antisense intergenic RNA (HOTAIR), X-inactive
specific transcript (XIST), and metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) indirectly enhanced
the expression of LRRK2, which would increase the rate of
apoptosis (Wang et al., 2017; Chen Q. et al., 2018; Zhou Q. et al.,
2021). HOTAIR may also promote apoptosis of neuronal cells
through microRNA-126-5p (miR-126-5p)/RAB3A-interacting
protein (RAB3IP) axis (Lin et al., 2019). Furthermore,
MALAT1 contributed to the apoptosis of DAs by combining
with miR-124 and microRNA-135-5p (miR-135-5p; Liu W. et al.,
2017; Lv et al., 2021).

Neuroinflammation is believed to play important role
in the development of PD. Multiple proinflammatory
cytokines released by activated microglia are involved in
neuroinflammatory responses, which would eventually induce
apoptosis of DA neurons (Xin and Liu, 2021). Cao et al. revealed
that lncRNA HOXA11-AS activated microglia and promoted
neuroinflammation via regulating miR-124-3p/NF-κB axis
(Cao et al., 2021). Besides, lncRNA nuclear enriched abundant
transcript 1 (NEAT1) acted as sponges of miR-124, microRNA-
212-5p (miR-212-5p), and microRNA-519a-3p, thereby
increasing the expression of phosphodiesterase 4B (PDE4B),
RAB3A-interacting protein (RAB3IP), and specific protein 1
(SP1; Xie S. P. et al., 2019; Liu R. et al., 2020; Chen M. Y.
et al., 2021). Since PDE4B, RAB3IP, and SP1were shown to
facilitate cell inflammation, the knockdown of NEAT1 could
be a potential strategy for treating PD patients. Based on
the study of Sun et al., LINC00943 also positively regulated
SP1 expression, making it a possible therapeutic target in PD
(Sun et al., 2022). Small molecule RNA host gene 1 (SNHG1)
was found to prevent microRNA-181a-5p (miR-181a-5p)
from suppressing C-X-C motif chemokine 12 (CXCL12). This
may trigger inflammatory responses (Wang et al., 2021a). In
addition, SNHG1 as well as growth arrest-specific 5 (GAS5)
had a promotion effect on the expression of an inflammasome
named nod-like receptor protein 3 (NLRP3), which would
stimulate the secretion of inflammatory factors (Cao et al., 2018;
Xu et al., 2020).

Abnormal aggregation of α-syn also causes damage to DA
neurons. Liu et al. discovered that the expression of nuclear-
enriched abundant transcript (NEAT) was positively correlated
with the α-syn expression, suggesting that the knockdown
of NEAT may protect neurons (Liu and Lu, 2018). Both
UCA1 and small nucleolar RNA host gene 1 (SNHG1) were
able to promote the accumulation of α-syn. Based on the
study of Lu et al., UCA1 could upregulate the expression of

SCNA (Lu et al., 2018). In addition, Chen et al. found that
the inhibitory effect of microRNA-15b-5p (miR-15b-5p) on
the expression of seven in absentia homolog 1 (SIAH1) could
be reversed by SNHG1. The overexpression of SIAH1 would
induce the aggregation of α-syn and elevate its toxicity
(Chen Y. et al., 2018).

Autophagy is responsible for the degradation of α-syn.
The dysregulation of this process is an important contributor
to the development of PD (Xin and Liu, 2021). Yan et al.
revealed that lncRNA nuclear paraspeckle assembly transcript
1 (NEAT1) might promote autophagy in PD by stabilizing
PTEN-induced kinase 1 (PINK1; Yan et al., 2018). Brain-
derived neurotrophic factor anti-sense (BDNF-AS) was also
able to promote autophagy. According to the study by Fan
et al., BDNF-AS enhanced the number of autophagosomes
by regulating microRNA-125b-5p (miR-125b-5p) negatively
(Fan Y. et al., 2020). In contrast, SNHG1 was found to
increase the expression level of p27 via sponging microRNA-
221/222 (miR-221/222). Since p27 was believed to have a role
in inhibiting autophagy, the downregulation of SNHG1 may
promote autophagic activation (Qian et al., 2019). PLK2 was
associated with a pathway that inducedα-syn degradation via
autophagy. microRNA-126 (miR-126) suppressed the expression
of p27, which could be blocked by Opa interacting protein
five antisense RNA 1 (OIP5-AS1). Hence, OIP5-AS1 exerted a
protective role in PD by accelerating the clearance of α-syn (Song
and Xie, 2021). Based on the findings of Zhao et al., OIP5-AS1
also had a role in promoting mitochondrial autophagy, a process
that selectively removes unwanted or damaged mitochondria.
Specifically, the expression of NIX was down-regulated by
microRNA-137 (miR-137), which was reversed by OIP5-AS1.
Overexpression of NIX was proved to promote mitochondrial
autophagy, which would prevent neuronal death (Zhao et al.,
2022). For further review on targeting α-syn as a therapy for PD,
please refer to Taylor et al. (2002), Wong and Cuervo (2010),
Vidal et al. (2014), Martire et al. (2015), Pickrell and Youle
(2015), Dunn et al. (2019), and Fields et al. (2019).

To sum up, lncRNAs have been shown to affect apoptosis
and autophagy of neurons, the accumulation and degradation
of α-syn, and neuronal inflammation. The regulatory roles they
play in PD are largely accomplished by sponging miRNAs.

The in vitro and in vivo experiments have indicated the
feasibility of treating PD by targeting miRNAs and lncRNAs.
These regulatory ncRNAs may serve as targets in PD treatment,
while the effectiveness and safety of this therapy have yet to
be tested in human trials. Other regulatory ncRNAs, such as
circRNAs, may sponge specific miRNAs, thus contributing to the
development of PD (Lu et al., 2019; Feng et al., 2020; Wang W.
et al., 2021). Further research is needed to unravel the role of
a wider class of regulatory ncRNAs in PD progression, which
would not only further our understanding but also lead to
the development of novel and effective therapeutic strategies
(Acharya et al., 2020).
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FIGURE 1

Oxidative stress in Parkinson’s disease.

Toxicological effects of oxidative
stress in Parkinson’s disease

ROS generated in the body perform physiologic functions
such as stimulating growth factors, promoting inflammatory
responses, and regulating cell production. However, when their
levels far exceed that of antioxidants, human cells will be
subjected to devastating effects (Surendran and Rajasankar,
2010; Zuo and Motherwell, 2013; Hemmati-Dinarvand et al.,
2019). Neurons are likely to be attacked by oxidative stress since
they consume large amounts of oxygen and possess relatively
modest levels of antioxidant enzymes. Accumulating evidence
has demonstrated that oxidative stress is an important factor in
the etiology and progression of PD (Figure 1; Percario et al.,
2020).

Oxidative stress

Mitochondrial dysfunction was found in the substantia
nigra (SN) in some patients with PD. Although the mechanism
by which mitochondrial depletion causes oxidative stress and
bioenergetic deficiency is not fully understood, researchers
have correlated the impairment or inhibition of mitochondrial
complex I with elevated levels of ROS (Schapira et al., 1990a,b,c).
Complex I (NADH-ubiquinone oxidoreductase) is a major

component of the oxidative phosphorylation system responsible
for converting molecular oxygen into water and driving energy
synthesis (Hauser and Hastings, 2013). Reduced activity of
complex I may lead to disruption of electron transfer, which
would result in excessive ROS production (Figure 2; Sarkar et al.,
2016).

Mitochondrial-related energy failure may also disrupt
the vesicular storage of DA (Puspita et al., 2017). Under
normal circumstances, dopamine was preserved in synaptic
vesicles, which were an acidic and stable environment that
protected dopamine from oxidation (Jin et al., 2014). In the
SN of PD patients, however, a rise in the amount of free
dopamine in the cytoplasm has been observed (Sackner-
Bernstein, 2021). Monoamine oxidases (MAO) functioned in
catalyzing the transition from cytosolic dopamine to H2O2and
3,4-dihydroxyphenylacetaldehyde (DOPAL; Raza et al., 2019;
Zaman et al., 2021). In addition, dopamine may undergo
auto-oxidation to form DA quinones (Janda et al., 2012; Smeyne
and Smeyne, 2013). H2O2 was a by-product of both of these
reactions, which could be further transformed into •OH via the
Fenton reaction (Vallee et al., 2020). This reaction was largely
dependent on the presence of iron, which was also identified
to be elevated in the PD SN (Vallée et al., 2021a). Therefore,
enhanced dopamine metabolism in combination with iron
accumulation may contribute to cellular ROS in dopaminergic
neurons.
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FIGURE 2

Interactions between ncRNAs and oxidative stress in Parkinson’s disease.

In addition to the alternations occurring within neuronal
cells, microglia activation has been regarded as an essential
contributor to ROS production (Hassanzadeh and Rahimmi,
2018). Usually, microglia cells, the main immune cells in the
brain, remained quiescent. Once activated, microglia released
ROS and RNS such as H2O2, O•−2 , and NO (Onyango,
2008). The reaction of the latter two free radicals produced
peroxynitrite (ONOO−), a highly reactive molecule that
may induce apoptosis of DA neurons (Varcin et al., 2012).
Furthermore, the capacity of activated microglia to produce
ROS and RNS was enhanced due to the increased release of
inducible nitric oxide synthase (iNOS) and NADPH oxidase.
These two enzymes promoted the generation of O•−2 and NO,
respectively (Drechsel and Patel, 2008; Koppula et al., 2012).
Excessive intracellular and intercellular free radicals would lead
to oxidative stress (Hald and Lotharius, 2005).

To deal with high contents of ROS and protect themselves
from oxidative damage, neuronal cells utilized an antioxidant
system consisting of antioxidant enzymes in conjunction
with low molecular compounds (Manoharan et al., 2016).
The enzymes included catalase (CAT), superoxide dismutase
(SOD), and glutathione peroxidase (GPx), whereas glutathione
(GSH) was a major non-enzymatic antioxidant (Redensek
et al., 2019; Robea et al., 2020). CAT and GPx were
believed to be responsible for scavenging H2O2 (Foley
and Riederer, 2000). In the substantia nigra pars compacta
(SNc) of PD patients, however, a dramatic decrease in
the activity of antioxidative enzymes and the levels of
non-enzymatic antioxidants has been observed (Damier
et al., 1993; Mythri et al., 2011). Such an imbalance may
induce oxidative stress and accelerate PD progression
(Hauser and Hastings, 2013).
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FIGURE 3

Multiple antioxidant strategies to prevent and cure Parkinson’s disease.

Oxidative stress accelerates the
progression of Parkinson’s disease

Oxidative stress correlates with increased oxidation of
macromolecules, including lipid, nucleic acid, and protein
(Vallée et al., 2021a). Lipids are components of cell membranes,
maintaining membrane fluidity and permeability. Hence, lipid
oxidation would directly cause structural damage to cell
membranes, which may lead to neuronal damage or even death
(Dalle and Mabandla, 2018). Elevated oxidative damage to
nucleic acids was also revealed in the PD SN (Hegde et al., 2006).
The conformation and stability of DNA were altered because
of oxidative stress, which could result in cell death (Guo et al.,
2018). Protein oxidation is believed to be a feature of oxidative
damage in the PD SN (Taylor et al., 2013). Oxidative stress
caused nitration or carbonylation of proteins, which may lead
to loss of function or aggregation (Maguire-Zeiss et al., 2005).
The cellular systems responsible for the removal of misfolded or
aggregated proteins were impaired by oxidative stress, which also
contributed to the formation of protein aggregates (Hassanzadeh
and Rahimmi, 2018).

Mitochondria are the main source of ROS in cells and
are highly vulnerable to oxidative damage (Yuan et al., 2007).
A dramatic outbreak of free radicals impaired the capability
of the ETC to transfer electrons, which would result in a
steady decline in mitochondrial activity and increased ROS

production (Subramaniam and Chesselet, 2013). Significant
elevation of ROS levels in neurons was found to be responsible
for GSH leakage, mitochondrial DNA (mtDNA) mutation, and
DA oxidation, which further promoted the production of free
radicals (Janda et al., 2012; Yan et al., 2013; Vallée et al., 2021a,b).
The damage to neurons caused by the positive feedback loop
consisting of these PD elements will eventually lead to apoptosis
(Trist et al., 2019).

Oxidative stress was also found to induce the formation
of α-syn aggregates. Under normal physiological conditions,
the α-syn existed as monomers or tetramers (Figure 2).
Due to sensitivity to the excessive accumulation of ROS, the
α-syn was induced to misfold by oxidative stress (Tsang and
Chung, 2009). Misfolded α-syn proteins formed oligomers
or fibrils and eventually insoluble aggregates (Jiang et al.,
2016). The degradation of α-syn aggregates within Das is
dependent mainly on the ubiquitin-proteasomal system (UPS)
or chaperone-mediated autophagy (CMA). However, in a highly
oxidized environment, these two pathways became ineffective in
mediating the degradation of α-syn aggregates (Ganguly et al.,
2017). This is because oxidative stress along with α-syn proteins
subjected to oxidative modifications impaired the UPS and
CMA (Jimenez-Moreno and Lane, 2020). α-syn accumulation
and aggregation were found to inhibit the synthesis of ATP
by mitochondria and induce microglia activation, which led to
chronic effects of oxidative stress on the SN (Maguire-Zeiss
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et al., 2005). Hence, the interaction between oxidative stress
and α-syn proteins can be regarded as a positive feedback loop
that drives pathological conditions, which ultimately leads to the
development of PD (Puspita et al., 2017).

PD remains an incurable neurodegenerative disease, and
the etiologies of it is not completely understood (Jiang et al.,
2016; Raza et al., 2019). However, since researchers have
found that oxidative stress can trigger PD or accelerate its
progression, there is a consensus that combating oxidative
stress is a promising medicinal strategy (Janda et al., 2012).
Many molecules and natural compounds exert antioxidant
properties, including carvacrol, coenzyme Q10 (CoQ10),
creatine, curcumin, melatonin, lipoic acid (LA), lycopene, N-
acetyl-cysteine (NAC), vitamin B3, vitamin C, vitamin D3, and
urate (Chen et al., 2012; Crotty et al., 2017; Ciulla et al., 2019;
Figure 3). These antioxidants may serve as neuroprotective
agents, while they need to be proven safe and effective in clinical
trials (Henchcliffe and Beal, 2008; Hassanzadeh and Rahimmi,
2018). In addition, regular physical exercise has been identified
to have a positive impact on PD via reducing oxidative stress
(Fan B. et al., 2020; Robea et al., 2020).

Interaction between oxidative stress
and regulatory ncRNAs in
Parkinson’s disease

As mentioned above, both regulatory non-coding RNAs,
as well as oxidative stress, are closely associated with PD.
Furthermore, oxidative stress can cause oxidative damage to
RNA. In contrast, regulatory ncRNAs such as miRNAs and
lncRNAs play a role in regulating ROS production (Figure 2).
Their interactions have been confirmed to be involved in the
pathophysiology of PD (Konovalova et al., 2019).

RNA oxidation

RNA is susceptible to oxidative stress due to its
single-stranded structure and dense distribution near the
mitochondria, where most intracellular ROS are generated
(Nunomura et al., 2009; Liu Z. et al., 2020). Excessive amounts of
ROS may lead to RNA strand breaks and chemical modification
and excision of RNA bases (Song et al., 2011; Zhao et al., 2017).
Due to the lack of advanced repair mechanisms, oxidatively
damaged RNA would accumulate in cells, resulting in reduced
protein synthesis, erroneous protein generation, and eventual
cell death (Zhang et al., 1999; Nunomura et al., 2006). RNA
oxidation is not only a common feature of PD but also an
early event in the progression of this disease (Nunomura et al.,
2007; Cervinkova et al., 2017). Among oxidative marks on
RNA, 8-oxo-7, 8-dihydroguanosine (8-oxoG) might be the most
abundant and most extensively studied one (Gonzalez-Rivera

et al., 2020). This base adduct can be produced by the exposure
of guanine to free radicals and may cause incorrect base pairing
(Zhang and Li, 2020). Researchers have found that 8-OHG levels
in cerebrospinal fluid (CSF) and serum are significantly higher
in PD patients than in healthy controls, indicating that 8-OHG
may serve as a biomarker for PD (Alam et al., 1997; Kikuchi
et al., 2002; Abe et al., 2003).

Non-coding RNAs, which are not responsible for encoding
proteins, make up the majority of RNAs in human cells (Moreira
et al., 2008). As a category of ncRNAs, regulatory ncRNAs,
including miRNAs, lncRNAs, and circRNAs, are involved in the
regulation of gene expression (Kong and Lin, 2010). Compared
to mRNAs, these regulatory ncRNAs live relatively longer.
Hence, oxidative damage that impairs their function would
have a detrimental effect on cellular homeostasis (Yan and
Zaher, 2019). For example, miRNAs attacked by free radicals
may fail to correctly recognize their target mRNAs, which may
lead to increased expression of certain proteins (Nunomura
and Perry, 2020). In the experiment conducted by Je and
Kim, miR-7 and miR-153 were identified to suppress the
expression of α-SYN. Their mediated translational inhibition
was abolished by oxidative stress, resulting in increased α-SYN
levels and subsequent development of PD (Je and Kim, 2017).
Furthermore, the study of Chen et al. showed that oxidative
stress induced N6-methyladenosine (m6A) modification of
circRNAs. m6Amodified circRNAs influenced the expression of
stress response genes, which could be a potential mechanism
for oxidative stress-induced neurodegenerative diseases (Chen
N. et al., 2021).

miRNAs regulate oxidative stress

α-syn is responsible for inducing oxidative stress. Both
microRNA-141-3p (miR-141-3p) and microRNA-9-5p (miR-
9-5p) were found to target the 3’ UTR of SIRT1 mRNA.
Since SIRT1 inhibited the formation of α-syn aggregates,
knockdown of miR-141-3p and miR-9-5p may alleviate oxidative
stress and boost the viability of Das (Wang Z. et al., 2019;
Zheng et al., 2020). In addition, microglia are thought to
have a role in the pathophysiology of PD, since cytotoxic
substances released from activated microglia can exacerbate
oxidative stress. miR-124 inhibited microglia activation, thereby
representing a neuroprotective factor (Lushchak and Lushchak,
2021). Recently, researchers found that dysregulation of Fe2+

homeostasis may lead to the accumulation of ROS in cells.
This homeostasis was maintained by ferritin heavy chain 1
(FTH1) since FTH1 converted Fe2+ ions into soluble, non-toxic
Fe3+ ions. microRNA-335 (miR-335) suppressed the expression
of FTH1, thereby promoting the release of Fe2+ ions and
the generation of free radicals (Li et al., 2021). Furthermore,
downregulation of microRNA-410 (miR-410) expression in PD
was identified to be associated with elevated ROS production,
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although the underlying mechanism by which miR-410 exerted
its neuroprotective role needs further study (Ge et al., 2019).

SOD, CAT, and GPx are responsible for detoxifying oxidants
and repairing oxidative damage. Based on some research,
microRNA-375 (miR-375), microRNA-218-5p (miR-218-5p),
and miR-185 attenuated oxidative stress, as evidenced by
elevated SOD and GPx activity in PD rats treated with these
miRNAs (Cai et al., 2020; Ma et al., 2021b; Qin et al.,
2021). In contrast, miR-137 and microRNA-494-3p (miR-
494-3p) aggravated oxidative stress by reducing the level of
SOD (Geng et al., 2018; Jiang et al., 2019). The activity of
SOD was down-regulated by microRNA-155-5p (miR-155-5p;
Lv et al., 2020).

lncRNAs regulate oxidative stress

Mitochondrial dysfunction, a common feature of PD, is
directly related to the excessive production of ROS. This
process can be inhibited by upregulated NORAD (Song et al.,
2019). In addition, the formation of α-syn aggregates is
capable of exacerbating oxidative stress via downregulating
complex I activity or activating microglia. Li et al. found that
the upregulation of lncRNA beta-amyloid cleaving enzyme-
antisense (BACE1-AS) in PD wasassociatedwithrisingα-syn
levels (Li Y. et al., 2020). Besides, Zhang et al. discovered that
the lncRNA miR-17-92a-1 cluster host gene (MIR17HG) played
a role in promoting the expression of α-syn. MIR17HG sponged
microRNA-153-5p (miR-153-5p), thereby preventing miR-153-
5p from downregulating α-syn expression (Zhang et al., 2022).
GSK3β was revealed to promote α-syn accumulation via
inhibiting autophagy. The expression of GSK3β was suppressed
by miR-15b-5p, which was reversed by SNHG1 binding to miR-
15b-5p (Xie N. et al., 2019).

Among the 17 newly studied lncRNAs, 13 were identified
to aggravate oxidative stress and inflammatory responses in
neurons, namely AL049437, HOTAIR, LINC00943, lncRNA-p21
(lnc-p21), MIAT, NEAT1, rhabdomyosarcoma 2-associate
transcript (RMST), SNHG1, SNHG7, SOS1 intronic transcript
1 (SOS1-IT1), SRY-box transcription factor 2 overlapping
transcript (SOX2-OT), taurine upregulated gene 1 (TUG1), and
UCA1 (Cai et al., 2019; Ding et al., 2019; Zhai et al., 2020; Zhang
L. et al., 2020; Zhao et al., 2020b; Guo et al., 2021; Lian et al.,
2021; Ma et al., 2021a; Zhang et al., 2021; Zhou S. et al., 2021;
Fan et al., 2022; Lang et al., 2022). The other four lncRNAs,
namely JHDM1D antisense 1 (JHDM1D-AS1), myocardial
infarction associated transcript 2 (Mirt2), small nucleolar RNA
host gene 12 (SNHG12), and PART1, exhibited anti-oxidant
and anti-inflammatory roles in models of PD, as evidenced by
the decline in proinflammatory cytokines and increase in SOD
contents (Han et al., 2019; Shen et al., 2021b; Wang C. et al.,
2021; Yan et al., 2021). Nevertheless, the precise mechanism by

which these 17 RNAs affect oxidative stress and thereby regulate
PD progression remains unclear.

At present, we are in the early stage of investigating the
cellular consequences of oxidatively damaged RNA and the
mechanism by which regulatory ncRNAs affect oxidative stress
(Kong et al., 2008; Xu et al., 2021). Further investigations are
needed to explore the association between regulatory ncRNA
oxidation and PD, which is beneficial to the development of early
diagnosis and treatment for this disease (Nunomura et al., 2017).

Conclusion

We described the role of regulatory ncRNAs, oxidative stress,
and their interactions in the regulation of PD. In recent years, the
intrinsic correlation between regulatory ncRNAs and oxidative
stress in PD has been increasingly studied. It is worth pointing
out that some regulatory ncRNAs have been found to influence
the progression of PD via regulating oxidative stress, which
makes them potential therapeutic targets. However, there is
fairly limited research that uncovers the precise mechanisms.
In addition, because of the differences between the brains of
laboratory animals and the human brain in combination with the
inability of experimental models to accurately recapitulate the
various features of PD, translating the results from PD models
to humans may face considerable difficulties (Chia et al., 2020).
There are still many hurdles to be overcome in the study of the
interplay between regulatory ncRNAs and oxidative stress in PD.
With the continuous innovation of experimental methods and
techniques, the application of safe and effective targeted drugs
for PD treatment is foreseeable.
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