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Convolutional neural network (CNN) models obtain state of the art performance on image

classification, localization, and segmentation tasks. Limitations in computer hardware,

most notably memory size in deep learning accelerator cards, prevent relatively large

images, such as those from medical and satellite imaging, from being processed as

a whole in their original resolution. A fully convolutional topology, such as U-Net, is

typically trained on down-sampled images and inferred on images of their original size

and resolution, by simply dividing the larger image into smaller (typically overlapping) tiles,

making predictions on these tiles, and stitching them back together as the prediction

for the whole image. In this study, we show that this tiling technique combined with

translationally-invariant nature of CNNs causes small, but relevant differences during

inference that can be detrimental in the performance of themodel. Here we quantify these

variations in both medical (i.e., BraTS) and non-medical (i.e., satellite) images and show

that training a 2D U-Net model on the whole image substantially improves the overall

model performance. Finally, we compare 2D and 3D semantic segmentation models to

show that providing CNNmodels with a wider context of the image in all three dimensions

leads to more accurate and consistent predictions. Our results suggest that tiling the

input to CNN models—while perhaps necessary to overcome the memory limitations in

computer hardware—may lead to undesirable and unpredictable errors in the model’s

output that can only be adequately mitigated by increasing the input of the model to the

largest possible tile size.

Keywords: segmentation, tiling, deep learning, CNN, brain tumor, glioma, BraTS, satellite imaging

1. INTRODUCTION

Since their resurgence in 2012 convolutional neural networks (CNN) have rapidly proved to
be the state-of-the-art method for computer-aided diagnosis in medical imaging, and have led
to improved accuracy in classification, localization, and segmentation tasks (Krizhevsky et al.,
2012; Chen et al., 2016; Greenspan et al., 2016). However, memory constraints in deep learning
accelerator cards have often limited training on large 2D and 3D images due to the size of the
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activation maps held for the backward pass during gradient
descent (Chen et al., 2016; Ito et al., 2019). Two methods are
commonly used to manage these memory limitations: (i) images
are often down-sampled to a lower resolution, and/or (ii) images
are broken into smaller tiles (Huang et al., 2018; Pinckaers
and Litjens, 2018). Tiling is often applied when using large
images due to the memory limitations of the hardware (Roth
et al., 2018). Specifically, in CNN models, the activation maps of
the intermediate layers use several times the memory footprint
of the original input image. These activation maps can easily
increase the allocated memory to hundreds of gigabytes. Fully
convolutional networks are a natural fit for tiling methods, as
they can be trained on images of one size and perform inference
on images of a larger size by breaking the large image into smaller,
overlapping tiles (Ronneberger et al., 2015; Çiçek et al., 2016;
Roth et al., 2018). To perform the overlapping tiling at inference
time, varying N × N (or in the 3D case, N × N × N) tiles are
cropped from the whole image at uniformly spaced offsets along
the image dimensions.

Tiling introduces additional model hyperparameters—
namely, tile size, overlap amount, and aggregation process (e.g.,
tile averaging/rounding)—that must be tuned to generate better
predictions. For example, Roth et al. performed abdominal organ
segmentation on 512 × 512 CT images with between 460 and
1,177 slices by using input tiles of size 132 × 132 × 116 to yield
output prediction tiles of 44 × 44 × 28 in a Cascaded 3D U-Net
(Roth et al., 2018). In the second stage of the prediction, the
probabilities for overlapping tile predictions were averaged to
produce a better Dice Coefficient result. Zeng and Zheng (2018)
introduced “Holistic Decomposition Convolution” that—when
added to a conventional 3D U-Net—significantly reduced the
size of the input data while maintaining the useful information
for the semantic segmentation. They compared the effects of
50× 50× 40, 96× 96× 96, and 200× 200× 40 tile crops from a
480 × 480 × 160 MR and determined that they had better Dice
Coefficient, Hausdorff Distance, and Average Surface Distance
when using the largest tile size that could fit into memory.
Isensee et al. (2019) used a sliding window with a half-tile overlap
and test-time data augmentation that mirrored the tile along all
axes. They also favored larger tile size over large batch size in
order to “maximize the amount of spatial context that can be
captured.” Ghosh et al. (2018) found that by rotating or flipping
the input tile, the prediction was slightly different for the same
tile. By averaging these small variations in the tiled predictions,
Ghosh produced improved predictions in structures within
satellite imagery from a dilated U-Net topology. Huang et al.
determined that zero-padding and strided convolutions (i.e.,
stride > 1)—two methods commonly used in CNNs—created
variability in predictions close to the tile border and caused
translation variance in the output prediction (Huang et al.,
2018).

Previous works like these refer to tiling methods as “necessary
due to constraints in memory” rather than methods to “improve
the accuracy of the algorithms” (Chen et al., 2016; Roth et al.,
2018; Isensee et al., 2019; Ito et al., 2019). In other words,
the tiling method compensates for insufficient memory rather
than adds predictive power. If more memory were available

for training and inference of these models, then tiling methods
would have not been necessary or even desirable. For example,
Kamnitsas et al. (2017) created the first state of the art 3D
topology for predicting brain tumors by finding tiles of “image-
segments” which are “larger than individual patches [tiles], but
small enough to fit into memory.” Roth et al. (2018) remarked,
“with the growing amount of . . .memory, overlapping sub-
volume predictions . . .will be reduced as it will be come possible
to reshape the network to accept arbitrary 3D input image sizes.”

In this study, we focus on the tiling approach—during both
model training and model inference—and its influence on the
model prediction. We implemented U-Net topologies for both
2D (Ronneberger et al., 2015) and 3D (Çiçek et al., 2016) data,
and we question whether this image tiling approach is indeed as
accurate as simply performing inference on the whole image. In a
previous report (Reina and Panchumarthy, 2018), we noticed that
using the entire 2D image gave better predictions than the tiling
approach for a 2D U-Net model trained to detect glial tumors
from brain magnetic resonance imaging (MRI). In this study, we
extend those results by systematically (i) evaluating the resulting
effects in both medical and non-medical data, (ii) comparing
both 2D and 3D U-Net models, and (iii) suggesting that these
differences are caused by operations within the CNN model that
vary due to translations in the input of the model. Finally, we
show that these issues can be partially addressed by increasing
the size of the tile—up to and including training and inferring on
the whole image.

2. METHODS

2.1. Data
2.1.1. Brain Tumor Segmentation (BraTS)
The medical data used for our evaluations reflect the publicly-
available training dataset of the International Brain Tumor
Segmentation (BraTS) challenge 20191 (Figure 1) (Menze et al.,
2014; Bakas et al., 2017a,b,c; Bakas et al., 2018). BraTS created
a publicly-available multi-institutional dataset for benchmarking
and quantitatively evaluating the performance of computer-aided
segmentation algorithms for brain tumors from MRI scans.
These scans were acquired by 1T, 1.5T, or 3T MRI scanners
and all the ground truth labels were manually approved by
expert, board-certified neuroradiologists. The dataset we used
here comprises pre-operative multi-parametric MRI scans from
335 patients diagnosed with glioma. The exact modalities of
the mpMRI scans included describe native T1-weighted (T1),
post-contrast T1-weighted (T1Gd), T2-weighted, and T2 Fluid
Attenuated Inversion Recovery (FLAIR) scans. We randomly
split this dataset into 270 training, 30 validation, and 35
testing scans.

Although the BraTS data describe 3D MRI scans, here we
are considering the 155 2D slices from each scan to be an
independent image for training a 2D model. However, all 2D
slices from a single patient scan were contained in only one of
the three dataset splits (training/validation/testing), to prevent
any potential data leakage toward learning data co-linearities.

1www.med.upenn.edu/cbica/brats2019.html
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FIGURE 1 | Example of a 3D input multi-parametric Magnetic Resonance Imaging scan from the International Brain Tumor Segmentation (BraTS) challenge. From left

to right all four input modalities are illustrated, including native T1-weighted (T1), T1 post-contrast (T1Gd), native T2-weighted (T2), and T2 Fluid Attenuated Inversion

Recovery (T2-FLAIR), followed by the ground truth expert annotation of all three tumor sub-regions, provided as part of the BraTS dataset. From top to bottom three

views (i.e., Axial, Coronal, Sagittal) of these 3D volumes are depicted to showcase the 3-dimensional nature of these scans.

Specifically, there were 41,850, 4,650, and 5,425 2D image/mask
pairs corresponding to 270, 30, and 35 3D MRI scans, across the
training, validation, and testing sets, respectively. All 2D images
were Z-scored along the channel axis from pre-computed means
and standard deviations of the 3D MRI scan. The original 2D
slices were 240× 240 pixels (i.e., whole image).

2.1.2. SpaceNet Vegas Satellite Imagery
The non-medical data is sourced from the public SpaceNet
satellite imagery dataset suite (Figure 2) (SPA, 2018; Weir et al.,
2019)2. Specifically, we used the Vegas subset of the data (SN-
Vegas). It is comprised of 3,851 30 cm spatial resolution, pan-
sharpened, RGB satellite imagery over the city of Las Vegas,
Nevada (USA) as well as latitude-longitude annotations for
108,942 building footprint polygons within the city. We exclude
the official competition test dataset from this study because it
does not contain publicly-available ground truth annotations.
The images were captured by WorldView-2 and 3 satellites, and
filtered to exclude images with excessive cloud cover as well as
extreme capture angles. The labels were professionally created by
geospatial data labeling vendor Radiant Solutions3.

The SpaceNet-Vegas dataset was split into 70% training (2,695
images), 20% validation (770 images), and 10% testing (386
images), corresponding to 77,099 training, 21,505 validation,
and 10,338 testing building polygons. All inputs were Z-scored
along the channel axis from pre-computed means and standard

2spacenet.ai/spacenet-buildings-dataset-v2/
3www.radiantsolutions.com

FIGURE 2 | An example of the SpaceNet-Vegas images used in this study.

The ground truth annotations for buildings and other structures were

professionally labeled.

deviations. All training inputs were also subject to random
horizontal and vertical flips, and rotations between 0 and 360◦.

2.2. U-Net Topology
U-Net is a fully convolutional network based on an encoder-
decoder architecture (Figure 3). The contracting path captures
context and the expanding path enables localization. Unlike the
standard encoder-decoder, each feature map in the expanding
path is concatenated with a corresponding feature map from
the contracting path, augmenting downstream feature maps
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FIGURE 3 | The BraTS 2D U-Net topology. The SpaceNet 2D U-Net and the BraTS 3D U-Net topologies have similar architectures.

with spatial information acquired using smaller receptive fields.
Intuitively, this allows the network to consider features at various
spatial scales. By design, U-Net is agnostic to image size, and
its training and inference can be performed on images of
different size.

2.3. 2D U-Net for Medical Data (BraTS)
We adapted a 2D U-Net model for training on the BraTS data,
and specifically used four MRI modalities as input and output an
equivalently-sized mask predicting the whole tumor appearing in
a 2D slice.

2.3.1. Architectural Modifications
In favor of allowing wider reproducibility of our results, we
specifically modified the originally published 2D U-Net topology
by reducing the number of feature maps by half (from 64 in
the first convolutional layer down to 32) and adding dropout
(0.2) just before the 3rd and 4th max pooling layers. We also
used zero padding in all convolutional layers to maintain the
image dimensions and eliminate the need to crop the image for
concatenation. The reduction of the originally proposed feature
maps happened in favor of our results been reproducible by
others without requiring extreme hardware equipment.

2.3.2. Training Process
We implemented the model used here in Keras 2.2.4 and
TensorFlow 1.11, and made the complete source code publicly
available4. Stochastic gradient descent with the Adam optimizer
(learning rate = 1e-4) was used to minimize the loss function
− log(Dice), where Dice is defined as in equation 1 on page 6.

4github.com/IntelAI/unet

A batch size of 128 was used during training. We created a batch
generator which randomly selected cropped images/masks from
the training set for each batch.

The 2D model was trained for 40 epochs. During training,
a random crop of 128 × 128 pixels was taken from the
normalized 2D images and their corresponding ground truth
masks. Randomized flipping (up/down and left/right), and 90
degree rotation of the training set images were also used during
online data augmentation. TheDice on a center 128×128 crop of
the validation dataset was calculated after every epoch. Themodel
that produced the highest Dice on the center 128 × 128 crop of
the validation data was considered the best trained model.

For pre-processing of the images, on a per image basis,
images were clipped to 98 percentile of their values and
standardization was applied only on non-zero pixels making
background consistent over all images. This created a consistent
effect of normalization over the images.

2.3.3. Zero Padding Experiments
We conducted additional experiments to determine the effects
of zero padding on the tiling approach. This stemmed from
the findings of Huang et al. (2018), who suggested that zero
padding used in CNN topologies caused variability in predictions
at the tile border. To assess this, we also created and trained an
additional 2D U-Net model that did not include zero-padding
for any of the convolutional layers. We named this the “no pad
BraTS” model.

The “no pad BraTS” model was trained in the same way as the
first 2D U-Net model, but with the following changes. This “no
pad BraTS” model took as input a random crop of 236 × 236
and output a 52 × 52 prediction. The decrease in the output
size was due to the progressive loss in the border pixels after
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each non-padded convolutional layer (Ronneberger et al., 2015).
The input size was chosen to be slightly smaller than the whole
240×240 slice so that we could evaluate if the prediction changed
with small translations of the input. The model prediction was
compared to a similarly-cropped version of the ground truth
mask. It was trained for 40 epochs and the model that produced
the highest Dice on the validation data was considered the best
trained model.

2.3.4. Inferring on 2D Tiles (Tiling Approach)
Inference was performed individually on five 128 × 128 pixel-
sized tiles, extracted from the four corners and the center of the
slice (Figure 4A). We performed inference on the whole 2D slice
using themodel and then stacked the 155 slices on a per scan basis
to generate a predicted 3D segmentation mask of the entire scan.

We utilized and compared two tiling aggregation approaches.
The first approach, rounding after averaging, is described by
Roth et al. (2018). In our case the predictions from these five
128 × 128 tiles were first averaged and then rounded to either 0
or 1 (threshold:0.5). We compared the rounding after averaging
approach with a rounding before averaging approach: The five
128× 128 tiles were rounded to either 0 or 1 (threshold:0.5) and
then averaged to provide the whole image prediction (rounding
before averaging). Slicewise predictions for each patient scan
were then stacked together to compare the 2D predictions with
predictions from the 3D BraTS model.

2.3.5. Inferring on the Whole 2D Slice
For fully-convolutional topologies, the TensorFlow
model can be created with a run-time defined height
and width by specifying the input dimensions to be
[Height,Width,Channels] = [None,None, 4] where None
describes the run-time defined parameter5.

By defining and training the model in this manner, we can
pass an image of almost any size into the model and perform
inference. The only limitation to the input image size is that the
dimension must be divisible by 24 in order to align with the 4
max-pool layers of the U-Net model and correctly concatenate
the skip connections.

2.4. 3D U-Net for Medical Data (BraTS)
To create the 3D U-Net model, we used the same number of
convolutional and max-pooling layers as we used in the 2D
U-Net model (Figure 3). We altered the implementation of the
originally proposed 3D U-Net model (Çiçek et al., 2016) by
replacing the ReLU layer with a leaky ReLU activation and adding
instance normalization after each leaky ReLU (Xu et al., 2015;
Ulyanov et al., 2016).

We further modified this implementation by using an initial
learning rate of 0.01. A learning rate decay factor of 0.5 was
applied when the value of the validation loss had not been in the
five best previous losses (i.e., check_best = 5). Training stopped
when the validation loss did not improve in the past 20 epochs
(i.e., patience = 20). Finally, the weights that yielded the lowest
validation loss were used for the final model.

5inputs = tensorflow.keras.layers.Input([None, None, number_channels_in]).

The 3D BraTS model is trained for 100 epochs on 9 tiles, of
128×128×128 voxels, cropped from the 8 corners and the center
of a 3D MRI scan (Figure 4B).

Inferring via a tiling approach was also performed similar to
the 2D U-Net case (section 2.3.4), but used 128 × 128 × 128
tiles from the eight corners and the center of the whole image
(Figure 4B). These nine 128 × 128 × 128 tiles were averaged to
provide a prediction of the whole mask.

Whole image inference was also performed similar to the 2D
U-Net (section 2.3.5) but using the whole 240× 240× 155 scan.

2.5. 2D U-Net on Satellite Data
(SpaceNet-Vegas)
The SpaceNet model uses a single satellite image from SpaceNet-
Vegas as input, and outputs an equivalently-sized mask
predicting the building footprints.

2.5.1. Architectural Modifications
The originally published topology was modified by introducing
batch normalization to the output of a convolution layer, prior to
the activation, for regularization purposes.

2.5.2. Training Process
All models were trained for 300 epochs using the Adam
optimizer with a 5e-4 learning rate to optimize the Binary
Cross Entropy loss. To test our hypothesis that a model trained
in the whole image outperforms a tiling-based approach, we
followed two training processes here; based on (a) tiling, and
(b) down-sampling.

For models trained via tiling, the input image’s source
resolution of 650 × 650 is maintained and a random crop of the
desired dimension is selected. Different models were trained for
each of the following random tiling sizes:

- 128× 128
- 256× 256
- 384× 384
- 496× 496

Due to the U-Net architecture, the input dimensions to the
model must be divisible by 25 in order to align with the
5 max-pool layers. Consequently, for the models trained on
the entire image via down-sampling, the original image was
downsampled with anti-aliasing and bilinear interpolation to
512× 512 and 640× 640.

2.5.3. Zero Padding Experiments
As with the BraTS experiments, we created additional SpaceNet
experiments to determine the effects that zero padding had
on the tiling approach. We also created and trained additional
SpaceNet models that did not include zero-padding for any of
the convolutional layers (namely the “no pad SpaceNet” models).

2.5.4. Inferring on 2D Tiles
Inference was performed using tiles of the same size that was used
when training themodel, with a 50% overlap between tiles in both
the vertical and horizontal dimension. The overlapping tiles were
averaged to provide the whole image prediction.
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FIGURE 4 | Tiling process schematic. (A) In the 2D model, five tiles (4 corners, 1 center) are averaged to produce the whole image prediction. The 3rd picture in the

2nd row depicts the intensity of the tile overlapping. Notably, the tile predictions are either (i) first rounded and then averaged together, or (ii) first averaged together

and then rounded. (B) Example for the 3D BraTS model, where the tiling algorithm is similar with the 2D, but this time uses nine tiles (8 corners and 1 center).

2.6. Evaluation Metric
2.6.1. …for the Medical Data
In consistency with the metric used in the BraTS challenge, the
Dice Similarity Coefficient (Dice) was used here to measure the
quality of the tumor predictions. Dice is defined as:

Dice =
2× TP

2× TP + FP + FN
(1)

where TP, FP,TN, FN are the number of True Positive, False
Positive, True Negative, and False Negative pixels.

2.6.2. …for the Satellite Data
In order to measure performance relative to established
benchmarks on SpaceNet, we used the post-processing Polygon
F1 metric, displayed in Figure 5; namely, the predicted
segmentation mask is polygonized based on same-value pixel

connectivity to generate a set of proposed polygons in latitude
and longitude space. We then calculate the spatial intersection
over union (i.e., Jaccard Index) between proposed and ground
truth polygons. A true positive is asserted if the Jaccard value is
above 0.5. Once we establish TP, FP, and FN counts, we compute
the Dice (also known as SpaceNet (polygonal) F1 Score)—
the harmonic mean between precision and recall—over these
matched polygons and compare this metric to theDice calculated
on a pixelwise basis (Hagerty, 2016).

3. RESULTS

3.1. 2D BraTS Model
The best trained 2D BraTS model yielded an average Dice of
0.8877 when inferred on a single center 128 × 128 tile of the
test dataset slices. Furthermore, as explained in the methods,
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FIGURE 5 | The SpaceNet F1 metric: a list of proposals is generated by the detection algorithm and compared to the ground truth in the list of labels.

although this model was trained on random 128 × 128 tiles, we
were able to perform inference on the entire 240× 240 2D image
slice. The whole 2D slice predictions resulted in an average Dice
on 0.8743 on the whole 3D volume. Using the 2D BraTS model
with five 128× 128 tiles, resulted in an average Dice of 0.8599 for
the tiling aggregation method of rounding after averaging. Using
the rounding before averaging tiling aggregation method, resulted
in a 0.8998 average Dice (Table 1).

Collectively in the testing dataset, application of different
tiling aggregation approaches (i.e., rounding after averaging, and
rounding before averaging) revealed that when we aggregated
the predicted segmentations by rounding after averaging, the
2D segmentations of individual subjects were inferior to
the segmentations obtained from the 3D model. Contrarily,
evaluation of the tiling aggregation approach, where rounding
before averaging was applied, yield that on average more 2D
predictions were closer to the ground truth than when using the
3D model (Figure 6).

3.2. 3D BraTS Model
The results of the 3D U-Net BraTS model showed a different
behavior when compared with the results of the 2DU-Net model.
Specifically, there were no significant differences observed when
the predictions of the model inferred on the whole 3D MRI scan
were compared to the predictions of any of the tiling aggregation
approaches. Inferring the 3D BraTS model on the whole 3D
scan resulted in an average Dice of 0.8974, when for the tiling
aggregation method of rounding after averaging and of rounding
before averaging the average Dice was equal to 0.8991 and 0.8984,
respectively (Table 2).

TABLE 1 | Results of 2D U-Net on medical data (BraTS).

Inference on: Whole 2D slice 2D tiles 2D tiles

Aggregation

approach

N/A (Rounding after

averaging)

(Rounding before

averaging)

Dice 0.8743 0.8599 0.8998

Comparing whole 2D slice prediction to two tiling aggregation methods.

3.3. 2D SpaceNet-Vegas
With the satellite image dataset, we note that higher accuracy was
obtained by training on a larger tile size (i.e., larger context of
the image). The model trained on 128 × 128 random tiles and
inferred on the whole 650 × 650 image with 128 × 128 sliding
tiles, resulted in a Dice score of 0.791, whereas the model trained
on the whole 2D image resized to 640 × 640 and inferred on the
whole 650× 650 image resulted in a Dice score of 0.917. To train
on the whole image, we interpolated the image to 640×640 as
the U-Net topology require the input image to be multiple of 25

to align with 5 max-pool layers. Tables 3, 4 denote that both the
evaluation metrics of Dice and SpaceNet F1 (polygon-wise and
computed over the entire dataset, not per image) improve as the
training tile size increases.

4. DISCUSSION

Our results denote substantial differences in our 2D U-Net
architecture, both for medical and non-medical (i.e., satellite)
data. Specifically, the evaluation of Dice show superiority when
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FIGURE 6 | Comparing pairwise Dice differences between the prediction on

the whole 240× 240 image and the 128× 128 tiles. Zero indicates both

methods produced equal Dice scores for the same scan. (Top) Prediction was

made by first averaging the 5 tiles and then rounding the final prediction to 0

or 1. (Bottom) Prediction was made by first rounding the tiled predictions to

0 or 1 and then averaging the predictions.

TABLE 2 | Results of 3D U-Net on medical data (BraTS).

Inference on: Whole 3D scan 3D tiles 3D tiles

Aggregation

approach

N/A (Rounding after

averaging)

(Rounding before

averaging)

Average Dice (±σ ) 0.8974

(± 0.0702)

0.8991

(± 0.0666)

0.8984

(± 0.0670)

Comparing whole 3D scan prediction to two tiling aggregation methods.

TABLE 3 | Results of 2D U-Net with zero-padding on non-medical data

(SpaceNet Vegas).

Tile size
128 × 128

crop

256 × 256

crop

384 × 384

crop

496 × 496

crop

512 × 512

interp

640 × 640

interp

Dice 0.873 0.900 0.896 0.918 0.917 0.918

SpaceNet F1 0.748 0.803 0.800 0.838 0.840 0.847

Dice and SpaceNet (polygon-wise Dice) F1 metrics on varying tile size.

inferring our model in the whole 2D image, when compared with
inferring in smaller image tiles, supporting our hypothesis for the
large tile sizes. Furthermore, gradual increments of the tile sizes
shows gradual improvement in the performance. Following the
evaluation of our 3D U-Net model, we note that the performance
on 3-dimensional data did not show substantial difference when
comparing inference on the whole 3D image and inference on

TABLE 4 | Results of 2D U-Net without zero-padding on non-medical data

(SpaceNet Vegas).

Tile size
128 × 128

crop

256 × 256

crop

384 × 384

crop

496 × 496

crop

512 × 512

interp

640 × 640

interp

Dice 0.865 0.896 0.907 0.918 0.912 0.914

SpaceNet F1 0.734 0.781 0.797 0.806 0.808 0.821

Dice and SpaceNet (polygon-wise Dice) F1 metrics on varying tile size.

FIGURE 7 | The translationally-variant nature of the MaxPooling layer: note

how the result of MaxPooling significantly differs with a translation of one pixel

to the 10× 2 window between the top and bottom inputs even though they

contain the same values (middle rows). Successive MaxPooling layers (or any

non-unary, strided convolution) compound the effect because they effectively

increase the receptive field window size. Hence, a model with three 2× 2

MaxPooling layers would show translational variance for offsets of up to

23 = 8 pixels.

3D tiles. We hypothesize that this happens due to the inclusion
of large image context (e.g., more neighboring voxels) along the
third dimension.

The overlapping tiling approach is commonly used by
researchers to apply fully convolutional models on large 2D and
3D images that would ordinarily not fit into available memory
(Chen et al., 2016; Roth et al., 2018). Isensee et al. (2019), for
example, specifically designed their topology to “automatically
set the batch size, tile size and number of pooling operations
for each axis while keeping the memory consumption within a
certain budget.” We suggest that researchers should be designing
their topologies not to fit into a hardware constraint, but instead
to produce the most accurate model possible.

We found that the variance in the prediction can be seen
in the linear transformation (flipping) and affine transformation
(translation) (Figures 8, 9). Most neural networks include some
component that makes it translationally-variant, such as a
pooling layer or non-unary convolutional stride. In other words,
the whole image is not necessarily the sum of individual tiles. In
Figure 7, we demonstrate this effect due to a 2 × 2 max-pooling
layer. Both the top and bottom use identical 11 × 2 arrays. If a
10 × 2 tile is used to perform the max-pooling, there are only
two possible tiles. Notice that each tile produces different results.
We further found that this behavior caused by the pooling layers
most prominently affects the sharp intensity changes in object
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FIGURE 8 | Demonstrating the variability of the 2D BraTS model. (Top) Prediction based on normal orientation of the MRI input. (Middle) Prediction based on vertical

flip of the MRI input. (Bottom) Comparing the predictions of the normal and flipped inputs. The prediction of the flipped input was re-flipped to allow direct

comparison with the normal orientation prediction. In bottom right figure, gray pixels indicate no difference, black pixels are in the flipped prediction but are not present

in the normal prediction, and white pixels are in the normal prediction but are not present in the flipped prediction.

boundaries. We believe that many of our results on “blobbier”
borders that are more sensitive to even minor affine transforms
to the tiles are a result of these translationally-variant operations,
especially the max-pooling operation.

Although these differences in prediction are often localized
to the segmentation border, the boundaries of the tumor or
buildings are often the most relevant to the task. Especially in
medical imaging, ensuring adequate tumor margins are critical
to successful therapeutic planning and treatment.

4.1. Medical Data (BraTS)
If the models were linear, then any linear transformation to
the model input should result in the same prediction (with

the same linear transformation). Figure 8 shows that on scan
BRATS19_CBICA_BBG_1.nii.gz it achieves a Dice of 0.9100
on the center 128 × 128 tile of slice 94. However, if the
MRI input is simply flipped vertically, then the prediction is
changed. In this case, the Dice shows that the model provides
a worse prediction with the flipped input (Dice = 0.8480).
By reversing the linear transform (i.e., unflip the prediction)
the two model predictions can be compared directly to show
that they are indeed different (cross-prediction Dice = 0.9139).
Although the two predictions are very similar, the bottom row
of Figure 8 highlights the differences occur along the tumor
borders. We find that the tumor borders appear to be where the
predictions differ.
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FIGURE 9 | Demonstrating the translational variance of the 2D BraTS model. The center shows the prediction of the model on a 128× 128 center crop of the MRI.

Note the entire tumor fits within this tile. The surrounding subplots show the difference in the prediction as the MRI input crop is offset by one or two pixels in either

dimension of the slice. The differences between the predictions in the overlapping pixels show that even the smallest translation in the input can create a difference in

the output. Gray pixels indicate no difference in the predictions of the overlapping pixels between the center crop and the offset crop, black pixels are in the offset-crop

prediction but are not present in the center-crop prediction, and white pixels are in the center-crop prediction but are not present in the offset-crop prediction.

Figure 9 shows the translational variance of the model. The
center shows the prediction of the model on a 128 × 128 center
crop of the MRI. As the grid in the figure indicates, each tile
shows the difference between pixels that overlap between the
predictions of the center crop and a crop translated ±1 or 2
pixels in each dimension from the center crop. The Dice confirm

that the overlapping predictions, while similar, differ significantly
along the border of the tumor. This pattern of differences along
the segmentation border was typical in the results. Note that
the translations of (+2, +2) and (−2, −2) are a multiple of the
max pooling stride and should be less sensitive to the translation
(cf. Huang et al., 2018).
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FIGURE 10 | In this “no pad BraTS” model, there is still translational variance despite the model containing no zero padding in the convolutional layers. The

“Prediction Center Crop” refers to the prediction when using a 236× 236 center crop of the input slice. “Prediction Translate Right” refers to a similar crop but

translated one pixel to the right of the center. The green and red circles highlight predictions that have changed due translating by a single pixel. The figure on the right

shows the difference in the overlapping regions between the “Center Crop” and “Translate Right” predictions. Gray indicates no difference. White indicates a

prediction in the “Center Crop” that was not in the “Translate Right.” Black indicates a prediction in the “Translate Right” that was not in the “Center Crop”.

Figure 10 shows the translational variance of the “no pad
BraTS” model. In this case, the model was trained without a
zero pad in the convolutional layers so that we could assess the
effects of zero padding on the prediction output. In the figure, the
“Center Crop” refers to a 236× 236 center crop of the 240× 240
slice and “Prediction Translate Right” refers to a crop that has
been translated one pixel to the right of the center crop.When we
compare the prediction regions that overlap, we find several areas
where the tumor prediction has changed (red and green circles).
This demonstrates that the translational invariance due to tiling
cannot bemitigated by simplymodifying the topology to only use
valid pixels in the convolutional layers.

Application of different tiling aggregation approaches (i.e.,
rounding after averaging, and rounding before averaging) revealed
unpredictable and inconsistent results. This introduces a new
parameter to standardize the results. The user must be
aware of this discrepancy and make appropriate conclusion
by experimenting with different tiling aggregation methods.
Furthermore, the results of the 3D U-Net model inference
demonstrate that greater image context (3D vs. 2D) contributes
in the performance, but also that after the inclusion of sufficient
image context (i.e., when providing enough context) the model
converges and no further improvements are observed.

The two different tiling aggregation approaches produced
different results in the 2D and 3D models. For the 2D model the
rounding after averaging approach produced a substantially lower
Dice metric than rounding before averaging approach. In the
3D model, the rounding after averaging approach produced an
insignificantly higherDicemetric than rounding before averaging.

4.2. Non-medical Data (SpaceNet-Vegas)
We find that the whole image consistently outperforms tiling-
based approaches on the pixelwise Dice that converge to similar
values once the tile size reached approximately half of the original
height and width of the image (Table 3). Similarly, the polygonal-
wise Dice (SpaceNet F1 metric) also improves as the training
tiles cover a larger proportion of the whole image. Inspection of

the predicted masks reveals the likely culprit: Figure 11 shows
the ground truth mask and image at the top, followed by rows
showing sliding window predictions with 128×128 and 256×256
tiles, with the last row being predictions from the model trained
on 640× 640 resized inputs.

We note that predictions from the models using smaller tile
sizes produce segmentations that fail to capture fine-grained
boundaries between buildings, leading to “blobbier” or more
amorphous predictions. Note that the tiled predictions segment
the buildings in each cul-de-sac as a single continuous mass;
however, there are roughly 6 houses per cul-de-sac. Thesemissing
boundaries lead to the post-processing step of polygonization
creating a reduced number of polygons as multiple buildings are
getting extracted as one. We note that as the tile size increases to
reach at least 1

2H ×
1
2W, then the adverse polygonization effects

are reduced and predictions at the boundary of the segmentations
becomes more accurate (Table 3).

The removal of zero padding in the topology has a negligible
effect on the average per-image Dice coefficient. However, the F1
Metric is lower by 1–3% across all input size variants (Table 4).
Because the removal of zero-padding reduces the output size
of the model, what we see is an effect similar to the discussed
effects of using smaller tiles rather than the whole image during
training. Since the F1 metric is computed over the entirety of
the extracted polygons—that is, a set latitude/longitude pairs
defining a building footprint—we again lose fidelity at the edges
of the buildings which decreased the SpaceNet F1 score. This
does not affect the Dice score, as Dice is not sensitive to the
separation of object instances. In other word, a giant pixel blob
covering two buildings yields good pixelwise Dice values, but
poor SpaceNet F1 polygon values.

5. CONCLUSIONS

In this study, we systematically evaluated the effects of using
tiling approaches vs. using the whole image for deep learning
semantic segmentation, in both 2D and 3D configurations.
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FIGURE 11 | (1st row) Ground truth and whole image. (2nd row) 128× 128 tiles. (3rd row) 256× 256 tiles. (4th row) 640× 640 whole image.

Through quantitative evaluation we demonstrated that larger tile
(i.e., context) sizes yield more consistent results and mitigate
undesirable and unpredictable behavior during inference. We
realize that tiling methods may continue to be necessary
as researchers use images with increasingly greater size and
resolution in their convolutional neural network models. Our
goal in this study is to raise awareness about the issues
surrounding tiling. Namely:

1. Tiling hyperparameters, which include tile size, offset,
orientation, and overlap, can cause large variations in
the prediction, particularly around the borders of the
segmentation mask.

2. This variance is not just limited to a translation less
than the stride (as suggested by Huang et al., 2018),
but seem to be present even with translations of ±2 in
each direction. Therefore, we think that our results show
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a more complicated story to the translational variance
of CNNs.

3. Topologies without zero padding in the convolutional layers
do not eliminate the translational variance of the topology.

4. Methods to aggregate the individual predictions into a whole
image prediction, namely when to average the predicted
outcome pseudo-probability maps and when to round
these predictions, that can have a significant effect on the
overall accuracy.

5. Larger degrees of image context, including adding 3D
information to the model and using larger tile sizes, improves
model performance in training and is less sensitive to these
hyperparameters during inference.

We conclude that increased access to memory—either through
improvements in hardware or through high performance
computing techniques, such as model parallelism (Shazeer et al.,
2018) and data parallelism (Sergeev and Balso, 2018)—is essential
to creating accurate and robust models. Tiling should only
be reserved for those cases where the physical limitations of
memory make it an absolute necessity. When tiling must be used,
researchers should be careful to investigate how the translational
variance of the model affects the predictions and compare
methods of tiling aggregation to determine the best way to
mitigate the variability inherent in tiling.
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