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Abstract: Multisensory integration refers to sensory inputs from different sensory modalities being
processed simultaneously to produce a unitary output. Surrounded by stimuli from multiple modal-
ities, animals utilize multisensory integration to form a coherent and robust representation of the
complex environment. Even though multisensory integration is fundamentally essential for animal
life, our understanding of the underlying mechanisms, especially at the molecular, synaptic and
circuit levels, remains poorly understood. The study of sensory perception in Caenorhabditis elegans
has begun to fill this gap. We have gained a considerable amount of insight into the general principles
of sensory neurobiology owing to C. elegans’ highly sensitive perceptions, relatively simple nervous
system, ample genetic tools and completely mapped neural connectome. Many interesting paradigms
of multisensory integration have been characterized in C. elegans, for which input convergence occurs
at the sensory neuron or the interneuron level. In this narrative review, we describe some represen-
tative cases of multisensory integration in C. elegans, summarize the underlying mechanisms and
compare them with those in mammalian systems. Despite the differences, we believe C. elegans is able
to provide unique insights into how processing and integrating multisensory inputs can generate
flexible and adaptive behaviors. With the emergence of whole brain imaging, the ability of C. elegans
to monitor nearly the entire nervous system may be crucial for understanding the function of the
brain as a whole.

Keywords: multisensory integration; Caenorhabditis elegans; sensory processing; sensory modality;
sensory input; neural plasticity

1. General Introduction

Multisensory integration is an essential issue in the fields of cognition, behavioral
science and neurobiology. It studies how information from different modalities, such
as sight, sound, smell, taste and touch, becomes integrated as a coherently meaningful
representation in the nervous system [1]. Successful integration can decrease sensory
uncertainty and reaction latency and form better memory and perception [1], thus providing
adaptive advantages for survival and reproduction.

Although sensory processing was traditionally viewed and studied in modality-
specific manners, different regions of the mammalian brain are enormously interactional.
Numerous studies have identified multisensory neurons in cortical areas that were pre-
viously classified as uni-sensory [2]. Multisensory integration is probably necessary for
almost all animal activities. Ample evidence demonstrates that multisensory inputs are
commonly found in many ascending pathways [2,3]. This leads to researchers proposing
that “the entire cortex (brain?) is multisensory” [1,2,4–6], albeit the functional roles of the
integration have not all been characterized.

There are two well-accepted principles of multisensory integration: the temporal and
spatial principle and the inverse effectiveness principle [2,7–9]. The spatial and temporal
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principle states that integration is more likely to happen or be strengthened when the
uni-sensory stimuli occur at approximately the same location or close in time. The principle
of inverse effectiveness states that the magnitude of integration is inversely related to the
responsiveness of individual stimuli, i.e., weak stimuli presented in isolation are more
likely to elicit or strengthen multisensory integration [9–11].

The ability to integrate cross-modal senses is not inherent. Instead, it develops gradu-
ally after birth with the presence of cross-modal events in the environment. Even though
multisensory neurons are produced early in life, these neurons cannot integrate multisen-
sory inputs until much later [12]. This capability gradually matures into young adulthood.
Therefore, multisensory integration is essentially a learned ability, involving the neural
mechanism of plasticity.

Multisensory processing appears to be disrupted in several neuropsychiatric disorders,
including autism spectrum disorder, dyslexia, attention deficit hyperactivity disorder,
sensory processing disorder and schizophrenia [13–18]. How multisensory processing
relates to these disorders is still unclear. It has been shown that multisensory training can
restore visual function in visual cortex-damaged animals [2]. In some cases of autism, the
delayed development of multisensory processing can be improved with age, presumably
via prolonged development [19]. Since sensory integration intervention is based on neural
plasticity [20], this gives hope that individually tailored multisensory training techniques
can ameliorate these neuropsychiatric disorders with multisensory processing deficits.

Caenorhabditis elegans (C. elegans) senses its complex environment using multisensory
integration strategies to make behavioral decisions [21,22]. Studies of multisensory inte-
gration in C. elegans have a unique niche due to the intrinsic properties of this organism’s
nervous system. There are many advantages to studying neurobiology in C. elegans, which
can be extended to the study of multisensory integration. C. elegans has a well-defined
and compact nervous system with 302 neurons and it is the only organism whose en-
tire neuronal connectome is mapped throughout different developmental stages [23–25].
Recently, the worm “contactome” has also been mapped, adding spatial context to the
connectome [26,27]. In addition, gene expression profiles at single cell resolution of all
302 neurons have been generated [28,29].

Moreover, numerous genetic tools for neuronal functional studies have been devel-
oped in C. elegans. A single or a few neurons can be selectively killed by laser ablation [30],
by expressing caspase to induce apoptosis [31], or by using miniSOG, a photosensitizer
generating singlet oxygen [32,33] in a cell type-specific manner. Neuronal activity can be
manipulated opto-genetically [34] or chemo-genetically [35]. Those tools greatly facilitate
the identification of an underlying neural circuit. Moreover, there is an arsenal of worm
mutants in various membrane potential-associated proteins, synaptic and signaling pro-
teins, along with the ease of generating transgenic and knock-out animals, facilitating the
investigation of molecular functions of the nervous system.

Previous studies in this field have revealed substantial mechanisms of sensory inte-
gration at the molecular, cellular, synaptic and circuit level in C. elegans. There are two
excellent reviews [21,22] summarizing sensory processing circuits and sensory integration
paradigms in C. elegans. In this narrative review, we will compare multisensory integra-
tion processing in mammals and C. elegans with a focus on C. elegans, concentrating on
new paradigms that have not been covered before. Using representative examples and
easy-to-relate comparisons, we hope this essay will help colleagues investigating sensory
processing in mammals to comprehend and appreciate the research in C. elegans.

2. Multisensory Integration in C. elegans
2.1. Sensory Processing in C. elegans

C. elegans has 60 sensory neurons that can sense a variety of sensory modalities, includ-
ing smell, taste, touch, temperature, light, color, oxygen, CO2, humidity, proprioception,
magnetic field and sound [36–45]. For each environmental stimulus assayed in isolation,



Brain Sci. 2022, 12, 1368 3 of 13

the fundamental neural circuit is well characterized [28] and the corresponding behavioral
output is generally robust.

Worms use diverse protein receptors to sense environmental stimuli. The C. elegans
genome encodes over 1000 predicted G protein-coupled receptors (GPCRs), many of which
are likely to function as receptors in sensory neurons [37]. The one confirmed odorant
receptor is ODR-10, which detects diacetyl [46]. GPCR LITE-1 has been shown to be a
photoreceptor [47]. It has been demonstrated that the receptor guanylyl cyclase GCY-35 is
an oxygen sensor [48]. Several receptor guanylyl cyclases and a glutamate receptor have
been proposed as thermo-receptors [49,50]. The mechano-sensor is thought to be made
up of two ion channel subunits, MEC-4 and MEC-10, from the degenerin/epithelial Na+
channel (DEG/ENaC) family [51,52].

When the GPCR protein receptors are activated by a stimulus, the signal is transduced
by two types of downstream ion channels [37,38]. One type consists of the TRP (transient
receptor potential) channels, OSM-9 and OCR-2 [53,54]. The other type of downstream
signaling transduction is mediated by the second messenger cGMP, involving receptor
guanylyl cyclases and cyclic nucleotide-gated channels TAX-4 and TAX-2 [55,56]. Both
types of channels can mobilize calcium, open voltage-gated calcium channels and activate
the sensory neuron.

The organization of the sensory system from all modalities is vastly different in
C. elegans compared to mammals due to its numerical simplicity. Take the olfactory sensory
neurons, for example. In C. elegans, a pair of each AWA, AWB and AWC neurons serve
as the primary odorant chemosensory neurons, while worms are likely to express around
100 GPCRs as presumed odorant receptors [57]. Therefore, each odorant-sensing neuron
expresses many receptors. This is in contrast to the “one neuron, one receptor” rule in
mammals, which refers to the fact that each olfactory sensory neuron expresses one and
only one olfactory receptor [58]. In the ascending pathways beyond the sensory neuron
layer, the sensory systems in mammals are much more complex. Their projections travel
a long distance and project to multiple higher brain regions. In C. elegans, interneurons
comprise the largest group of neurons, which is probably the counterpart of the higher
brain regions in mammals [24]. They can be divided into first-layer, second-layer and
commander interneurons. Sensory neurons project to different layers of interneurons and
converge into five commander interneurons that control muscle movement [59].

2.2. C. elegans Performs Multisensory Integration

All animals, including lower organisms such as C. elegans, can integrate information
from multiple channels to form an accurate presentation of the complex environment. The
integration process allows animals to make better choices based on the information they
have received. The environment of C. elegans may contain both beneficial elements such as
mates and food, but also harmful elements such as poison and predators. How to integrate
environmental cues in a context-dependent manner and make an appropriate decision is
a central theme in the studies of C. elegans neurobiology. Despite having just 60 sensory
neurons, C. elegans exhibits an array of highly sensitive sensory modalities and displays
diverse paradigms of multisensory integration [21,22]. These paradigms can probably be
divided into two categories: (1) exposing C. elegans to two sensory modalities of opposing
valence and studying how worms make decisions; (2) exposing C. elegans to stimuli from
two sensory modalities and examining how the behavior evoked by one stimulus is altered
by a second stimulus. All the paradigms found in C. elegans seem to be consistent in that
multisensory integration can change perception.

Processing various sensory inputs at the level of sensory neurons or sensilla in the
periphery is one way to accomplish multisensory integration. It can also be accom-
plished by integrating at the interneuron or central nervous system levels. In addition,
an animal’s internal state and past experiences can top-down alter the output of sensory-
evoked behavior. Below is a detailed discussion of C. elegans’ integration paradigms and
top-down mechanisms.
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Theoretically, two stimuli from the same sensory modality, for example, two different
odorants, can also interact with each other. This scenario does not seem to be included
in studies of multisensory integration in mammals but is often studied in C. elegans, pro-
viding many interesting sensory integration paradigms. In evolution, sensory integration
from the same modality is likely to be fundamental to sensory integration from multiple
modalities [12]. It has been found that low concentrations of different odorants often have
a synergistic effect in mice [60]. This is reminiscent of the principle of inverse effectiveness.
Therefore, some paradigms demonstrating sensory integration from the same modality in
C. elegans will also be discussed below.

2.3. Integration at the Level of Sensory Neurons

Many organisms contain polymodal sensory neurons, meaning that those neurons
can each sense multiple stimuli from different sensory modalities. In that case, polymodal
sensory neurons can easily integrate sensory information from different modalities. Al-
though sensory neurons are highly specialized in mammals, polymodal sensory neurons
do exist, as exemplified by cutaneous C-fiber nociceptors [61,62]. They can respond to more
than one type of noxious stimuli applied to the skin, usually mechanical, chemical and
thermal [61,62]. Studying these polymodal nociceptors has provided great significance in
pain management [63].

Many sensory neurons in C. elegans are polymodal. For example, the ASH neuron pair
is the main nociceptor sensory neuron, which mediates avoidance responses to noxious
stimuli [37]. It can sense an array of aversive cues, such as high osmolality, quinine, nose
touch, repellent chemicals, heavy metals, and so on. Interestingly, after ASH activation,
C. elegans can separately process stimuli from different modalities by innovating different
downstream postsynaptic receptors [64]. Although high osmolality and nose touch both
activate ASH neurons, high osmolality utilizes both non-NMDA and NMDA receptor
subunits to mediate the avoidance response, whereas nose touch only triggers non-NMDA
receptors post-synaptically [64,65]. Genetic and electrophysiological analysis suggests that
this modality-specific signal transduction is because high osmolality enables increased
glutamate released from ASH neurons, which is sufficient to activate both non-NMDA and
NMDA receptors [65].

In addition to ASH, many other sensory neurons in C. elegans are also polymodal.
For example, the chemosensory AWC neuron pair can respond to temperature [66,67].
Similarly, the AFD neuron pair primarily senses temperature but can also respond to
CO2 [68,69]. These polymodal neurons all have the ability to mediate multisensory integra-
tion (Figure 1A).
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can receive and integrate inputs from different modalities. (B) A hub-and-spoke circuit. The hub
neuron RMG is connected with pheromone-sensing neurons ASK and ADL, the oxygen-sensing
neuron URX and several other sensory neurons via gap junctions. This circuit can integrate sensory
inputs from and regulate social or aggregation behavior in C. elegans. (C) A two-layer circuit. Food-
related chemosensory cues and mechanosensory cues are first integrated in parallel at the interneuron
AIA and ADE, respectively, through the inhibitory metabotropic glutamate receptor MGL-1 (as
symbolized by a yellow transmembrane protein), expressed post-synatpically in AIA and ADE.
Additionally, glutamate can activate inhibitory ionotropic glutamate receptors in AIA. Signals from
AIA and ADE will converge at the next level of the neural circuit to regulate foraging behavior in
C. elegans.

In mammalian studies, multisensory integration is generally referred to as integration
that occurs at the level of the sensory cortex or higher, which is beyond the first synapse in
an ascending pathway [12]. Nonetheless, polymodal sensory neurons are an efficient way
for stimuli from multiple modalities to be integrated through facilitation or inhibition.

2.4. Integration at the Level of Interneurons

Multisensory encoding in mammals takes place in many higher brain regions, such as
the superior colliculus (SC) in the midbrain and many regions in the cerebral cortex [6,70].
Due to the significant restriction on the number of neurons, C. elegans often encodes the
valance of a stimulus at the sensory neuron level [71]. Nonetheless, many paradigms of
multisensory integration occur at the first- and second-layer interneurons to modulate the
sensory output.

The hub-and-spoke circuit is a well-known sensory integration paradigm. One of these
regulates the worm’s social behavior, or aggregation. In this circuit, the interneuron RMG
acts as the hub, linking to multiple sensory neurons (the spokes) with gap junctions [72].
High activity in the RMG is essential for promoting social aggregation, of which the activity
level can be modulated by several spoke neurons that sense diverse stimuli, including
oxygen, sex pheromones and noxious chemicals (Figure 1B). This circuit connection motif
integrates cross-modal sensory inputs to ensure a coherent output. Another similar hub-
and-spoke circuit regulates nose touch response [73–75]. This involves the interneuron RIH
being the hub connecting to sensory neurons ASH, FLP and OLQ responding to gentle
touch via gap junctions.

Other interneurons can also serve as the node in a circuit. Interneuron AIA can
receive inputs from many chemosensory neurons. AIA receives excitatory input from
an electrical synapse and disinhibitory inputs via chemical synapses [76]. The two types
of inputs need to happen coincidently to improve the reliability of AIA’s response [76].
The logic of this integrating neuron seems to relate closely to the temporal principle of
multisensory integration.

Recently, a two-layer integration has been reported to modulate foraging behavior in
C. elegans [77]. Forage is a stereotyped local search behavior looking for food. The behavior
requires redundant inhibitory inputs from two interneuron pairs, AIA and ADE, which
receive chemosensory and mechanosensory food-related cues, respectively [77]. Sensory
cues symbolizing food are first organized into the chemosensory cues that are integrated
at AIA and the mechanosensory cues that are integrated at ADE. Input from these two
neurons subsequently integrates into the next layer of interneurons. Local search behavior
can be triggered when either of these two sensory cues is removed (Figure 1C).

2.5. Neuromodulators in Multisensory Integration

In mammals, neuromodulators such as monoamines and neuropeptides play an im-
portant role in regulating brain states and sensory integration [78]. Due to their widespread
projections and slow action, neuromodulators can shape neural activity in many locations
across multiple time scales. Neuromodulators can modulate a wide range of behaviors in
C. elegans, including multisensory integration [79].
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Tyramine [80,81], insulin-like peptides [82], serotonin [83], octopamine [84] and
dopamine [84] have all been implicated in regulating multisensory integration in C. elegans.
The tryptophan-kynurenine metabolic pathway has been associated with a variety of neu-
rodegenerative and psychiatric disorders [85–87]. Kynurenic acid, a metabolite in this
pathway, is depleted during fasting, leading to activation of interneuron, thus regulating
food-dependent behavioral plasticity in C. elegans [88].

2.6. Top-Down Mechanisms in the Multisensory Integration

Sensory information transduction is thought to follow through a hierarchy of brain
areas that are progressively more complex. “Top-down” refers to the influences of com-
plex information from higher brain regions that shapes early sensory processing steps.
Top-down influences can affect sensory processing at all cortical and thalamic levels [89].
Common top-down modulators of sensory processing can include stress, attention, expec-
tation, emotion, motivation and learned experience [89–92].

Although C. elegans lacks cognition and emotion, the sensory output can be influenced
by its past experience and internal physiological states, such as hunger and sickness. The
most well-studied top-down modulator in C. elegans is probably starvation, likely to be
due to a lack of other top-down cognitive or emotional modulators. Hunger will increase
C. elegans’ preference for seeking attractive odors cueing for food availability in the risk of
other harmful stimuli [81,93,94].

In a risk-reward choice assay [81], C. elegans is trapped inside a circle of a repulsive
hyperosmotic fructose solution, while an attractive food odor is placed outside the circle.
The outcome is scored on whether worms cross the aversive circle to reach the attractive
odor. Almost no worms would exit the circle in the initial 15 min. However, after being
starved for 5 h, almost 80% of the worms would exit the repulsive circle, seeking the
attractive odor. The interneuron RIM is identified as modulating this decision via a top-
down extra-synaptic aminergic signal [81]. In another scenario of multisensory integration
between opposing valences, the insulin/IGF-1 signaling (IIS) pathway is mediating the
signal of hunger to decrease responses to the repellent gustatory cue [94]. Several other
neuromodulators have also been found to relay the signal of starvation to functionally
reconfigure sensory processing and, presumably, they can also mediate top-down regulation
impinging upon multisensory integration.

Past experience is another well-studied top-down modulator for sensory processing
in C. elegans. A recent study demonstrated how worms can learn to navigate a T-maze
to locate food via multisensory cues [95]. In general, past experience affects sensory
processing via reshaping the synapse. Here, we provide two examples to demonstrate
how prior experience can change either the strength or the composition of the synapse to
enable plasticity. C. elegans does not have an innately preferred temperature. Instead, it
remembers its cultivation temperature and moves to that temperature when subjected to
a temperature gradient [96]. This sensory memory is encoded by the synaptic strength
between the thermo-sensory neuron pair AFD and its downstream interneuron AIY [97].
Under warmer temperatures, this synapse is strengthened, enabling worms to move to
warmth and vice versa. Similarly, C. elegans cultivated at a certain NaCl concentration can
remember this concentration and travel to it when subjected to a NaCl gradient [98]. This
gustatory memory is encoded by differentially innervating the glutamate receptors in the
AIB neuron, which is postsynaptic to the salt-sensing neuron ASE right (ASER). At a higher
salt cultivation condition, decreasing NaCl concentration causes ASER activation, triggers
glutamate released from ASER and subsequently activates the excitatory glutamate receptor
GLR-1 in the downstream AIB neurons, whereas, cultivated in a lower salt environment,
glutamate released from ASER activates the inhibitory glutamate receptor AVR-14 in
AIB instead [99].
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3. Multisensory Integration in Development

In mammals, the ability to perform multisensory integration is not an inherent ability.
Even in the newborn rhesus monkey, who can already see and hear very well at birth, neu-
rons in the SC cannot integrate coincident cross-modal sensory stimuli [100]. Its emergence
requires cross-modal experience in a way that seems to optimize the animal’s survival in
the environment it is exposed to [12]. Not much is known about the mechanism driving
multisensory integration in development [101].

Parallel studies are lacking in C. elegans with only a few sensory-related studies looking
at sensory processing across development. Recent publications find that juvenile worms
have different behaviors [102,103] and neural wiring [25] from adults. The difference in
food-seeking behavior seems to rise from the differently recruited olfactory neural circuits
at different developmental stages [102].

Multisensory integration in development, aging and diseases is an important theme in
mammalian studies. The loss of multisensory integration is also an indicator of neural func-
tion regression in the elderly population [104–106]. In the past, most studies in C. elegans
neurobiology utilized young adults to avoid confounding from development and frailty
in the elderly. Nonetheless, researchers have nowadays started to become interested in
sensory processing in C. elegans across development and aging. With its powerful genetics,
established neuronal connectome and accumulated knowledge in neurobiology, we believe
C. elegans can continue to provide insights into the new field.

4. Comparison of Multisensory Integration Studies between C. elegans and Mammals

Despite their distance in evolution, mammals and C. elegans share some similarities
in the principles of multisensory neurons. In terms of the organizing principle, many
interneurons in C. elegans each receive inputs from different sensory modalities, which
is reminiscent of the overlapping receptive fields in mammalian multisensory neurons.
From many paradigms of sensory processing discussed here and elsewhere, many of the
C. elegans interneurons are suitable for multisensory integration. A recurring theme in
sensory processing in both C. elegans and mammals is that neuromodulators, especially
monoamines, are involved in many paradigms of multisensory integration.

However, due to intrinsic differences between species, the technologies available and
the varied study foci, there are significant disparities in multisensory integration research
between C. elegans and mammals (Table 1). For example, when it comes to studying top-
down mechanisms of multisensory integration in C. elegans, hunger is mostly used as the
modulator, since influence from stress, attention, expectation, emotion, or motivation is not
accessible in the lower organisms. There are other differences, to our knowledge, which are
included below.

The major sensory modality in most mammals is vision. Therefore, many multisensory
integration paradigms pair vision with a second stimulus from audio, somatosensory, or
vestibular input. The major sensory modality in C. elegans is probably olfaction, so olfaction
is most commonly paired with input from another modality such as taste, touch, tempera-
ture, oxygen, and so on. With the advancement of technology, methods to deliver spatially,
temporally and quantitatively controlled stimuli in combination are emerging [107].

True multisensory integration does not seem to be tested strictly in C. elegans. In
mammals, the fact that multisensory neurons are able to receive inputs from multiple
modalities does not necessarily lead to multisensory integration. After successful inte-
gration, the magnitude of response from the multisensory neuron should be greater than
the sum of the uni-sensory responses combined [1]. Therefore, whether to integrate or
segregate simultaneous detected sensory signals during multisensory processing is a focus
in mammalian studies.
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Table 1. Some differences comparing multisensory integration paradigms in C. elegans and mammals
(see main context for details).

C. elegans Mammals

Dominant modality Olfaction Vision
Receptor expression One neuron, many receptors One neuron, one receptor

Valence of stimulus Often determined at the sensory neuron level Often determined at higher brain region such
as amygdala

Common method
measuring neural activity Calcium imaging Electrophysiology

Type of neuron
membrane potential Mostly graded potential Action potential

Behavioral output
Often presented as directed behaviors, that

involves a directional response to a
directional sensory input

Presented as increased response magnitude,
reduced response latency, more solid
memories formation, more accurate

perception and so on

Top-down modulators Hunger is mostly used Stress, attention, expectation, emotion,
motivation and so on

Because true integration does not always happen, the spatial and temporal principle
emphasizes that integration is more likely to happen or be strengthened when the uni-
sensory stimuli occur at approximately the same location or close in time. Direct testing
of this principle is challenging in C. elegans due to the limitations of the stimulus delivery
method. Moreover, single neuron electrophysiological methods can be difficult in C. elegans
due to the neurons’ small size [108]. The commonly implemented GECI (genetically
encoded calcium indicators) for examining neuron activity comes only with a compromised
resolution. The above makes it challenging to evaluate the individual neuron’s enhanced
response to sensory integration.

Nonetheless, temporal integration is probably highly likely to happen because neu-
ronal activity is rather slow in C. elegans. Action potentials are not readily visible in
C. elegans neurons, which instead only display gradual neuronal activity [109,110]. These
slow neuronal dynamics enables sensory integration to happen over a long period of time.
It has been demonstrated that some behaviors in C. elegans require stimuli from two sep-
arate modalities working together [36], which indicates a remarkable amplification from
true multisensory integration.

When multisensory integration takes place, many studies in C. elegans focus on its
benefit for making a better decision based on more information inputs, so it is beneficial for
survival. However, whether the decision is indeed beneficial is not tested. In mammals,
multisensory integration has an array of readouts; it can increase response magnitude,
reduce response latency, form more solid memories and generate more accurate perception.
There is also a limited repertoire of behaviors that can be measured in C. elegans. Therefore,
the behavior readout is often related to its movement or directed behaviors testing for the
populational preference. This ties well with the research in C. elegans, which focuses on
how worms make decisions.

The major advantages of using C. elegans for the study of neurobiology stem from its
well-characterized neuronal connectome, ample molecular genetics tools to ablate, silence,
or activate neurons and molecular tools facilitating the discovery of molecular mechanisms.
From the examples listed here and in other C. elegans reviews, one can see that, in a
sensory processing paradigm, detailed underlying mechanisms, including the composition
of the neural circuits, the nature of synaptic connections, synaptic components and key
signaling molecules, can all be discovered, which is still very hard to do in mammals at the
current stage.

5. Conclusions

Multisensory integration is a fundamental issue in neurobiology and it has been
explored mainly in mammalian systems. Relevant studies using C. elegans can offer unique
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advantages and have generated important insights into the understanding of sensory
processing, including multisensory integration.

In the future, we anticipate C. elegans to continue to contribute to the research in
multisensory integration with the newly developed multi-neuron imaging technique, in
addition to its completely mapped neural circuits and powerful genetics. Nowadays,
with the advancement of imaging technologies, large-scale brain activity recordings have
become possible [111]. These technologies enable us to assess neural activity across the
entire nervous system rather than examining neurons in isolation, which is especially
important for studying multisensory processing since it can monitor many related neural
regions simultaneously. However, current microscopy techniques are still unable to capture
the activity of all the neurons across a functional network in the mammalian brain [112,113].
C. elegans is the only organism that can achieve single neuron resolution imaging during
whole-brain activity recording and behavior [114,115]. We anticipate that using brain-wide
neural activity recordings in conjunction with new theoretical approaches to interpret
these data, as well as new optical [116] and synthetic approaches [117] in C. elegans, will
allow scientists to understand the relationship linking sensory neural input and behavioral
output, leading to a critical understanding in the field of multisensory integration.
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