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 Background: With the development of research on cancer genomics and microenvironment, a new era of oncology focusing 
on the complicated gene regulation of pan-cancer research and cancer immunotherapy is emerging. This study 
aimed to identify the common gene expression characteristics of multiple cancers – lung cancer, liver cancer, 
kidney cancer, cervical cancer, and breast cancer – and the potential therapeutic targets in public databases.

 Material/Methods: Gene expression analysis of GSE42568, GSE19188, GSE121248, GSE63514, and GSE66272 in the GEO data-
base of multitype cancers revealed differentially expressed genes (DEGs). Then, GO analysis, KEGG function, 
and path enrichment analyses were performed. Hub-genes were identified by using the degree of association 
of protein interaction networks. Moreover, the expression of hub-genes in cancers was verified, and hub-gene-
related survival analysis was conducted. Finally, infiltration levels of tumor immune cells with related genes 
were explored.

 Results: We found 12 cross DEGs in the 5 databases (screening conditions: “adj p<0.05” and “logFC>2 or logFC<–2”). 
The biological processes of DEGs were mainly concentrated in cell division, regulation of chromosome segre-
gation, nuclear division, cell cycle checkpoint, and mitotic nuclear division. Furthermore, 10 hub-genes were 
obtained using Cytoscape: TOP2A, ECT2, RRM2, ANLN, NEK2, ASPM, BUB1B, CDK1, DTL, and PRC1. The high 
expression levels of the 10 genes were associated with the poor survival of these multiple cancers, as well as 
ASPM, may be associated with immune cell infiltration.

 Conclusions: Analysis of the common DEGs of multiple cancers showed that 10 hub-genes, especially ASPM and CDK1, can 
become potential therapeutic targets. This study can serve as a reference to understand the characteristics of 
different cancers, design basket clinical trials, and create personalized treatments.
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Background

Pan-cancer research [1] and cancer immunotherapy [2] are en-
tering a new era of anti-cancer research based on bioinfor-
matics analysis tools. Pan-cancer research can help find new 
cancer-related molecular genetic traits and establish a molecu-
lar-based cancer classification for suitable treatments. For ex-
ample, the application of trastuzumab in the treatment of gas-
tric cancer, breast cancer [3], and colorectal cancer [4] should 
depend on the expression level of Her-2. Recently, the inhibition 
of PD-1/PD-L1 has led immunotherapy to become the focus of 
anti-cancer treatment. Immune checkpoint inhibitor (ICI) is a 
systemic treatment that blocks the negative regulatory signal-
ing pathway to achieve tumor elimination. The efficacy of ICI is 
associated with PD-1/PD-L1 expression [5,6] for multitype can-
cer rather than being limited to a single type. Immunological 
expression level is regarded as a new criterion to guide treat-
ment. Additional criteria of anti-tumor research might be dis-
covered in the future. Different cancers may have the same 
genetic amplification changes that affect tumorigenesis and 
progression, but these genes are still partly unknown. Analysis 
of genomes of multiple cancers is necessary to identify com-
mon DEGs and thus deeply and macroscopically elucidate the 
characteristics of some common signaling pathways that are 
associated with oncogenesis and cancer treatment. Using the 
gene database GEO/ONCOMINE/TCGA, we analyzed the gene 
expression in various types of tumor tissues and related nor-
mal tissues to find hub-genes.

Material and Methods

Data sources

The research data in this paper were obtained from the Gene 
Expression Omnibus (GEO) database [7] (https://www.ncbi.
nlm.nih.gov/geo/). Verification and further mining of data were 
performed using the Oncomine database [8] (https://www.on-
comine.org/resource/main.html) and the TCGA database [9] 
(https://cancergenome.nih.gov/).

Dataset screening

Datasets involving differences in gene expression between tu-
mors and normal tissues were screened from the GEO data-
base. The following selection criteria were considered to control 
the heterogeneity and ensure the quality of research: samples 
were obtained from Homo sapiens, the research platform was 
the common large platform GPL570, “Expression profiling by 
array” was adopted, the sample size was controlled at 50 and 
above, the cancer species were included in the common clini-
cal cancer, and the data were published for nearly 15 years. On 
the basis of the above selection criteria, the following data sets 

were selected: GSE42568 [10], GSE19188 [11], GSE121248 [12], 
GSE63514 [13], and GSE66272 [14].

Differential expression gene extraction

Differentially expressed genes were extracted and analyzed 
using the online analysis tool GEO2R (https://www.ncbi.nlm.
nih.gov/geo/geo2r/), which is included in the GEO database. 
Samples in all the datasets ware defined as “normal” or “tu-
mor” according to the actual situation, and the differential 
expression of each gene was obtained online. Differentially 
expressed genes (DEGs) were defined as “adj p<0.05” and 
“logFC>2 or logFC<–2”. A Venn diagram was drawn using the 
webtool (http://bioinformatics.psb.ugent.be/webtools/Venn/) 
to obtain the cross DEGs.

Gene ontology

Gene ontology (GO) analysis is an important part of current 
functional genomics research, which refers to the high-through-
put annotation of biological functions of all genes in the ge-
nome by using bioinformatics methods and tools. DAVID is a 
popular online programming feature (https://david.ncifcrf.gov/
tools.jsp) for GO analysis, including Biological Process analy-
sis, Molecular Function analysis, and KEGG PATHWAY analy-
sis [15]. The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(https://www.kegg.jp/) is a database that provides gene and 
genome functional significance at the molecular and pathway 
levels [16]. Multiple web tools such as DAVID can detect these 
contents of the KEGG database.

Protein–protein interaction network (PPI network) and 
hub-gene extraction

STRING (https://string-db.org/) is an online searching tool for 
retrieving interacting genes that predicts the quality-controlled 
PPI networks [17]. We used STRING to construct a protein in-
teraction network, and perform the gene co-expression anal-
ysis. Cytoscape is an open-source software platform for visu-
alizing complex networks and integrating networks from the 
attributing data [18]. We visualized the results of the protein 
interaction network of STRING through Cytoscape. MCODE is 
an additional Cytoscape-based software that clusters a given 
network topologically to find areas of dense connectivity [19]. In 
the present study, we found more closely related genes by us-
ing MCODE (extraction conditions: degree cutoff: 10; K core: 2; 
max depth: 100), and named them the hub-genes.

Hub-gene verification

The Oncomine database (https://www.oncomine.org/resource/
main.html) is one of the world’s largest oncogene chip da-
tabases and integrated data mining platforms [8]. It has 
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comprehensive gene expression data and related clinical in-
formation. Some datasets were selected from the Oncomine 
database to test whether the selected hub-genes were differ-
entially expressed in multitype tumors. The TCGA database is 
the world’s largest database of tumor information, and many 
online tools are available for extracting and analyzing TCGA 
data [9]. Whether such differences exist in the TCGA database 
was also investigated using online tools.

Hub-gene survival analysis

Gene Expression Profiling Interactive Analysis (GEPIA, http://
gepia.cancer-pku.cn/index.html) is an interactive web resource 
for analyzing cancer transcriptome data, enabling research-
ers to collect valuable data on genes with interesting infor-
mation [20]. We performed a survival analysis of hub-genes 
by using GEPIA.

Tumor immune infiltration levels

Tumor Immune Estimation Resource (TIMER, (https://cistrome.
shinyapps.io/timer/) is a web tool for the comprehensive anal-
ysis of tumor-infiltrating immune cells [21]. It includes 7 anal-
ysis modules that help researchers obtain the immunological, 
clinical, and genomic features of a tumor. The “SCNA” module 
of TIMER can compare tumor immune infiltration levels among 
tumors based on different somatic copy number alterations 
using the two-sided Wilcoxon rank sum test.

Results

Datasets for research

After online screening, GSE42568, GSE19188, GSE121248, 
GSE63514, and GSE66272 met our research request. Five types 

Dataset Contributor(s) Organism Submission year Tumor type Samples

GSE42568  Clarke C etc. Homo sapiens 2012 Breast Cancer 121

GSE19188 Philipsen S Homo sapiens 2010 NSCLC 156

GSE121248 Hui KM Homo sapiens 2018 Hepatocellular carcinoma 107

GSE63514 den Boon J Homo sapiens 2014 Cervical cancer 128

GSE66272 Wotschofsky Z etc. Homo sapiens 2016 Kidney cancer 54

Table 1. Basic characteristics of the included datasets in GEO database.
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Figure 1.  Venn diagram, 5 data sets were 
GSE42568, GSE19188, GSE121248, 
GSE63514, and GSE66272. A total of 
12 DEGS (ANLN, CDK1, CYP2B7P///
CYP2B6, ECT2, PRC1, NEK2, ASPM, 
RRM2, TOP2A, BUB1B, DTL, CTHRC1) 
were obtained.
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of tumors were collected from the 5 datasets. Among them, 
GSE42568 analyzed the difference in gene expression between 
breast cancer and normal tissues, and 121 samples were in-
cluded. GSE19188 used 156 samples to analyze early non-small 
cell lung cancer and normal tissue. GSE121248 analyzed HBV-
related liver cancer and normal tissue. GSE63514 analyzed 
the difference between cervical cancer and normal tissues. 
GSE66272 analyzed the genetic differences in normal tissues 
adjacent to renal cell carcinoma with 54 samples. The basic 
characteristics of the included datasets are shown in Table 1.

Differential expression gene extraction

The DEGs of the 5 datasets were analyzed by GEO2R online 
analysis software, and the statistically significant gene names 
were screened by EXCEL (OFFICE 2016). Among them, 1618 

DEGs were screened by GSE42568, 635 by GSE1918, 176 by 
GSE121248, 1147 by GSE63514, and 2185 by GSE66272. We 
made a Venn diagram with a webtool and obtained 12 cross 
DEGs. Moreover, all the 12 genes were upregulated in cancers 
(ANLN, CDK1, CYP2B7P///CYP2B6, ECT2, PRC1, NEK2, ASPM, 
RRM2, TOP2A, BUB1B, DTL, and CTHRC1). The Venn diagram 
is shown in Figure 1.

Gene ontology

Some difficulties were encountered in using DAVID for gene 
annotation. DAVID software cannot be used for gene an-
notation because of the small number of DEGs. STRING 
(https://string-db.org/) [17] is a website for building protein 
networks, which also include some simple gene annotations. 
Therefore, we chose STRING to add nodes through intelligence. 

Pathway ID Pathway description Gene count FDR

Biological process

GO.0051301 Cell division 17 1.55E-20

GO.0051983 Regulation of chromosome segregation 9 5.30E-14

GO.0000280 Nuclear division 13 1.23E-13

GO.0000075 Cell cycle checkpoint 11 2.35E-13

GO.0007067 Mitotic nuclear division 12 2.93E-13

Molecular functions

GO.0004748
Ribonucleoside-diphosphate reductase activity, thioredoxin 
disulfide as acceptor

2 0.00454

GO.0004672 Protein kinase activity 6 0.0184

GO.0004674 Protein serine/threonine kinase activity 5 0.034

Cellular components

GO.0005819 Spindle 11 1.61E-12

GO.0000922 Spindle pole 7 1.86E-08

GO.0015630 Microtubule cytoskeleton 12 1.86E-08

GO.0044430 Cytoskeletal part 13 1.93E-08

GO.0031981 Nuclear lumen 17 6.10E-08

KEGG pathway

4110 Cell cycle 9 8.76E-13

4914 Progesterone-mediated oocyte maturation 6 2.79E-08

4114 Oocyte meiosis 6 1.06E-07

5166 HTLV-I infection 6 1.43E-05

4115 p53 signaling pathway 3 0.00271

Table 2. GO and KEGG analysis. FDR – false discovery rate.
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The DEGs were annotated separately from the biological pro-
cess, molecular function, and the KEGG PATHWAY. The biolog-
ical processes of DEGs were mainly concentrated in cell divi-
sion, regulation of chromosome segregation, nuclear division, 
cell cycle checkpoint, and mitotic nuclear division. The main 
molecular function is to regulate cell division-associated pro-
tease activity. The signaling pathway was enriched in the Cell 
cycle, Progesterone-mediated oocyte maturation, oocyte mei-
osis, HTLV-I infection, and p53 signaling pathway. The results 
are shown in Table 2.

PPI network and co-expression analysis

The PPI constructed by STRING was visualized by Cytoscape. 
The results are shown in Figure 2. The co-expression analysis 
of the genes is shown in Figure 3 (by STRING). Moreover, we 
extracted the most closely related genes by using MCODE (de-
gree >10). These genes were the hub-genes we would focus on 
(Table 3). Gene information was sourced from the GeneCard 
online website (https://www.genecards.org/). The 2 pairs be-
tween each hub-gene were expressed in a proportional manner. 

DTL ECT2

RRM2 NEK2

TOP2ANLN

PRC1ASPM

CDK1BUB1B

Figure 2.  Protein interaction network, obtained 
10 Hub-genes (degree >10) by MCODE 
in Cytoscape.
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Figure 3.  Co-expression analysis of DEGs. 
Deeper color means stronger 
association. CDK1/ASPM is more 
closely related to other genes.
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In combination with Figure 3, we suspected that ASPM and 
CDK1 were closely related genes.

Hub-gene verification

We conducted a meta-analysis of other cancers in the Oncomine 
database, and found that 10 hub-genes were also differen-
tially expressed between other cancers and normal tissues. 
All of these were expressed at low levels in normal tissues 
and were highly expressed in tumor tissues, including sar-
coma [22], esophageal cancer [23], gastric cancer [24], colon 
cancer [25], pancreatic cancer [26], bladder cancer [27], thyroid 
cancer [28], oral cancer [29], glioma [30], ovarian cancer [31], 
and lymphoma [32]. The results are shown in Figure 4. We 
obtained the same results in the TCGA database through the 
GEPIA online tool (Figure 5). To observe the results intuitively, 
we used the TIMER- Diff Exp module to explore the expression 
of CDK1 and ASPM between tumor and normal tissues. The re-
sults showed that CDK1 and ASPM were significantly higher in 
tumor tissues than in normal tissues (Figure 6).

Hub-gene survival analysis

We used the GEPIA online analysis tool to analyze the survival 
data in the TCGA database. More than 3500 patients with lung 
cancer, liver cancer, renal cancer, cervical cancer, and breast 

cancer were included. The results showed that in lung cancer, 
liver cancer, renal cancer, cervical cancer, and breast cancer, 
the prognosis of patients with high expression of the hub-
gene was worse than that of patients with low expression of 
hub-genes (p<0.05) (Figure 7).

Tumor immune infiltration levels

We compared the immune cell infiltration levels of CDK1 and 
ASPM in 5 cases: deep deletion, arm-level deletion, diploid/nor-
mal, arm-level gain, and high amplification, including B cell, 
CD8+ T cell, CD4+T cell, macrophage, neutrophil, and dendritic 
cells. In breast cancer, liver cancer, and lung cancer with high 
amplification of ASPM, the above immune cells had obvious 
infiltration, suggesting a possible correlation between ASPM 
and immunity (Figure 8). Because of the limited data on CDK1 
amplification, no firm conclusion could be drawn (Figure 9).

Discussion

We established a method to find common genes of multiple 
cancers by referring to previous studies, and we verified the re-
lationship between DEGs and the clinical factors. These genes 
might play an important role in the development of cancers 
and warrant further research.

Gene Full name Function

TOP2A DNA topoisomerase II alpha This gene encodes a DNA topoisomerase which act on during 
transcription

ECT2 Epithelial cell transforming 2 The protein encoded by this gene is a guanine nucleotide exchange 
factor and transforming protein

RRM2 Ribonucleotide reductase regulatory 
subunit M2 

This gene encodes one of two non-identical subunits for 
ribonucleotide reductase

ANLN Anillin actin binding protein This gene encodes an actin-binding protein that plays a role in cell 
growth and migration, and in cytokinesis

NEK2 NIMA (Never In Mitosis Gene A)-
related kinase 2

This gene encodes a serine/threonine-protein kinase that is involved 
in mitotic regulation

ASPM Abnormal spindle microtubule 
assembly 

This gene is essential for normal mitotic spindle function in 
embryonic neuroblasts

BUB1B Budding uninhibited by 
benzimidazoles 1 homolog beta

This gene encodes a kinase involved in spindle checkpoint function

CDK1 Cyclin dependent kinase 1 The protein encoded by this gene is essential for G1/S and G2/M 
phase transitions of eukaryotic cell cycle

DTL Denticleless E3 ubiquitin protein 
ligase homolog

Its related pathways are DNA Double-Strand Break Repair and 
Translesion synthesis by Y family DNA polymerases bypasses lesions 
on DNA template

PRC1 Protein regulator of cytokinesis 1 This gene encodes a protein that is involved in mitotic cycle

Table 3. Hub-gene information.
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Figure 4.  Meta-analysis of the expression of 10 
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glioma. Redder color means greater 
difference in the expression of a gene 
in tumor and normal tissues.
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Figure 5.  Expression of 10 Hub-genes based on the TCGA database. Green squares from light to dark indicate gene expression from 
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We found 12 cross DEGs, all of which were cancer-upregulated 
genes. We performed GO and KEGG analyses on the DEGs to 
further clarify the reasons for the differential expression. The 
results of GO analysis showed that the biological processes of 
DEGs were mainly concentrated in cell division, cell cycle pro-
cess, cell cycle, DNA replication, regulation of cell cycle, and 
cell cycle checkpoint. Previous studies have reported that cell 
cycle processes and dysregulation of the mitotic cell cycle can 
play important roles in the occurrence or progression of can-
cers [33,34]. In addition, KEGG signaling pathway enrichment 
analysis suggested that these differential genes were mainly 
involved in cell cycle, progesterone-mediated oocyte matura-
tion, oocyte meiosis, HTLV-I infection, and p53 signaling path-
way. Human T cell leukemia virus type 1 (HTLV-1) is the first 

retrovirus found to cause adult T cell leukemia. HTLV-1 per-
sistently infects CD4(+) T lymphocytes. HTLV-1 encodes 2 on-
coproteins – Tax and HBZ – which are required to initiate cell 
transformation and maintain cell proliferation, respectively. 
The development of HTLV-1 cancers is driven by clonal selec-
tion and amplification, during which host and viral factors syn-
ergistically disrupt genomic stability, immune surveillance, and 
other cancer-suppressor mechanisms [35]. P53 is a tumor-sup-
pressor gene. In all malignant cancers, more than 50% of the 
mutations occur in this gene [36]. CDK1 protein interacts with 
iASPP protein and affects the proliferation and apoptosis of 
CRC cells through the p53 apoptosis pathway [37].
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Figure 6.  ASPM and CDK1 expression in multitype tumors. P-value significant codes: 0 £ *** <0.001 £ ** <0.01 £ * <0.05 £. <0.1.
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The results of co-expression analysis showed that hub-genes 
CDK1 and ASPM are closely related to the expression of other 
hub-genes. CDK1 modulates the centrosome and mitotic cells, 
which play important roles in the control of the eukaryotic cell 
cycle. The CDK1/cyclin A complex controls G2, whereas the 
CDK1/cyclin B complex governs orderly G2/M transition (i.e., 
entry into mitosis and maintenance of the mitotic state) [38]. 
As a key regulator of the cell cycle, CDK1 is a potent thera-
peutic target for inhibitors in cancer treatment. Leucine zip-
per cancer-suppressor 1 gene may play a role in cell cycle con-
trol by interacting with the Cdk1/cyclinB1 complex (https://
www.ncbi.nlm.nih.gov/gene/11178). In addition, several stud-
ies tried to targeted CDK1. Flavopiridol (alvocidib) is the first 
potent inhibitor of cyclin-dependent kinases to reach clinical 
trial, and it is demonstrated to have sequence-dependent cy-
totoxic synergy with chemotherapy agents [39]. Recent stud-
ies have demonstrated the single-drug activity of dinaciclib in 
the treatment of recurrent myeloma [40]. Other compounds, 
such as SELICICLIB [41] and MILCICLIB [42], also exhibit anti-
cancer activity. ASPM plays a role in the regulation of mitotic 
spindles. Most previous studies focused on the relationship 
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Figure 7.  Survival analysis of Hub-genes in patients with lung cancer, liver cancer, renal cancer, cervical cancer, and breast cancer 
patients.

between ASPM and neurodevelopment [43]. Mutations in the 
ASPM gene are common causes of autosomal recessive prima-
ry microcephaly [44]. Recent studies have reported an associa-
tion between ASPM expression level and some cancers [45–47], 
but the specific mechanism remains unclear. Pai et al. found 
that ASPM interacts with disheveled-3, which is a cardinal up-
stream regulator of Wnt signaling, to increase protein stabil-
ity by inhibiting proteasome degradation, thereby enabling 
the Wnt-induced beta-catenin transcriptional activity in pros-
tatic cancer cells [48]. In the present study, ASPM high ampli-
fication was associated with cancer immune cell infiltration. 
However, this study used a small number of samples, and lit-
erature to support the mechanism of ASPM and immune infil-
tration is lacking. Therefore, future anti-cancer research should 
explore ASPM functions.

Other hub-genes have also been linked to cancers. TOP2A en-
codes a DNA topoisomerase that acts during transcription. 
In prostate cancer, the high stage and high Gleason scores 
are always followed by TOP2A amplification or overexpression. 
In advanced prostate cancer, TOP2A amplification is associated 
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with androgen resistance and poor survival [49]. ECT2 promotes 
the exchange of guanine nucleotides on small GTPases of Rho 
family members, such as RHOA, RHOC, RAC1, and CDC42 [50]. 
The expression of the genes increases at the beginning of the 
cell cycle and remains high in the G2 and M phases. Cancer-
specific ECT2 gene amplification results in the overexpression of 
ECT2 in human cancers [50]. Some studies suggest that P53 is 
a novel molecule that upregulates ECT2 in gastric cancer cells, 
and its modification after translation plays a key role in the 
tumor cycle [51]. One of 2 distinct subunits of RNA reductase 
is encoded by RRM2. A number of in vivo and in vitro studies 
aimed at downregulating RRM2 in the treatment of malignant 
melanoma [52] and fibrosarcoma [53]. Silencing of ANLN and 
HSPA4L inhibits the proliferation, migration, and apoptosis of 
nasopharyngeal carcinoma cells. miR-497 is a potent cancer 
suppressor that inhibits cancer phenotype by targeting ANLN 
and HSPA4L in nasopharyngeal carcinoma [54]. Inhibition of 
phosphoinositide 3-kinase/AKT activity in NSCLC cells reduces 
the stability of ANLN, resulting in decreased nuclear ANLN lev-
els [55]. Recently, cholangiocarcinoma with fewer anti-cancer 
targets has been found to increase the expression of NEK2 in 
a cancer-specific manner compared with normal fibroblasts. 
Expression of exogenous NEK2 does not affect the growth 
of cholangiocarcinoma cells, whereas inhibition of NEK2 ex-
pression by siRNA inhibits cell proliferation and induces cell 
death [56]. The protein encoded by BUB1B has been localized 
to the centromere and plays a role in inhibiting the late-pro-
moting complex/loop, delaying the onset, and ensuring prop-
er chromosome segregation. Spinal checkpoint function is im-
paired in many cancers. GO annotations related to DTL include 

ubiquitin-protein transferase activity [57]. Protein ubiquitina-
tion and degradation represent druggable vulnerabilities in 
cancer cells [58]. Solving this problem is of great significance 
in combating cancer. Eliminating the regulation of PRC1 leads 
to cell division defects, which promote chromosomal insta-
bility (CIN), leading to cancer heterogeneity and cancer evo-
lution [59]. Targeting PRC1 in aneuploidy cancer may induce 
apoptosis by normalizing CIN or creating chromosomal disor-
ders in genomically stable cancers.

Conclusions

This study analyzed multiple genomes of lung cancer, liver 
cancer, kidney cancer, cervical cancer, and breast cancer and 
found the gene co-expression characteristics of cancers of var-
ious tissues and organs. Results confirmed that some genes 
(TOP2A, ECT2, RRM2, ANLN, NEK2, ASPM, BUB1B, CDK1, DTL, 
and PRC1) were related to patient prognosis, and ASPM might 
be associated with immune cell infiltration. We suspect that 
these genes may be potential therapeutic targets. Exploration 
of genomes of multiple cancers provides ideas for a compre-
hensive understanding of cancer characteristics, and is help-
ful for basket clinical trials and personalized treatments. In 
addition, further research on genes and immunity is needed.
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