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Abstract
Anthropogenic alterations to landscape structure and composition can have signifi-
cant impacts on biodiversity, potentially leading to species extinctions. Population- 
level impacts of landscape change are mediated by animal behaviors, in particular 
dispersal behavior. Little is known about the dispersal habits of rails (Rallidae) due to 
their cryptic behavior and tendency to occupy densely vegetated habitats. The ef-
fects of landscape structure on the movement behavior of waterbirds in general are 
poorly studied due to their reputation for having high dispersal abilities. We used a 
landscape genetic approach to test hypotheses of landscape effects on dispersal be-
havior of the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered sub-
species endemic to the Hawaiian Islands. We created a suite of alternative resistance 
surfaces representing biologically plausible a priori hypotheses of how gallinules 
might navigate the landscape matrix and ranked these surfaces by their ability to 
explain observed patterns in genetic distance among 12 populations on the island of 
O`ahu. We modeled effective distance among wetland locations on all surfaces using 
both cumulative least- cost- path and resistance- distance approaches and evaluated 
relative model performance using Mantel tests, a causal modeling approach, and the 
mixed- model maximum- likelihood population- effects framework. Across all genetic 
markers, simulation methods, and model comparison metrics, surfaces that treated 
linear water features like streams, ditches, and canals as corridors for gallinule move-
ment outperformed all other models. This is the first landscape genetic study on the 
movement behavior of any waterbird species to our knowledge. Our results indicate 
that lotic water features, including drainage infrastructure previously thought to be 
of minimal habitat value, contribute to habitat connectivity in this listed subspecies.
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1  | INTRODUC TION

Research on animal movement behavior, in particular how landscape 
features affect dispersal, is essential for predicting, understand-
ing, and managing the impacts of ongoing changes in climate and 
landscape structure on animal populations (Hanski, 2001; Holyoak 
& Heath, 2016; Knowlton & Graham, 2010; van Strien et al., 2014). 
Although direct data on animal movement can be time- consuming 
and expensive to collect, the development of indirect methods using 
genetic markers to estimate rates of dispersal has greatly increased 
understanding of population connectivity (Anderson, Kierepka, 
Swihart, Latch, & Rhodes, 2015; Epps, Wehausen, Bleich, Torres, 
& Brashares, 2007; Lowe & Allendorf, 2010). These indices can be 
especially important for studying the movement of behaviorally 
cryptic species that are difficult to study through other means like 
mark–resighting (Finnegan et al., 2012), and provide estimates of 
genetic differentiation due to dispersal and subsequent gene flow 
(Sexton, Hangartner, & Hoffmann, 2014; Waser & Strobeck, 1998).

The field of landscape genetics provides an analytical framework 
to assess the potential effects of landscape structure and compo-
sition on genetic differentiation in wildlife populations (Manel & 
Holderegger, 2013; Manel, Schwartz, Luikart, & Taberlet, 2003). 
According to the most basic landscape genetic model, isolation by 
distance, genetic similarity among populations (or individuals) is 
correlated with geographic or Euclidean distance (Wright, 1943). 
The concept of effective distance extends this model by incorpo-
rating information on the movement behavior of an organism and 
by considering distances between points or populations in addition 
to the permeability of the intervening landscape matrix to move-
ment for that particular organism (Adriaensen et al., 2003; McRae, 
2006). Effective distances are quantified using resistance surfaces, 
spatially explicit models that reflect hypotheses about the degree 
to which specific landscape features or cover types impede or facil-
itate movement in a raster format (Spear, Balkenhol, Fortin, McRae, 
& Scribner, 2010; Storfer et al., 2007). Among a suite of surfaces, 
those that best explain data on spatial genetic variation are assumed 

to represent the most likely representation of how a given set of 
landscape features affects movement in an organism (Cushman & 
Landguth, 2010; Zeller, McGarigal, & Whiteley, 2012).

Current research using this framework is generally biased to-
ward temperate climates and forest ecosystems on large continents 
(Balkenhol, Cushman, Waits, & Storfer, 2015; Waits, Cushman, & 
Spear, 2016). However, avian taxa are underrepresented in these 
studies (Haig et al., 2011; Kozakiewicz, Carver, & Burridge, 2017; 
Zeller et al., 2012). Behavioral studies on birds in human- altered 
landscapes have demonstrated that the effects of landscape change 
on movement rates are typically species specific (Fahrig, 2007). 
Thus, landscape genetic analyses of threatened and endangered bird 
taxa are urgently needed for a better understanding of the impacts 
of continued anthropogenic landscape change. Among avian taxa, 
rails (family Rallidae) are among the most poorly understood with 
regard to their movement ecology, due to their cryptic behavior and 
tendency to inhabit densely vegetated habitats (Ripley, Lansdowne, 
& Olson, 1977; Taylor, 2010). Rails also exhibit the interesting be-
havioral–evolutionary tendency to colonize widespread and iso-
lated islands or habitat patches, while appearing to have a natural 
antipathy to disperse after colonization, often becoming flightless 
(Livezey, 2003; Steadman, 2006). Coupling these behaviors with 
the discrete and naturally fragmented nature of many wetland eco-
systems, and further isolation by anthropogenic landscape change, 
wetland- specialist birds like rails are a convenient study system for 
landscape genetic research. The sensitivity of wetland ecosystems 
to a diversity of anthropogenic threats (Green et al., 2017; Strayer 
& Dudgeon, 2010) makes wetland birds a group for which landscape 
genetic research is likely of substantial importance to conservation.

Our interest is in one member of the Rallidae, the Hawaiian galli-
nule (Gallinula galeata sandvicensis, Figure 1), which is an endangered 
subspecies of the common gallinule endemic to freshwater wet-
lands of the Hawaiian Islands (United States; Bannor & Kiviat, 2002). 
Hawaiian gallinules were once found on the five main Hawaiian 
Islands, but were extirpated from all islands other than O`ahu and 
Kauai during the late 19th to mid- 20th century (Banko, 1987). 
Habitat loss from anthropogenic landscape change and exotic, inva-
sive wetland plants, as well as predation from introduced mammalian 
predators drove severe population declines and reductions in the 
subspecies’ range (Griffin, Shallenberger, Fefer, Sharitz, & Gibbons, 
1989; USFWS, 1977). This precipitous decline was eventually halted 
with legal protection, the establishment of National Wildlife Refuges 
and state protected areas on these two islands, and the advent of 
habitat management (predator control and vegetation restoration). 
The implementation of the latter is associated with a slow but con-
sistent recovery of Hawaii’s endangered waterbirds over the last 
50 years (Reed, Elphick, Ieno, & Zuur, 2011; Reed, Elphick, Zuur, 
Ieno, & Smith, 2007; Schwartz & Schwartz, 1949; Underwood, 
Silbernagle, Nishimoto, & Uyehara, 2013). O`ahu’s current gallinule 
population consists of between 250 and 350 individuals scattered 
among relict and fragmented wetlands, which are isolated by severe 
wetland loss on the island (van Rees & Reed, 2014; USFWS, 2011). 
Wetland habitats on O`ahu are distributed with varying degrees of 

F IGURE  1 An adult Hawaiian gallinule stands on lilly pads at in 
a golf course water hazard in Kailua, Hawai`i. Photograph credit 
Amanda Sandor
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geographic isolation and are embedded in a complex landscape mo-
saic of anthropogenic land cover, including highways, recreational 
areas (e.g., golf courses and resorts), military bases, agricultural 
land, and residential areas. Connectivity among these fragmented 
subpopulations is considered an important factor in the conserva-
tion and management of Hawaiian gallinules (Reed, DesRochers, 
VanderWerf, & Scott, 2012a,b; van Rees, Reed, Wilson, Underwood, 
& Sonsthagen, 2018; Underwood et al., 2013; US Fish and Wildlife 
Service, 2011). However, little is known about the movement be-
havior of Hawaiian gallinules, and their cryptic behavior leads to 
poor detection rates, limiting the efficacy of mark–resight studies 
(DesRochers, Gee, & Reed, 2008).

Using information from expert opinion and published and unpub-
lished literature, we identified several landscape characteristics and 
features that may influence movement and gene flow in Hawaiian 
gallinules. These included roads, urban land cover, (K. Doyle, Hawaii 
Division of Forestry and Wildlife, pers. comm.), forested areas, steep 
slopes, and high elevation terrain (Banko, 1987; Perkins, 1903) as po-
tential barriers. By contrast, we expected that mesic areas and open 
habitats would promote dispersal and gene flow. We specifically 
predicted that streams and rivers might facilitate dispersal, given 
reports from a related species and anecdotal observations from ex-
perts in this taxon (Nagata, 1983; Takano & Haig, 2004).

This information made it clear that there are a great many alter-
native explanations for how Hawaiian gallinules might perceive land-
scape features during dispersal between wetlands. Consequently, 
we generated a suite of resistance surfaces of the O`ahu landscape 
matching our proposed hypotheses about the relative resistance 

of both natural and anthropogenic landscape features to gallinule 
movement across the landscape. The models are based on obser-
vations and biologically informed speculation about distributions 
and movements of Hawaiian gallinules across the landscape. Once 
these models were created, we simulated the movement of galli-
nules across the landscape according to these hypotheses and com-
pared their fits to data on microgeographic genetic differentiation 
of Hawaiian gallinules on O`ahu (pairwise FST using microsatellite 
markers; van Rees, Reed et al., 2018). Our goal was to determine 
the relationships among landscape features and observed genetic 
differentiation to identify landscape features that are important 
to maintaining connectivity among Hawaiian gallinule populations. 
Results from this study will provide important information for the 
subspecies’ recovery and to predicting the potential vulnerability of 
Hawaiian gallinules to future modifications to the landscape as at-
tributable to land use and climate change.

2  | METHODS

2.1 | Study area

We studied Hawaiian gallinules on the island of O`ahu (Hawai`i, USA, 
21.3156 N, - 157.858 W), one of two islands that make up the sub-
species’ entire range. We collected genetic samples at 12 locations 
on the island, which represent all known major wetland habitats for 
the subspecies on O`ahu (Figure 2). Sampled sites were distributed 
across the island’s low- elevation coastal plain and included sites in 
Pearl Harbor (site 10 in Figure 2), Honolulu (Keawawa wetlands, 
site 9), the North shore (Turtle Bay Resort, Kahuku shrimp farms, 
and James Campbell national Wildlife Refuge, sites 1–3), Hale`iwa 
town (Waimea valley and a private lotus farm, sites 11 and 12), and 
the Windward side (Marine Corps Base Kaneohe, Kawainui marsh, 
Hamakua marsh, Enchanted Lakes, and Olomana Golf Links, sites 
4–8).

2.2 | Genetic data

We obtained multilocus genotypes for 152 Hawaiian gallinules at 12 
wetlands from a previous study (van Rees, Reed et al., 2018; mtDNA 
sequences are accessioned in GenBank, MF673902- MF673904). 
We defined wetlands as complexes of spatially proximate and hy-
drologically linked water bodies. The sampled wetlands included all 
major breeding areas for the Hawaiian gallinule on the island, and 
our sample accounts for at a minimum 30% of the known population 
of the island (Reed et al., 2011; US Fish and Wildlife Service, 2011). 
We captured gallinules using walk- in cage traps baited with attrac-
tive food items (fresh fruit and cracked corn) and extracted DNA 
from 4 to 6 body feathers collected from each captured bird. We 
obtained estimates of interpopulation genetic variance (FST) among 
the 12 wetland sites from van Rees, Reed et al. (2018); these esti-
mates were based on microsatellite genotype data collected from 12 
autosomal loci and 520 base pairs (bp) of the NADH dehydrogenase 
2 (ND2) region of mitochondrial DNA (mtDNA). All microsatellite loci 

F IGURE  2 Map of the island of O`ahu, showing locations of the 
12 populations sampled for genotyping by van Rees, Reed et al. 
(2018). Mountain ranges and waterways are pictured in dark gray. 
Population names are as follows: (1) Turtle Bay resorts, (2) James 
Campbell National Wildlife Refuge, (3) Kahuku Shrimp Farms, (4) 
Marine Corps Base Kaneohe, (5) Kawainui Marsh, (6) Hamakua 
Marsh, (7) Enchanted Lakes, (8) Olomana Golf Links, (9) Keawawa 
wetland, (10) Pearl harbor (composed of Pouhala Marsh and Pearl 
Harbor National Wildlife Refuge, Hono`uli`uli unit), (11) Private 
lotus farm, and (12) Waimea Valley

info:ddbj-embl-genbank/MF673902
info:ddbj-embl-genbank/MF673904
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were tested for Hardy–Weinberg equilibrium and linkage disequilib-
rium prior to analysis. Information on genetic diversity, population 
structure, and analysis of genetic data can be found in van Rees, 
Reed et al. (2018).

2.3 | Landscape variables

We represented landscape variables and movement capacities using 
resistance surfaces, in which landscapes are modeled as a raster grid, 
assigning different resistance values to landscape cover classes or 
features according to the hypothesized difficulty of passing through 
such features (Spear et al., 2010; Figure 3). We analyzed 20 resist-
ance surfaces that addressed 10 hypotheses pertaining to the move-
ment ecology of Hawaiian gallinules (Table 1). These hypotheses 
were derived from expert opinion and literature on this and related 
taxa. We named these surfaces according to the datasets from which 
they were derived; the named groups are Elevation, Topographic 
Wetness Index (TWI), Land Use (LU), Roads, and Proximity- to- Water. 

To avoid issues with scaling across predictor variables, all surfaces 
were resampled to 30 m resolution and resistance was scaled from 
1 to 100, where 1 is minimal resistance and 100 is maximum pos-
sible resistance. We assigned values to different landscape features 
based on expert opinion and available field evidence, with the objec-
tive of defining relative degrees of resistance (e.g., roads have higher 
resistance than agricultural fields), rather than specific numerical 
values (e.g., roads have a resistance value of 70, rather than 40) 
(Figure 3a–d) (see Spear et al., 2010; Zeller et al., 2012).

Elevation datasets were derived from 30 m resolution digital 
elevation models from the Hawaii Department of Commerce et al. 
(2007). Three types of surfaces were created using digital elevation 
models, with two versions each (based on the values assigned to 
open water, see below), for a total of six resistance surfaces (Table 1). 
The first of the elevation- based hypotheses is binary models, in 
which we assigned a low resistance to all pixels below an empirically 
derived elevation threshold (resistance value = 10), and assigned 
a high value (80) to all pixels above that value (Hypothesis 1). The 

F IGURE  3 Four example resistance surfaces derived from different spatial datasets. Darker pixels have lower resistance, and lighter 
pixels have higher resistance. (a) Proximity- to- Water, 100- m corridor. (b) Linear elevation, version A. (c) Land use with all land use classes. 
(d) TWI two- class threshold model, version A
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TABLE  1 Hypotheses of landscape effects on movement in Hawaiian gallinules and associated resistance surfaces, sources, and datasets 
for surface creation

Hypothesis Resistance surface Citation Dataset

(1) Movement through low 
elevation

(1) Elevation Two-Class A: Areas below 100 m 
have low resistance, higher elevations have 
high resistance; open ocean has high 
resistance

Perkins, 1903; Banko, 1987; M. Silbernagle 
(USFWS, ret.), pers. comm.

O`ahu Digital 
Elevation Model 
(DEM)

(2) Elevation Two-Class B: Areas below 100 m 
have low resistance, higher elevations have 
high resistance; open ocean has low 
resistance

(2) Movement through low 
elevation, no sharp 
threshold

(3) Elevation Linear A: Landscape resistance 
increases linearly with elevation; open ocean 
has high resistance

Same as above Same as above

(4) Elevation Linear B: Landscape resistance 
increases linearly with elevation; open ocean 
has low resistance

(3) Avoidance or higher 
cost to traversing steep 
terrain

(5) Elevation Slope A: Landscape resistance 
increases linearly with steepness of slope; 
open ocean has high resistance

M. Silbernagle (USFWS, ret.), pers. comm. Same as above

(6) Elevation Slope B: Landscape resistance 
increases linearly with steepness of slope; 
open ocean has low resistance

(4) Movement through wet 
or mesic habitat, with a 
sharp threshold

(7) Topographic Wetness Index (TWI) a 
Two-Class A: Areas below threshold wetness 
value (11.5) have high resistance, areas 
above that have low resistance; open ocean 
has high resistance 

van Rees & Reed, 2014; van Rees and Reed, 
unpubl. data

Same as above

(8) TWI Two-Class B: Areas below threshold 
wetness value have high resistance, areas 
above that have low resistance; open ocean 
has low resistance

(5) Movement through 
wetter areas but no sharp 
threshold

(9) TWI Linear A: Landscape resistance 
decreases linearly with wetness; open ocean 
has high resistance

Same as above Same as above

(10) TWI Linear B: Landscape resistance 
decreases linearly with wetness; open ocean 
has low resistance

(6) Avoidance or high cost 
to traversing urban areas 

(11) Land Use (LU) b Two-Class: Urban land use 
areas have high resistance and all other land 
use types have low resistance

M. Silbernagle (USFWS, ret.), pers. comm.; 
Major, Johnson, King, Cooke, & Sladek, 
2014; 

NOAA LULC 
Dataset

(12) LU Three-Class: Urban land use areas have 
high resistance, wetland areas have low 
resistance, and all other land use types have 
moderate resistance

(7) Movement through 
open areas, avoid closed 
areas 

(13) LU Structural: Structurally open areas 
(agricultural fields, grassland, and wetland) 
have low resistance, intermediate areas 
(shrubland) have moderate resistance, 
covered areas (urban, forest) have high 
resistance

Keyel et al., 2012; Same as above

(8) Graded ease of use (14) LU Full: Wetlands have low resistance; 
other land types have increasing resistance 
in the following order: open land (grassland 
and agriculture), shrubland, forest, and 
urban 

M. Silbernagle (USFWS, ret.), pers. comm.; 
Keyel et al., 2012; Major et al., 2014 

Same as above

(Continues)
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threshold (100 m) was based on the observation that most recorded 
occurrences and habitats of Hawaiian gallinules on O`ahu were at el-
evations below 100 m (U.S. Fish and Wildlife Service (USFWS), 1977; 
van Rees and Reed, unpubl. data). Birds could move through high 
elevations, but would move more readily (by a factor of 8) through 
low elevations. For linear resistance surfaces, we assumed a direct 
linear relationship between elevation and landscape resistance, with 
minimal resistance (resistance value = 1) at coastal elevations and 
maximum resistance (resistance value = 100) at maximum elevation 
for the island (Hypothesis 2). Finally, for slope surfaces, we assumed 
a linear relationship between degree of slope and resistance, where 
the maximum slope was given a value of 100, and flat ground was 
given a resistance value of 1 (Hypothesis 3).

Two additional hypotheses, with a total of four resistance sur-
faces, were based on the TWI (Beven & Kirkby, 1979). The TWI is a 
simple hydrological model that uses a digital elevation model (a spa-
tial representation of elevation across a landscape) to approximate 
the likelihood that water would accumulate at any single point under 
uniform rainfall conditions. The TWI is a unitless measure, with 
higher values in areas that are likely to support standing water or 
mesic conditions, which are strongly associated with the occurrence 
of common gallinules and gallinule habitats (Bannor & Kiviat, 2002). 
We calculated TWI using the Geomorphology and Topology Toolbox 
(Evans & Oakleaf, 2011) in ArcGIS 10.2. In binary TWI models, we 
divided the landscape between low- resistance pixels (resistance 
value = 1) at or above a threshold TWI value, and high- resistance 
pixels (resistance value = 100) below that value (Hypothesis 4). We 
used a threshold value (TWI value = 11.5) for binary TWI surfaces 

based on van Rees and Reed (2014), who used TWI to infer the 
likely locations of historical wetlands on the Hawaiian Islands. This 
threshold TWI value was shown to divide extant wetlands from non-
wetland areas. Accordingly, we took high TWI values to infer the 
presence of wet conditions and a high likelihood of wetland cover. 
Linear TWI models assumed an inverse linear relationship between 
TWI and landscape resistance, scaled from 0 to 100, where higher 
TWI values had lower resistance, and vice versa (Hypothesis 5).

Although most straight- line pathways (the intervening space be-
tween two wetland habitats) between wetlands covered only terres-
trial habitats, some pathways included portions of open ocean (see 
Figure 2), which might conceivably be crossed as gallinules moved 
between those habitats. The resistance of open ocean to Hawaiian 
gallinules is unknown, yielding no expert information on what re-
sistance value to assign to waters along coastal regions in our resis-
tance maps. Rallidae species have colonized oceanic islands all over 
the world, but are reluctant fliers when not dispersing (Ripley et al., 
1977). Although genetic (Miller, Mullins, Haig, Takano, & Garcia, 
2015) and observational (Takano & Haig, 2004; Worthington, 1998) 
evidence of long- distance (~120 km) movements over open ocean 
water exist for the Marianas common moorhen, no movements of 
Hawaiian gallinules have been observed between the two islands 
they inhabit (Kaua`i and O`ahu, ~138 km apart), despite extensive 
mark–recapture efforts (Dibben- Young, 2010; van Rees et al., 2018). 
There is accordingly some uncertainty with regard to the willingness 
of Hawaiian gallinules to disperse over open ocean. Consequently, 
we developed two scenarios each for the Elevation and Topographic 
Wetland Index hypotheses; version A, in which we assign high 

Hypothesis Resistance surface Citation Dataset

(9) Roads as barriers (15) Roads: Large roads (highways) have 
maximum resistance, other roads have high 
resistance; all other areas have low 
resistance

K. Doyle (Hawaii DOFAW) pers. comm. O`ahu Street 
Centerlines

(10) Proximity- to- Water 
(movement through 
riparian, drainage, and 
wetland corridors)

(16) Water Binary: Areas within a threshold 
distance value of water features have low 
resistance; all other areas have high 
resistance

Nagata, 1983; Takano & Haig, 2004 National Wetlands 
Inventory 

(17) Water Linear 30-m corridor: Landscape 
resistance increases linearly with distance 
from water features and reaches maximum 
at 30 m

(18) Water Linear 100-m corridor: Landscape 
resistance increases linearly with distance 
from water features and reaches maximum 
at 100 m

(19) Water Linear 200-m corridor: Landscape 
resistance increases linearly with distance 
from water features and reaches maximum 
at 200 m

(20) Water Negative Binomial: Landscape 
resistance increases nonlinearly with 
distance from water features, but levels off

aTopographic Wetness Index. bLand use.

TABLE  1  (Continued)
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resistance (100) to open ocean water, and version B, where we as-
sign lower resistance (20) to open ocean water.

Land use surfaces were created using the 2011 C- CAP land 
cover dataset for O`ahu, (NOAA Ocean Service 2014), and these 
were used to model three hypotheses with regard to potential land-
scape effects on gallinule movement. In the binary land use model, 
we assigned low resistance (resistance value = 1) to all land cover 
types except for urban cover, which was assigned high resistance 
(resistance value = 100; Hypothesis 6). This binary urban resistance 
surface specifically pertains to the hypothesis that urban areas act 
as dispersal barriers to Hawaiian gallinules. In the land use three- 
class surface, we assigned the same high value to urban areas, and 
low resistance value to wetland land cover, with a moderate resis-
tance (resistance value = 50) to all other pixels. The three- class land 
use surface thus integrates the hypotheses that wetland habitat may 
facilitate dispersal in Hawaiian gallinules with that of urban cover 
impeding dispersal. The structural land use model groups land use 
types into three categories along a gradient of habitat openness 
(cf. Keyel, Bauer, Lattin, Michael Romero, & Michael Reed, 2012), 
open (grassland, wetland, agricultural land, resistance value = 1), 
intermediate (shrubland, resistance value = 50), and closed (forest 
and urban, resistance value = 100). This structural land use surface 
reflects the hypothesis that gallinule movement may be affected by 
the physical structure of the landscape, either by physical or psycho-
logical mechanisms (e.g., Harris & Reed, 2002; Tremblay & St Clair, 
2011; Trizio et al., 2005; Zeller et al., 2012) (Hypothesis 7). Finally, 
the full land use model combines all previous land use models and 
assigns different landscape resistance values for five habitat types: 
wetland, open areas, shrubland, forest, and urban, in order of in-
creasing landscape resistance (resistance values = 1, 10, 30, 80, 100, 
respectively; Hypothesis 8).

The roads’ resistance surface was derived from the O`ahu Street 
Centerlines dataset (HOLIS, 2015) and assigns high landscape resis-
tance values to highways and major roads, moderate values to all 
other roads, and low resistance to all other pixels. Our road- based 
resistance surface addresses the hypothesis that roads impede 
dispersal of Hawaiian gallinules through either direct mortality or 
psychological inhibition (e.g., Benítez- López, Alkemade, & Verweij, 
2010; Thinh, Doherty, Bui, & Huyvaert, 2012; Zeller et al., 2012) 
(Hypothesis 9).

Finally, we derived resistance surfaces based on Proximity- to- 
Water from the National Wetlands Inventory dataset for Hawaii 
(USFWS, 2010) downloaded using the U.S. Fish and Wildlife Service’s 
wetland mapper tool (http://www.fws.gov/wetlands/Data/Mapper.
html). We excluded all large lacustrine (open water) wetlands, ocean 
shoreline wetlands, and estuarine marshes from this dataset because 
they are not used by Hawaiian gallinules (Banko, 1987), and we re-
tained rivers, streams, freshwater low- elevation wetlands, and other 
water features (drainage ditches and irrigation infrastructure). We 
then used the Euclidean distance tool to generate a raster dataset 
where each pixel was assigned a value based on its proximity to the 
nearest water feature. This category of resistance surfaces is based 
on anecdotal accounts that Hawaiian gallinules tend to travel along 

river margins, observations by the authors that the birds appear be-
haviorally inhibited from moving far from water, and evidence from 
related taxa that movement occurs along riparian corridors (Nagata, 
1983; Takano & Haig, 2004; Hypothesis 10). In the binary Proximity- 
to- Water surface, we assigned a low resistance value (resistance 
value = 1) to all pixels within a distance of 30 m of a water feature 
and a high value (resistance value = 100) to all pixels outside of that 
radius. The threshold distance of 30 m was derived from observa-
tions by the authors of the distances at which Hawaiian gallinules 
are rarely seen away from water features. For the three Water Linear 
surfaces, we assumed a linear increase in landscape resistance with 
distance from a water feature that reaches its maximum at 30, 100, 
or 200 m from the water feature, respectively. Finally, for the Water 
Negative Binomial surface, we assumed a nonlinear relationship ac-
cording to the negative binomial equation (Y = 100 – 4e–(x–8)), based 
on a function used by Trainor, Walters, Morris, Sexton, and Moody 
(2013) to describe potential effects of distance from habitat features 
affecting dispersal in another habitat specialist bird. The equation 
was parameterized using expert opinion to identify the minimum 
distances from a landscape feature at which landscape resistance 
would increase and at which increasing distance would cease to af-
fect landscape resistance.

2.4 | Effective and euclidean distances

Because little is known about the movement behavior of Hawaiian 
gallinules, we calculated effective distances among all pairwise com-
binations of occupied (and sampled) habitat patches using both cu-
mulative least- cost paths (Coulon et al., 2004; Michels et al., 2001) 
and resistance distances (McRae, 2006), which differ in their as-
sumptions of an organism’s movement behavior and knowledge of 
the surrounding landscape (Coulon et al., 2004). Circuit- theory ap-
proaches simultaneously consider all potential movement pathways 
when calculating effective distances, while least- cost path simula-
tions consider only a single optimal pathway, thereby assuming that 
the animal has complete knowledge of the landscape. All distances 
were calculated among approximate centroids of each habitat patch, 
rather than between closest patch edges, because wetlands on O`ahu 
are small, isolated patches surrounded by large amounts of nonwet-
land matrix (van Rees & Reed, 2014). Consequently, the amount of 
within- patch distance from centroid to patch edge is a negligible 
amount of total distance among centroids. We calculated least- cost 
path distances using the cost- distance function from the package 
gdistance (van Etten, 2017) in R (R Core Team, 2015) and resistance 
distances using Circuitscape 4.0 (McRae, Shah, & Edelman, 2016). 
We also calculated topographically adjusted Euclidean distances be-
tween population pairs using the near- to- table tool in ArcGIS.

2.5 | Landscape genetic analyses

There is disagreement in the recent literature on which statisti-
cal methods are most appropriate for assessing the relationships 
between landscape features and genetic differentiation (Shirk, 

http://www.fws.gov/wetlands/Data/Mapper.html
http://www.fws.gov/wetlands/Data/Mapper.html
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Landguth, & Cushman, 2017; Zeller et al., 2016). Consequently, fol-
lowing Balkenhol, Waits, and Dezzani (2009), we used three meth-
ods of analysis to reduce the potential for method- dependent biases 
in our results. Datasets were analyzed in the form of distance matri-
ces, with pairwise genetic distance (FST) of microsatellite and mtDNA 
markers as the response variable and pairwise effective distance 
for a given model as the predictor variable. FST values were taken 
from van Rees, Reed et al. (2018), changing nonsignificant and nega-
tive values to zero. We used FST values from both microsatellites 
and mtDNA in all analyses. As in Phillipsen et al. (2015), we chose 
to compare only univariate models for our analysis, due to the high 
likelihood of collinearity between some of our resistance surfaces 
(e.g., TWI- based vs. Proximity- to- Water).

We used simple Mantel tests (Legendre & Fortin, 2010; Mantel, 
1967) to analyze landscape genetic relationships while accounting 
for the nonindependence of data point. Although Mantel tests have 
been criticized for having high type I error rates (Balkenhol et al., 
2009; Graves, Beier, & Royle, 2013; Guillot & Rousset, 2013), they 
have been and continue to be widely used in the field of landscape 
genetics, so we included Mantel tests to make our results read-
ily comparable to other research in the field. In addition to simple 
Mantel statistics, we also followed the causal modeling framework 
using partial Mantel tests (Cushman & Landguth, 2010; Cushman, 
McKelvey, Hayden, & Schwartz, 2006) and evaluated mean relative 
support (RS) for all models. Zeller et al. (2016) found that this ap-
proach performed well in selecting the best resistance surface in 
simulated landscape genetic studies, especially in highly fragmented 
landscapes like in this study. We performed all Mantel tests using 
the package vegan (Oksanen et al., 2016) in R.

We also analyzed landscape genetic relationships using the 
mixed- model maximum- likelihood population- effects framework 
(MLPE; Clarke, Rothery, & Raybould, 2002; Van Strien, Keller, & 
Holderegger, 2012), following the methods described in Van Strien 
et al. (2012). This method accounts for the pairwise dependency of 
genetic and effective distance data by incorporating it into the co-
variance structure of the linear model, and accounting for it using 
a random effect, allowing differentiation from the fixed effects as-
sociated with predictor variables. Prior to model fitting, we scaled 
all predictor variables (effective distances) by dividing them by 
their maximum value, to avoid problems of scale mismatch during 
model fit, and to make model coefficients comparable and easy to 
interpret. We compared all resistance surface models using both 
Akaike’s information criterion corrected for small sample size (AICC; 
Akaike, 1973; Hurvich & Tsai, 1989) and by calculating the R2

β
 sta-

tistic (Edwards, Muller, Wolfinger, Qaqish, & Schabenberger, 2008), 
which measures the proportion of observed variation explained by 
the fixed effects of the model, based on van Strien et al. (2014). We 
used both of these methods because they have each been criticized 
and recommended by different authors (Orelien & Edwards, 2008; 
Row, Knick, Oyler- McCance, Lougheed, & Fedy, 2017; Van Strien 
et al., 2012; Verbeke, 1997), and we desired to use the advantages of 
each to make up for their respective shortcomings. Notably, recent 
work (Row et al., 2017) suggests that AIC performs well in model 

selection in simulated landscape genetic studies, avoiding biases 
that other methods may exhibit toward highly complex models. We 
fitted mixed effects models with REML estimation using the lmer 
function in the package lme4 (Bates, Maechler, & Bolker, 2011) in 
R, and calculated AIC values and generated AIC tables using AICtab 
function in the package AICcmodavg (Mazerolle, 2017). We calcu-
lated R2

β
 using the package pbkrtest (Halekoh & Højsgaard, 2014).

We implemented a post hoc analysis to test three additional 
models (see Supporting information Table S2) designed to account 
for three potential confounding factors that might have biased 
model selection toward Proximity- to- Water models. These were 
(a) that any resistance surface consisting of low- resistance, linear 
features (corridors) outperforms all others, (b) that surrounding wet-
land habitat at source and destination nodes was driving patterns 
of simulated effective distance, and (c) that the spatial arrangement 
of features in the Proximity- to- Water resistance surfaces, and not 
their resistance values, was driving their ability to describe observed 
genetic structure. Scenario 1 was a special concern, considering that 
the Proximity- to- Water resistance surfaces were the only ones that 
contained linear features that could act as corridors. To test Scenario 
1, we repeated our methods using an inverse version of the roads 
map, in which O`ahu’s roads had low resistance, acting as corridors. 
For Scenario 2, we created a resistance surface identical to the 
Proximity- to- Water 100- m buffer layer, but using a new dataset that 
only featured streams and drainage infrastructure, and from which 
all wetland areas had been removed. Finally, for Scenario 3, we 
tested the explanatory value of an inverse version of the Proximity- 
to- Water 100 m buffer resistance surface. These extra resistance 
surfaces were tested against our microsatellite genetic dataset.

3  | RESULTS

3.1 | Landscape genetic analysis

Models of the Proximity- to- Water group generally explained a higher 
amount of observed variation in pairwise population differentiation 
than any other group of models (Table 2). These models had consist-
ently lower p- values and higher r values in simple Mantel tests across 
both methods of estimating effective distance and had much higher 
RS scores than all other models. The three highest Mantel’s r values 
were 0.637, 0.562, and 0.530, belonging to the least- cost- path ef-
fective distances for Water Linear 100- m corridor, Water Negative 
Binomial, and Water 30- m corridor surfaces, respectively. Proximity- 
to- Water models also had the highest RS values (0.650, 0.596, and 
0.545 for least- cost- path simulations of Water Negative Binomial, 
Water Linear 30- m corridor, and Water Linear 100- m corridor, re-
spectively). The three highest R2

β
 values were 0.343, 0.206, and 

0.181, which corresponded to least- cost- path distance estimates of 
the Water Linear 100- m corridor, Water Negative Binary, and Water 
Linear 30- m corridor surfaces, respectively, and as with other met-
rics these highest values were from least- cost- path simulations of 
effective distance. The observed patterns of model support were 
consistent between genetic distances calculated using microsatellite 
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and mitochondrial DNA (microsatellite results in Table 2, mitochon-
drial DNA in Supporting information). All observed statistically sig-
nificant p- values from simple Mantel tests were restricted to models 
from the Proximity- to- Water group. R2

β
 values of linear mixed models 

using the MLPE parameterization were also highest for Proximity- to- 
Water models, although the difference was less pronounced, and R2

β
 

values were generally low. The Euclidean distance model performed 
poorly across all methods of comparison, and models from all groups 
except for Proximity- to- Water varied widely in performance across 
methods of estimating effective distance, but always performed 
more poorly than Proximity- to- Water models. We observed no clear 
pattern of model support between models with high resistance as-
signed to ocean water (A models; see Table 1) and models with low 
resistance assigned to ocean water (B models).

Among Proximity- to- Water models, r values, RS values, and 
R2
β
 values were consistently higher using effective distances 

calculated with cumulative least- cost paths than those calculated in 
Circuitscape. While all Proximity- to- Water models using least- cost- 
path had statistically significant p- values, only one, the binary model, 
had a significant p- value among those with effective distances mea-
sured in Circuitscape. The best overall models differed according to 
both measure of effective distance and method of statistical anal-
ysis, with the two- class, linear to 100 m distance, linear to 200 m 
distance, and negative binomial distance functions scoring highest 
for at least one statistic and effective distance measure.

Our AICC analysis of MLPE- parameterized linear mixed models 
showed clear support for Proximity- to- Water models, with nine 
of the top 10 models being based on Proximity- to- Water surfaces 
(Table 3). The least- cost- path simulated versions of models per-
formed better in our AIC analysis as well, with the top five mod-
els coming from our least- cost- path datasets, and only three of 
the top ten models coming from effective distances measured in 

TABLE  2 Test statistics from Mantel (r) and partial Mantel tests, as well as mean relative support (RS) and R2
β
 values for all landscape 

resistance models evaluated using data on genetic differentiation (FST among 12 microsatellite loci) among 12 populations of Hawaiian 
gallinules on O`ahu

Model name (resistance 
surface)

Mantel r Mantel p RS R2
β

LCP CS LCP CS LCP CS LCP CS

Elevation Two- Class A 0.055 0.048 0.231 0.263 0.183 −0.075 0.082 0.075

Elevation Two- Class B 0.014 0.075 0.386 0.255 −0.211 −0.054 0.065 0.085

Elevation Linear A 0.053 0.032 0.243 0.271 0.150 −0.243 0.082 0.064

Elevation Linear B 0.038 0.038 0.280 0.285 −0.240 −0.204 0.074 0.068

Elevation Slope A 0.054 0.128 0.233 0.096 0.132 0.129 0.081 0.083

Elevation Slope B 0.037 0.128 0.277 0.095 −0.251 0.139 0.073 0.083

TWI Two- Class A 0.055 0.021 0.233 0.332 0.150 −0.353 0.083 0.053

TWI Two- Class B 0.047 0.088 0.344 0.227 −0.254 −0.140 0.048 0.066

TWI Linear A 0.050 0.053 0.240 0.294 −0.094 −0.131 0.076 0.079

TWI Linear B 0.037 0.045 0.315 0.350 −0.205 −0.245 0.076, 0.077

LU Two- Class 0.032 0.012 0.298 0.404 −0.402 −0.150 0.072 0.074

LU Three- Class 0.040 0.190 0.284 0.126 −0.196 0.224 0.076 0.099

LU Structural 0.031 −0.066 0.302 0.596 −0.266 −0.443 0.075 0.056

LU Full 0.084 0.015 0.144 0.436 0.305 −0.158 0.102 0.074

Roads 0.036 0.100 0.275 0.198 −0.348 0.061 0.072 0.085

Water Binary 0.368 0.375 0.009* 0.046* 0.522 0.470 0.131 0.132

Water Linear 30- m 
Corridor

0.530 0.281 0.011* 0.069 0.596 0.396 0.181 0.115

Water Linear 100- m 
Corridor

0.637 0.273 0.024* 0.092 0.545 0.341 0.343 0.114

Water Linear 200- m 
Corridor

0.313 0.219 0.009* 0.102 0.445 0.287 0.122 0.107

Water Negative Binomial 0.562 0.251 0.015* 0.074 0.650 0.355 0.206 0.111

Euclidean Distancea 0.026 0.317 −0.458 0.069

Notes. For each model, statistics are given separately for effective distances calculated using cumulative least- cost path (LCP) and resistance distances 
in Circuitscape (CS). The Euclidean distance model did not include effective distance, so only one value is presented for each statistic, with the exception 
of partial mantel RS, where mantel r values were compared to those from models run with effective distances calculated using both methods. Asterisks 
(*) indicate statistically significant p- values at the α = 0.05 level. TWI and LU stand for Topographic Wetness Index and Landscape Use, respectively.
aOnly one column per statistical method, because Euclidean distance cannot be simulated.
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Circuitscape. The second- ranked model had an ΔAICC > 4 from the 
top model, indicating a substantial difference in support from the 
top model (Burnham & Anderson, 2002). The β (coefficient or slope) 
estimates for the fixed effect of the top five univariate models were 
0.51, 0.35, 0.30, 0.19, and 0.15.

Among our post hoc tests, the roads- as- corridors’ resistance 
surface performed very poorly overall, with a low RS and R2

β
 value, 

although the mantel p- value for effective distances created in 
Circuitscape was near significance (Mantel r = 0.182, p = 0.07). The 
poor performance of this resistance surface using our least- cost- 
path algorithm implied that linear features alone cannot explain the 
high performance of Proximity- to- Water models using least- cost- 
path effective distances. The streams and drainage surface with 
wetlands removed performed comparably to other Proximity- to- 
Water models, with a high Mantel r value (0.474 for LCP, 0.327 for 
CS), and lower Mantel p (0.021 for LCP, 0.058 for CS), and high RS. 
Although this model did perform more poorly than other Proximity- 
to- Water resistance surfaces, its sustained high performance com-
pared to other resistance surfaces supports our initial interpretation 
that Proximity- to- Water surfaces are explaining gene flow on a land-
scape context, and not simply because they include local habitat 
features at population nodes. Finally, our inverse “water as barrier” 
resistance surface performed extremely poorly, indicating that the 
resistance values assigned to the original Proximity- to- Water sur-
faces are indeed responsible for high model performance.

4  | DISCUSSION

To our knowledge, this is the first landscape genetic analysis for a 
terrestrial waterbird species. As such, it represents a step toward 

overcoming one bias in the growing literature of landscape ge-
netics (Kozakiewicz et al., 2017; Zeller et al., 2012). We found 
consistent support for resistance surfaces that were based on 
Proximity- to- Water, while all other resistance surfaces showed 
low explanatory value and statistical significance. The higher 
explanatory power and statistical significance of Proximity- to- 
Water surfaces was robust across four model selection metrics 
(Mantels r and p- value, RS, R2

β
, and AICC), two simulation frame-

works (least- cost paths and resistance distance), and two genetic 
marker types, suggesting that the presence of water features 
explains 10.7%–63.7% of variation in observed genetic struc-
ture among Hawaiian gallinule populations inhabiting wetlands 
on O`ahu (Table 2). Although the results of simple Mantel tests 
should be interpreted cautiously (Balkenhol et al., 2009; Zeller 
et al., 2016), we see congruent patterns in several more robust 
metrics. Zeller et al. (2016) found that simple Mantel’s r and RS 
performed best when comparing resistance surfaces where land-
scapes were highly fragmented, and we believe our study system 
fits this condition well. We also analyzed our results using linear 
mixed effects models fit with MLPE, which is currently consid-
ered the best performing method for performing regressions on 
matrix data (Shirk et al., 2017), and had similar results using two 
different methods of model selection. The consistency across 
model selection metrics and sharp contrast in support compared 
to all other models of landscape resistance provide evidence that 
the presence of small wetlands, drainage canals, and streams en-
hances genetic connectivity in this endangered subspecies. Our 
findings support suggestions by other authors that Hawaiian galli-
nules may move along river systems or other linear water features 
(Nagata, 1983; van Rees & Reed, 2015). The potential use of linear 
water features as dispersal corridors by Hawaiian gallinules coin-
cides with observations in other tropical birds (e.g., Gillies & St. 
Clair, 2008; Sekercioglu, 2009; Takano & Haig, 2004). The results 
of our post hoc tests lend additional credence to our findings, but 
a biological, mechanistic explanation for the phenomenon is also 
important to consider.

One potential mechanism may be a “landscape of fear” (Laundré, 
Hernández, & Ripple, 2010); in this case where Hawaiian gallinules 
perceive lower predation risk near water features and accordingly 
are more willing to travel along them. Reduced antipredator behav-
ior near water features has been documented in other rail taxa (Dear, 
Guay, Robinson, & Weston, 2015), and rails and other waterbirds 
tend to flee toward water as part of their normal predator escape 
behavior (Lima, 1993). Perceiving lower risk due to ease of escape, 
Hawaiian gallinules may accordingly experience fewer behavioral 
barriers to movement when closer to water features (sensu Harris 
& Reed, 2002).

The predictions of our Proximity- to- Water models make intuitive 
sense based on expert opinion and limited observations of Hawaiian 
gallinule dispersal behavior. Visual inspection of least- cost paths 
developed using our 100- m corridors, Proximity- to- Water surface, 
and the least- cost- path function in ArcGIS (Figures 4 and 5) shows 
that predicted movement paths following water features result in 

TABLE  3 ΔAICC values and Akaike weights for the top 10 linear 
mixed- models relating effective distance to genetic differentiation 
in Hawaiian gallinules on O`ahu

Model name (resistance surface & 
simulation method) ΔAICC AICC weight

Water Linear 200- m Corridor (LCP) 0.0 0.76

Water Negative Binomial (LCP) 4.16 0.10

Water Linear 100- m Corridor (LCP) 5.60 0.05

Water Binary (LCP) 8.93 <0.01

LU Full (LCP) 9.15 <0.01

Water Binary (CS) 9.26 <0.01

Water Linear 300- m Corridor (LCP) 9.48 <0.01

Water Linear 200- m Corridor (CS) 10.52 <0.01

Water Linear 100- m Corridor (LCP) 10.60 <0.01

Water Negative Binomial (CS) 10.96 <0.01

Note. Models were parameterized using the MLPE design from Clarke  
et al. (2002) to account for the lack of independence of pairwise data. 
The simulation mode by which effective distance was calculated for each 
model (least- cost paths—LCP or Circuitscape—CS) is listed after the 
model name. TWI and LU stand for Topographic Wetness Index and 
Landscape Use, respectively.
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avoidance of mountains and high elevation features at a large scale, 
and urban features at a small scale, despite not explicitly includ-
ing those features in resistance surfaces. For example, a pathway 
between James Campbell National Wildlife Refuge and Keawawa 

wetland (Figure 4) involves traveling along the coastline and parallel 
to the Ko`olau mountains, rather than over the mountains, and the 
least- cost- path between Kawainui marsh and the Olomana golf links 
makes use of extensive drainage infrastructure and nearby streams, 
avoiding direct passage through urban areas (Figure 5). Thus, the 
Proximity- to- Water layers implicitly feature other aspects of galli-
nule movement ecology observed anecdotally, specifically no obser-
vations at high elevation and a high susceptibility to road mortality 
in urban environments.

Because model rankings are mixed between different Proximity- 
to- Water models across different criteria of model selection, we 
cautiously refrain from selecting one of those models as being the 
best supported overall. Given the limited genetic variation exhib-
ited by the subspecies (van Rees, Reed et al., 2018), and impacts of 
a recent population bottleneck on genetic diversity within Hawaiian 
gallinules (Sonsthagen, Wilson, & Underwood, 2017), it could be that 
our current sample is insufficient to distinguish between functions 
relating Proximity- to- Water to resistance values. Additional factors 
affecting dispersal in other taxa (e.g., conspecific attraction; Smith 
& Peacock, 1990; Serrano & Tella, 2003) may also influence disper-
sal rates in Hawaiian gallinules, but were not explored in this study. 
While genetic structure was detected at small spatial scales, addi-
tion of whole genomic or reduced representation genomic data may 
provide greater spatial resolution and increase our ability to detect 

F IGURE  4 Approximation of least- cost pathway between 
James Campbell National Wildlife Refuge and Keawawa Wetland, 
calculated using the 100- m corridor distance- to- water resistance 
surface and the least- cost path tool in ArcGIS

F IGURE  5 Approximation of least- cost pathway between Kawainui Marsh and Olomana Golf Links, calculated using the 100- m corridor 
distance- to- water resistance surface and the least- cost path tool in ArcGIS. For illustrative purposes, the path has been projected over a 
modified version of the NOAA C- CAP 2011 map of O`ahu, showing urban areas in white and undeveloped areas in dark gray, with water 
features in medium gray and open water in light gray
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landscape features that are influencing gallinule movement patterns 
(Kozakiewicz et al., 2017; Szulkin, Gagnaire, Bierne, & Charmantier, 
2016). Finally, Zeller et al. (2016) note that model selection crite-
ria for resistance surfaces perform very well at selecting the best 
among competing models, but not necessarily in estimating precise 
parameter values. Consequently, we do not attempt to quantify the 
relationship between Proximity- to- Water and landscape resistance, 
but value the acquired results as among the first empirical evidence 
describing the movement behavior of gallinules (but see Takano & 
Haig, 2004).

Consistently higher correlation coefficients and greater statis-
tical significance among models that were applied using least- cost- 
path effective distances implies that the random walk model (upon 
which Circuitscape resistance distances are based McRae et al., 
2014) performs poorly in simulating movements of Hawaiian galli-
nules on O`ahu, and that birds may navigate the island with some 
degree of knowledge of their larger landscape context. The use 
of prior landscape knowledge may be typical of waterbirds, which 
often conduct long- distance dispersal by means of higher- altitude 
flights, thereby providing a view of a larger portion of the landscape. 
Furthermore, the finding that models based on road mortality, slope, 
elevation, and difficulty of traversing urban areas performed poorly 
may provide additional support for the hypothesis that Hawaiian gal-
linules are not dispersing on foot, despite being highly cursorial, and 
rarely seen in flight. The hypothesis of flying dispersal in gallinules 
is supported by observations from Taylor and Anderson (1973), who 
reported 11 common gallinules (G. g. cachinnans) that were killed 
after striking a television transmission tower (~430 m above ground 
level) in central Florida during nocturnal flights. It is worth noting 
that the tower was near “a small lake drained by a 20- foot wide canal; 
both contained water during the kills.” Also of interest is that kills 
occurred at night, supporting other observations that common gal-
linules and common moorhen (G. chloropus) perform higher- altitude 
flights at night (Roselaar, 1980; Taylor, 2010), which may explain why 
long flights are rarely observed on O`ahu.

Although our analysis yielded a strong and consistent signal 
that water features decrease landscape resistance to movement for 
Hawaiian gallinules on O`ahu, several important limitations to our 
study are worth noting. First, although genetic data are a useful de-
scriptor of overall gene flow as a result of dispersal, they ultimately 
represent only a portion of animal movements (Spear et al., 2010), 
specifically movements that lead to interwetland dispersal and suc-
cessful breeding (Cushman, Lewis, & Landguth, 2014). Accordingly, 
although they match limited observations in related taxa (Takano & 
Haig, 2004), and anecdotal observations in this subspecies (Nagata, 
1983), results from this study do not necessarily reflect the actual 
behavioral decisions made by individual Hawaiian gallinules as they 
traverse the island landscape. Additionally, the reliance of this study 
on the testing of expert- designed models against empirical data and 
the subsequent process of model selection limits results to the best 
model among those chosen, and not necessarily the best possible 
model for describing gene flow in Hawaiian gallinules (cf. Beissinger 
& Snyder, 2002).

4.1 | Conservation Implications and Priorities for 
Future Work

Empirical studies on the movement behavior of Hawaiian gallinules 
will be important to validate the results of our landscape genetic 
analysis and investigate the fine- scale behavioral decisions that 
lead to the observed population- level patterns of gene flow. More 
consistent mark–resighting efforts (Dibben- Young, 2010) and study 
methods with higher spatiotemporal resolution will be important 
steps for improving our knowledge of movement behavior in this 
subspecies. GPS dataloggers and transmitters have been used to 
great effect in tracking a number of bird species (Gagliardo, Ioalè, 
Savini, Lipp, & Dell’Omo, 2007; Rodríguez et al., 2012), and translo-
cation studies like that of Gillies and St. Clair (2008) allow for experi-
mental manipulation of dispersal direction and matrix type.

An important implication of this study is that habitats formerly 
hypothesized to have little value to Hawaiian gallinules (e.g., drain-
age ditches and canals, forested and vegetated streams, and road-
side swales) may actually affect their population persistence by 
increasing population connectivity. The management dependency 
of Hawaiian gallinules (Reed et al., 2012a,b) has led to the assump-
tion that unmanaged wetlands and riparian systems are of little to 
no value for them. This study suggests that such unmanaged water 
features act as corridors, which may increase population persistence 
in fragmented landscapes by alleviating problematic consequences 
of isolation (Gilbert- Norton, Wilson, Stevens, & Beard, 2010). As van 
Rees and Reed (2015) speculated, shifts in water management to-
ward a greater emphasis on green stormwater infrastructure might 
simultaneously provide conservation benefits by creating such cor-
ridors for waterbirds like the Hawaiian gallinule. Such landscape 
changes would represent a gain for both the management of im-
periled water resources (Giambelluca, 1986; Ridgley & Giambelluca, 
1991) and threatened wildlife on O`ahu.

ACKNOWLEDG MENTS

Funding for this project was provided by the Tufts Institute of the 
Environment, Tufts Graduate School of Arts and Sciences, Nuttall 
Ornithological Club, Wilson Ornithological Society, Sigma Xi Grants- 
in- Aid of Research, Tufts Water Diplomacy IGERT (NSF 0966093), 
and the Disney Conservation Fund. In- kind support was provided by 
the USGS Alaska Science Center, the U.S. Fish and Wildlife Service. 
We thank Dr. Tyler Creech and Matthew Williamson (Center for 
Large Landscape Conservation) and Dr. Eric Abelson (US Forest 
Service) for their helpful feedback and advice in interpreting results 
of this study. We also thank Dr. Maarten van Strien for providing 
code and helpful advice in analyzing data using MLPE. All capture 
and handling procedures were approved by the Tufts University 
Institutional Animal Care and Use Committee and conducted with 
federal and state of Hawaii endangered species and banding per-
mits. The findings and conclusions in this article are those of the 
authors and do not necessarily represent the views of the U.S. Fish 
and Wildlife Service. Any use of trade, firm, or product names is for 



8340  |     van REES Et al.

descriptive purposes only and does not imply endorsement by the 
U.S. Government.

CONFLIC T OF INTERE S T

None declared

AUTHOR CONTRIBUTION

Charles van Rees conducted statistical and spatial analyses and 
simulations and wrote the manuscript. J. Michael Reed provided ad-
vice on statistical analyses, contributed to the writing of the man-
uscript, and supervised the organization of the project. Robert E. 
Wilson reviewed and contributed to the writing of the manuscript 
and provided guidance throughout collection and analysis of genetic 
data. Jared G. Underwood supervised sample collection and field 
logistics, and contributed to the writing of the manuscript. Sarah A 
Sonsthagen supervised collection and analysis of genetic data, pro-
vided guidance on interpretation of genetic results, and contributed 
to the writing of the manuscript.

DATA ACCE SSIBILIT Y

Data from this study (matrices of genetic distances, resistance sur-
faces in analysis, and effective distance matrices) available from the 
Dryad Digital Repository: https://doi.org/10.5061/dryad.p90b87p.

ORCID

Charles B. van Rees  http://orcid.org/0000-0003-0558-3674 

Robert E. Wilson  http://orcid.org/0000-0003-1800-0183 

Sarah A. Sonsthagen  http://orcid.org/0000-0001-6215-5874 

R E FE R E N C E S

Adriaensen, F., Chardon, J., De Blust, G., Swinnen, E., Villalba, S., Gulinck, 
H., & Matthysen, E. (2003). The application of ‘least- cost’ modelling 
as a functional landscape model. Landscape and Urban Planning, 64, 
233–247. https://doi.org/10.1016/S0169-2046(02)00242-6

Akaike, H.. (1973). Information theory and an extension of the maximum 
likelihood principle. In: B. N. Petrov, F. Csaki (Eds.), 2nd International 
Symposium on Information Theory. Budapest, Hungary: Akademia  
Kiado.

Anderson, S. J., Kierepka, E. M., Swihart, R. K., Latch, E. K., & Rhodes, O. E. 
Jr (2015). Assessing the permeability of landscape features to animal 
movement: using genetic structure to infer functional connectivity. PLoS 
ONE, 10, e0117500. https://doi.org/10.1371/journal.pone.0117500

Balkenhol, N., Cushman, S. A., Waits, L. P., & Storfer, A. (2015). Current 
status, future opportunities, and remaining challenges in landscape ge-
netics. In N. Balkenhol, S. A. Cushman, A. T. Storfer, & L. P. Waits (Eds.), 
Landscape Genetics: Concepts, Methods, Applications (pp. 247–256). 
Sussex, UK: Wiley-Blackwell. https://doi.org/10.1002/9781118525258

Balkenhol, N., Waits, L. P., & Dezzani, R. J. (2009). Statistical ap-
proaches in landscape genetics: an evaluation of methods for link-
ing landscape and genetic data. Ecography, 32, 818–830. https://doi.
org/10.1111/j.1600-0587.2009.05807.x

Banko, W. E. (1987). History of Endemic Hawaiian Birds. Part I. Population 
Histories—Species Accounts. Freshwater Birds: Hawaiian gallinule 
Alae`ula, CPSU/UH Avian History Report 12A.

Bannor, B. K., & Kiviat, E. (2002). Common gallinule (Gallinula galeata) ver-
sion 2.0. In P. G. Rodewald, (Ed.), The Birds of North America. Ithaca, 
NY: Cornell Lab of Ornithology. https://doi.org/10.2173/bna.685

Bates, D., Maechler, M., & Bolker, B. (2011). lme4: linear mixed-effects 
models using S4 classes. R package version 0.999375-42. 2011.

Beissinger, S. R., & Snyder, N. F. R. (2002). Water levels affect nest 
success of the Snail Kite in Florida: AIC and the omission of rele-
vant candidate models. The Condor, 104, 208–215. https://doi.
org/10.1650/0010-5422(2002)104[0208:WLANSO]2.0.CO;2

Benítez-López, A., Alkemade, R., & Verweij, P. A. (2010). The impacts of 
roads and other infrastructure on mammal and bird populations: a 
meta- analysis. Biological Conservation, 143, 1307–1316. https://doi.
org/10.1016/j.biocon.2010.02.009

Beven, K., & Kirkby, M. J. (1979). A physically based, variable contribut-
ing area model of basin hydrology. Hydrological Sciences Journal, 24, 
43–69. https://doi.org/10.1080/02626667909491834

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel 
Inference: a practical information-theoretic approach, 2nd ed.. New 
York: Springer-Verlag.

Clarke, R. T., Rothery, P., & Raybould, A. F. (2002). Confidence limits for 
regression relationships between distance matrices: estimating gene 
flow with distance. Journal of Agricultural, Biological, and Environmental 
Statistics, 7, 361. https://doi.org/10.1198/108571102320

Coulon, A., Cosson, J. F., Angibault, J. M., Cargnelutti, B., Galan, M., 
Morellet, N., … Hewison, A. J. (2004). Landscape connectivity influ-
ences gene flow in a roe deer population inhabiting a fragmented 
landscape: an individual- based approach. Molecular Ecology, 13, 
2841–2850. https://doi.org/10.1111/j.1365-294X.2004.02253.x

Cushman, S. A., & Landguth, E. L. (2010). Spurious correlations and in-
ference in landscape genetics. Molecular Ecology, 19, 3592–3602. 
https://doi.org/10.1111/j.1365-294X.2010.04656.x

Cushman, S. A., Lewis, J. S., & Landguth, E. L. (2014). Why did the bear 
cross the road? Comparing the performance of multiple resistance 
surfaces and connectivity modeling methods. Diversity, 6, 844–854. 
https://doi.org/10.3390/d6040844

Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). 
Gene flow in complex landscapes: testing multiple hypotheses with 
causal modeling. The American Naturalist, 168, 486–499. https://doi.
org/10.1086/506976

Dear, E. J., Guay, P.-J., Robinson, R. W., & Weston, M. A. (2015). Distance 
from shore positively influences alert distance in three wetland bird 
species. Wetlands Ecology and Management, 23, 315–318. https://doi.
org/10.1007/s11273-014-9376-0

DesRochers, D. W., Gee, H. K. W., & Reed, J. M. (2008). Response of 
Hawaiian Moorhens to broadcast of conspecific calls and a com-
parison with other survey methods. Journal of Field Ornithology, 79, 
448–457. https://doi.org/10.1111/j.1557-9263.2008.00190.x

Dibben-Young, A. (2010). Dibben- Young 2010 HAMO & HACO banding.
pdf. ‘Elepaio, 70, 58–62.

Edwards, L. J., Muller, K. E., Wolfinger, R. D., Qaqish, B. F., & 
Schabenberger, O. (2008). An R2 statistic for fixed effects in the lin-
ear mixed model. Statistics in Medicine., 27, 6137–6157. https://doi.
org/10.1002/sim.3429

Epps, C. W., Wehausen, J. D., Bleich, V. C., Torres, S. G., & Brashares, 
J. S. (2007). Optimizing dispersal and corridor models using land-
scape genetics. Journal of Applied Ecology, 44, 714–724. https://doi.
org/10.1111/j.1365-2664.2007.01325.x

van Etten, J. (2017). R Package gdistance: Distances and Routes on 
Geographical Grids. Journal of Statistical Software, 76, 1–21.

Evans, J., & Oakleaf, J. (2011). Geomorphometry and gradient met-
rics toolbox. Available at: https://www.arcgis.com/home/item.
html?id=63ffcecf3b2a45bf99a84cdaedefaccf

https://doi.org/10.5061/dryad.p90b87p
http://orcid.org/0000-0003-0558-3674
http://orcid.org/0000-0003-0558-3674
http://orcid.org/0000-0003-1800-0183
http://orcid.org/0000-0003-1800-0183
http://orcid.org/0000-0001-6215-5874
http://orcid.org/0000-0001-6215-5874
https://doi.org/10.1016/S0169-2046(02)00242-6
https://doi.org/10.1371/journal.pone.0117500
https://doi.org/10.1002/9781118525258
https://doi.org/10.1111/j.1600-0587.2009.05807.x
https://doi.org/10.1111/j.1600-0587.2009.05807.x
https://doi.org/10.2173/bna.685
https://doi.org/10.1650/0010-5422(2002)104[0208:WLANSO]2.0.CO;2
https://doi.org/10.1650/0010-5422(2002)104[0208:WLANSO]2.0.CO;2
https://doi.org/10.1016/j.biocon.2010.02.009
https://doi.org/10.1016/j.biocon.2010.02.009
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1198/108571102320
https://doi.org/10.1111/j.1365-294X.2004.02253.x
https://doi.org/10.1111/j.1365-294X.2010.04656.x
https://doi.org/10.3390/d6040844
https://doi.org/10.1086/506976
https://doi.org/10.1086/506976
https://doi.org/10.1007/s11273-014-9376-0
https://doi.org/10.1007/s11273-014-9376-0
https://doi.org/10.1111/j.1557-9263.2008.00190.x
https://doi.org/10.1002/sim.3429
https://doi.org/10.1002/sim.3429
https://doi.org/10.1111/j.1365-2664.2007.01325.x
https://doi.org/10.1111/j.1365-2664.2007.01325.x
https://www.arcgis.com/home/item.html?id=63ffcecf3b2a45bf99a84cdaedefaccf
https://www.arcgis.com/home/item.html?id=63ffcecf3b2a45bf99a84cdaedefaccf


     |  8341van REES Et al.

Fahrig, L. (2007). Non- optimal animal movement in human- altered 
landscapes. Functional Ecology, 21, 1003–1015. https://doi.
org/10.1111/j.1365-2435.2007.01326.x

Finnegan, L., Wilson, P., Price, G., Lowe, S., Patterson, B., Fortin, M.-J., 
& Murray, D. (2012). The complimentary role of genetic and ecolog-
ical data in understanding population structure: a case study using 
moose (Alces alces). European Journal of Wildlife Research, 58, 415–
423. https://doi.org/10.1007/s10344-011-0590-2

Gagliardo, A., Ioalè, P., Savini, M., Lipp, H.-P., & Dell’Omo, G. (2007). 
Finding home: the final step of the pigeons’ homing process studied 
with a GPS data logger. Journal of Experimental Biology, 210, 1132–
1138. https://doi.org/10.1242/jeb.003244

Giambelluca, T. W. (1986). Land- use effects on the water balance of a 
tropical island. National Geographic Research, 2, 125–151.

Gilbert-Norton, L., Wilson, R., Stevens, J. R., & Beard, K. H. 
(2010). A meta- analytic review of corridor effective-
ness. Conservation Biology, 24, 660–668. https://doi.
org/10.1111/j.1523-1739.2010.01450.x

Gillies, C. S., & St. Clair, C. C. (2008). Riparian corridors enhance 
movement of a forest specialist bird in fragmented tropical forest. 
Proceedings of the National Academy of Sciences, 105, 19774–19779. 
https://doi.org/10.1073/pnas.0803530105

Graves, T. A., Beier, P., & Royle, J. A. (2013). Current approaches using 
genetic distances produce poor estimates of landscape resistance to 
interindividual dispersal. Molecular Ecology, 22, 3888–3903. https://
doi.org/10.1111/mec.12348

Green, A. J., Alcorlo, P., Peeters, E. T., Morris, E. P., Espinar, J. L., Bravo-
Utrera, M. A., Bustamante, J., Díaz-Delgado, R., Koelmans, A. A., 
Mateo, R.,… Scheffer, M. (2017). Creating a safe operating space 
for wetlands in a changing climate. Frontiers in Ecology and the 
Environment, 15, 99–107. https://doi.org/10.1002/fee.1459

Griffin, C., Shallenberger, R., Fefer, S., Sharitz, R., & Gibbons, J. 
(1989). Hawaii’s endangered waterbirds: a resource management  
challenge. In R.R. Schwartz & J.W. Gibbons (Eds.), Freshwater wet-
lands and wildlife. US Department of Energy, US Department of 
Energy symposium series no. 61. pp. 1165–1175.

Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. 
Methods in Ecology and Evolution, 4, 336–344. https://doi.
org/10.1111/2041-210x.12018

Haig, S. M., Bronaugh, W. M., Crowhurst, R. S., D’Elia, J., Eagles-Smith, 
C. A., Epps, C. W., Knaus, B., Miller, M. P., Moses, M. L., Oyler-
McCance, S.,… Sidlauskas, B. (2011). Genetic applications in avian 
conservation. The Auk, 128, 205–229. https://doi.org/10.1525/
auk.2011.128.2.205

Halekoh, U., & Højsgaard, S. (2014). Kenward- Roger Approximation and 
Parametric Bootstrap Methods for Tests in Linear Models – The R 
Package pbkrtest. Journal of Statistical Software, 59, 1–30. http://
www.jstatsoft.org/v59/i09/.

Hanski, I. (2001). Population dynamic consequences of dispersal in local 
populations and in metapopulations. In: Dispersal. , J. Clobert, E. 
Danchin, A. A. Dhont & J. D. Nichols, (Eds.), (pp. 283–298). Oxford, 
UK: Oxford University Press.

Harris, R. J., & Reed, J. M. (2002). Behavioral barriers to non- migratory 
movements of birds. Annales Zoologici Fennici, 39, 275–290.

Hawaii Department of Commerce, and National Oceanic and 
Atmospheric Administration, Biogeography Branch (2007). Digital 
elevation models (DEMs) for the main 8 Hawaiian Islands. 1st Ed. 
Raster digital data. Honolulu, Hawaii.

Holyoak, M., & Heath, S. K. (2016). The integration of climate 
change, spatial dynamics, and habitat fragmentation: A con-
ceptual overview. Integrative Zoology, 11, 40–59. https://doi.
org/10.1111/1749-4877.12167

Honolulu Land Information System (HOLIS) (2005). Oahu Street 
Centerlines. Downloaded from State of Hawaii Office of Planning at 
http://planning.hawaii.gov/gis/download-gis-data/.

Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model 
selection in small samples. Biometrika, 76, 297–307. https://doi.
org/10.1093/biomet/76.2.297

Keyel, A. C., Bauer, C. M., Lattin, C. R., Michael Romero, L., & Michael 
Reed, J. (2012). Testing the role of patch openness as a causal mecha-
nism for apparent area sensitivity in a grassland specialist. Oecologia, 
169, 407–418. https://doi.org/10.1007/s00442-011-2213-8

Knowlton, J. L., & Graham, C. H. (2010). Using behavioral landscape ecol-
ogy to predict species’ responses to land- use and climate change. 
Biological Conservation, 143, 1342–1354. https://doi.org/10.1016/j.
biocon.2010.03.011

Kozakiewicz, C. P., Carver, S., & Burridge, C. P. (2017). Under- 
representation of avian studies in landscape genetics. Ibis, 160, 1–12.

Laundré, J. W., Hernández, L., & Ripple, W. J. (2010). The landscape of 
fear: ecological implications of being afraid. Open Ecology Journal, 3, 
1–7. https://doi.org/10.2174/1874213001003030001

Legendre, P., & Fortin, M. (2010). Comparison of the Mantel test and alter-
native approaches for detecting complex multivariate relationships 
in the spatial analysis of genetic data. Molecular Ecology Resources, 10, 
831–844. https://doi.org/10.1111/j.1755-0998.2010.02866.x

Lima, S. L. (1993). Ecological and evolutionary perspectives on escape 
from predatory attack: a survey of North American birds. The Wilson 
Bulletin, 105, 1–47.

Livezey, B. C. (2003). Evolution of flightlessness in rails (Gruiformes, 
Rallidae). Washington, DC: American Ornithologists’ Union.

Lowe, W. H., & Allendorf, F. W. (2010). What can genetics tell us about 
population connectivity? Molecular Ecology, 19, 3038–3051. https://
doi.org/10.1111/j.1365-294X.2010.04688.x

Major, R., Johnson, R., King, A., Cooke, G., & Sladek, J. (2014). Genetic 
isolation of endangered bird populations inhabiting salt marsh rem-
nants surrounded by intensive urbanization. Animal Conservation, 17, 
419–429. https://doi.org/10.1111/acv.12108

Manel, S., & Holderegger, R. (2013). Ten years of landscape genet-
ics. Trends in Ecology and Evolution, 28, 614–621. https://doi.
org/10.1016/j.tree.2013.05.012

Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape 
genetics: combining landscape ecology and population genetics. 
Trends inEcology and Evolution, 18, 189–197. https://doi.org/10.1016/
S0169-5347(03)00008-9

Mantel, N. (1967). The detection of disease clustering and a generalized 
regression approach. Cancer Research, 27, 209–220.

Mazerolle, M. J. (2017). AICcmodavg: Model selection and multimodel 
inference based on (Q)AIC(C). R package version 2.1-1. https://
cran.r-project.org/package=AICcmodavg.

McRae, B. H. (2006). Isolation by resistance. Evolution, 60, 1551–1561. 
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x

McRae, B. H., Shah, V., & Edelman, A. (2016). Circuitscape: modeling 
landscape connectivity to promote conservation and human health. 
https://doi.org/10.13140/rg.2.1.4265.1126

McRae, B. H., Shah, V., & Mohapatra, T. (2014). CIRCUITSCAPE User 
Guide Version 4.0. http://docs.circuitscape.org/circuitscape_4_0_
user_guide.html

Michels, E., Cottenie, K., Neys, L., De Gelas, K., Coppin, P., & De 
Meester, L. (2001). Geographical and genetic distances among 
zooplankton populations in a set of interconnected ponds: 
a plea for using GIS modelling of the effective geographi-
cal distance. Molecular Ecology, 10, 1929–1938. https://doi.
org/10.1046/j.1365-294X.2001.01340.x

Miller, M. P., Mullins, T. D., Haig, S. M., Takano, L., & Garcia, K. (2015). 
Genetic structure, diversity, and interisland dispersal in the endan-
gered Mariana Common Moorhen (Gallinula chloropus guami). The 
Condor, 117, 660–669. https://doi.org/10.1650/CONDOR-15-42.1

Nagata, S. E. (1983). Status of the Hawaiian Gallinule on lotus farms and 
a marsh on Oahu, Hawaii. Master’s thesis, Colorado State University, 
Fort Collins, Colorado.

https://doi.org/10.1111/j.1365-2435.2007.01326.x
https://doi.org/10.1111/j.1365-2435.2007.01326.x
https://doi.org/10.1007/s10344-011-0590-2
https://doi.org/10.1242/jeb.003244
https://doi.org/10.1111/j.1523-1739.2010.01450.x
https://doi.org/10.1111/j.1523-1739.2010.01450.x
https://doi.org/10.1073/pnas.0803530105
https://doi.org/10.1111/mec.12348
https://doi.org/10.1111/mec.12348
https://doi.org/10.1002/fee.1459
https://doi.org/10.1111/2041-210x.12018
https://doi.org/10.1111/2041-210x.12018
https://doi.org/10.1525/auk.2011.128.2.205
https://doi.org/10.1525/auk.2011.128.2.205
http://www.jstatsoft.org/v59/i09/
http://www.jstatsoft.org/v59/i09/
https://doi.org/10.1111/1749-4877.12167
https://doi.org/10.1111/1749-4877.12167
http://planning.hawaii.gov/gis/download-gis-data/
https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.1007/s00442-011-2213-8
https://doi.org/10.1016/j.biocon.2010.03.011
https://doi.org/10.1016/j.biocon.2010.03.011
https://doi.org/10.2174/1874213001003030001
https://doi.org/10.1111/j.1755-0998.2010.02866.x
https://doi.org/10.1111/j.1365-294X.2010.04688.x
https://doi.org/10.1111/j.1365-294X.2010.04688.x
https://doi.org/10.1111/acv.12108
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1016/S0169-5347(03)00008-9
https://doi.org/10.1016/S0169-5347(03)00008-9
https://cran.r-project.org/package=AICcmodavg
https://cran.r-project.org/package=AICcmodavg
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
https://doi.org/10.13140/rg.2.1.4265.1126
http://docs.circuitscape.org/circuitscape_4_0_user_guide.html
http://docs.circuitscape.org/circuitscape_4_0_user_guide.html
https://doi.org/10.1046/j.1365-294X.2001.01340.x
https://doi.org/10.1046/j.1365-294X.2001.01340.x
https://doi.org/10.1650/CONDOR-15-42.1


8342  |     van REES Et al.

National Oceanic and Atmospheric Administration (NOAA) (2014). 2011 
C-CAP Land Cover of Oahu, Hawaii. Charleston, SC: NOAA’s Ocean 
Service, Coastal Services Center.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, 
D., Minchin, P. R., O’hara, R. B., Simpson, G. L., Solymos, P., … Wagner, 
H. (2016). vegan: Community Ecology Package.

Orelien, J. G., & Edwards, L. J. (2008). Fixed- effect variable selec-
tion in linear mixed models using R2 statistics. Computational 
Statistics & Data Analysis, 52, 1896–1907. https://doi.org/10.1016/j.
csda.2007.06.006

Perkins, R. C. L. (1903). Vertebrata (Aves). In D. Sharp, (Ed.), Fauna 
Hawaiiensis (pp 368–465). vol. 1, Part 4. Cambridge, UK: Cambridge 
University Press.

Phillipsen, I. C., Kirk, E. H., Bogan, M. T., Mims, M. C., Olden, J. D., & Lytle, 
D. A. (2015). Dispersal ability and habitat requirements determine 
landscape- level genetic patterns in desert aquatic insects. Molecular 
Ecology, 24, 54–69. https://doi.org/10.1111/mec.13003

R Core Team (2015). R: A language and environment for statistical comput-
ing. Vienna: R Foundation for Statistical Computing.

Reed, J. M., DesRochers, D. W., VanderWerf, E. A., & Scott, J. M. (2012a). 
Long- term persistence of Hawaii’s endangered avifauna through 
conservation- reliant management. BioScience, 62, 881–892. https://
doi.org/10.1525/bio.2012.62.10.8

Reed, J. M., Elphick, C. S., Ieno, E. N., & Zuur, A. F. (2011). Long- term 
population trends of endangered Hawaiian waterbirds. Population 
Ecology, 53, 473–481. https://doi.org/10.1007/s10144-011-0262-9

Reed, J., Elphick, C., Zuur, A., Ieno, E., & Smith, G. (2007). Time series 
analysis of Hawaiian waterbirds. In A. F. Zuur, E. N. Ieno, & G. M. 
Smith (Eds.), Analysing Ecological Data (pp. 615–631). Springer. 
https://doi.org/10.1007/978-0-387-45972-1

van Rees, C. B., Chang, P. R., Cosgrove, J., DesRochers, D. W., Gee, H. 
K. W., Gutscher-Chutz, J. L., … Reed, J. M. (2018). Estimation of 
vital rates for the Hawaiian gallinule, cryptic endangered waterbird. 
Journal of Fish and Wildlife Management, 9, 117–131. https://doi.
org/10.3996/102017-JFWM-084

van Rees, C. B., & Reed, J. M. (2014). Wetland loss in Hawai’i since 
human settlement. Wetlands, 34, 335–350. https://doi.org/10.1007/
s13157-013-0501-2

van Rees, C. B., & Reed, J. M. (2015). Water Diplomacy from a Duck’s 
Perspective: Wildlife as Stakeholders in water management. Journal 
of Contemporary Water Research and Education, 155, 28–42. https://
doi.org/10.1111/j.1936-704X.2015.03193.x

van Rees, C. B., Reed, J. M., Wilson, R. E., Underwood, J. G., & Sonsthagen, 
S. A. (2018). Small- scale genetic structure in an endangered wetland 
specialist: possible effects of landscape change and population re-
covery. Conservation Genetics, 19, 129–142. https://doi.org/10.1007/
s10592-017-1020-0

Ridgley, M. A., & Giambelluca, T. W. (1991). Drought, ground-
water management and land use planning: the case of cen-
tral Oahu, Hawaii. Applied Geography, 11, 289–307. https://doi.
org/10.1016/0143-6228(91)90019-6

Ripley, S. D., Lansdowne, J. F., & Olson, S. L. (1977). Rails of the world: 
a monograph of the family Rallidae. Boston, MA: David R. Godine 
Publisher.

Rodríguez, A., Negro, J. J., Mulero, M., Rodríguez, C., Hernández-Pliego, 
J., & Bustamante, J. (2012). The eye in the sky: combined use of un-
manned aerial systems and GPS data loggers for ecological research 
and conservation of small birds. PLoS ONE, 7, e50336. https://doi.
org/10.1371/journal.pone.0050336

Roselaar, C. S. (1980). Moorhen. In S. Cramp, (Ed.), Handbook of the 
Birds of Europe, the Middle East and North Africa (pp. 578–588). Vol II, 
Hawks to Bustards, London, UK: Oxford University Press.

Row, J. R., Knick, S. T., Oyler-McCance, S. J., Lougheed, S. C., & Fedy, B. 
C. (2017). Developing approaches for linear mixed modelling in land-
scape genetics through landscape- directed dispersal simulations. 

Ecology and Evolution, 7, 3751–3761. https://doi.org/10.1002/
ece3.2825

Schwartz, C. W., & Schwartz, E. R. (1949). The game birds in Hawaii. 
Honolulu, USA: Hawaii Division of Fish and Game and Board of 
Commissioners of Agriculture and Forestry.

Sekercioglu, C. H. (2009). Tropical ecology: riparian corridors connect 
fragmented forest bird populations. Current Biology, 19, R210–R213. 
https://doi.org/10.1016/j.cub.2009.01.006

Serrano, D., & Tella, J. L. (2003). Dispersal within a spatially structured 
population of lesser kestrels: the role of spatial isolation and conspe-
cific attraction. Journal of Animal Ecology, 72, 400–410. https://doi.
org/10.1046/j.1365-2656.2003.00707.x

Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation 
by environment or distance: which pattern of gene flow is most com-
mon? Evolution, 68, 1–15. https://doi.org/10.1111/evo.12258

Shirk, A., Landguth, E. L., & Cushman, S. (2017). A comparison of re-
gression methods for model selection in individual- based landscape 
genetic analysis. Molecular Ecology Resources, 18, 55–67.https://doi.
org/10.1111/1755-0998.12709

Smith, A. T., & Peacock, M. M. (1990). Conspecific attraction and the 
determination of metapopulation colonization rates. Conservation 
Biology, 4, 320–323. https://doi.org/10.1111/j.1523-1739.1990.
tb00294.x

Sonsthagen, S. A., Wilson, R. E., & Underwood, J. G. (2017). Genetic 
implications of bottleneck effects of differing severities on genetic 
diversity in naturally recovering populations: An example from 
Hawaiian coot and Hawaiian gallinule. Ecology and Evolution, 7, 9925–
9934.https://doi.org/10.1002/ece3.3530

Spear, S. F., Balkenhol, N., Fortin, M. J., McRae, B. H., & Scribner, K. 
(2010). Use of resistance surfaces for landscape genetic studies: 
considerations for parameterization and analysis. Molecular Ecology, 
19, 3576–3591. https://doi.org/10.1111/j.1365-294X.2010.046 
57.x

Steadman, D. W. (2006). Extinction and biogeography of tropical Pacific 
birds. Chicago, IL: University of Chicago Press.

Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P. 
(2010). Landscape genetics: where are we now? Molecular Ecology, 
19, 3496–3514. https://doi.org/10.1111/j.1365-294X.2010.04691.x

Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity con-
servation: recent progress and future challenges. Journal of the 
North American Benthological Society, 29, 344–358. https://doi.
org/10.1899/08-171.1

van Strien, M. J., Keller, D., Holderegger, R., Ghazoul, J., Kienast, F., & 
Bolliger, J. (2014). Landscape genetics as a tool for conservation plan-
ning: predicting the effects of landscape change on gene flow. Ecological 
Applications, 24, 327–339. https://doi.org/10.1890/13-0442.1

Szulkin, M., Gagnaire, P., Bierne, N., & Charmantier, A. (2016). Population 
genomic footprints of fine- scale differentiation between habitats in 
Mediterranean blue tits. Molecular Ecology, 25, 542–558. https://doi.
org/10.1111/mec.13486

Takano, L. L., & Haig, S. M. (2004). Seasonal movement and home range 
of the Mariana Common Moorhen. The Condor, 106, 652–663. 
https://doi.org/10.1650/7376

Taylor, B. (2010). Rails: a guide to rails, crakes, gallinules and coots of the 
world. London, UK: Bloomsbury Publishing.

Taylor, W. K., & Anderson, B. H. (1973). Nocturnal migrants killed at a 
central Florida TV tower; autumns 1969- 1971. The Wilson Bulletin, 
85, 42–51.

Thinh, V. T., Doherty, P. F. Jr, Bui, T. H., & Huyvaert, K. P. (2012). Road 
crossing by birds in a tropical forest in northern Vietnam. The Condor, 
114, 639–644.

Trainor, A. M., Walters, J. R., Morris, W. F., Sexton, J., & Moody, A. (2013). 
Empirical estimation of dispersal resistance surfaces: a case study 
with red- cockaded woodpeckers. Landscape Ecology, 28, 755–767. 
https://doi.org/10.1007/s10980-013-9861-5

https://doi.org/10.1016/j.csda.2007.06.006
https://doi.org/10.1016/j.csda.2007.06.006
https://doi.org/10.1111/mec.13003
https://doi.org/10.1525/bio.2012.62.10.8
https://doi.org/10.1525/bio.2012.62.10.8
https://doi.org/10.1007/s10144-011-0262-9
https://doi.org/10.1007/978-0-387-45972-1
https://doi.org/10.3996/102017-JFWM-084
https://doi.org/10.3996/102017-JFWM-084
https://doi.org/10.1007/s13157-013-0501-2
https://doi.org/10.1007/s13157-013-0501-2
https://doi.org/10.1111/j.1936-704X.2015.03193.x
https://doi.org/10.1111/j.1936-704X.2015.03193.x
https://doi.org/10.1007/s10592-017-1020-0
https://doi.org/10.1007/s10592-017-1020-0
https://doi.org/10.1016/0143-6228(91)90019-6
https://doi.org/10.1016/0143-6228(91)90019-6
https://doi.org/10.1371/journal.pone.0050336
https://doi.org/10.1371/journal.pone.0050336
https://doi.org/10.1002/ece3.2825
https://doi.org/10.1002/ece3.2825
https://doi.org/10.1016/j.cub.2009.01.006
https://doi.org/10.1046/j.1365-2656.2003.00707.x
https://doi.org/10.1046/j.1365-2656.2003.00707.x
https://doi.org/10.1111/evo.12258
https://doi.org/10.1111/1755-0998.12709
https://doi.org/10.1111/1755-0998.12709
https://doi.org/10.1111/j.1523-1739.1990.tb00294.x
https://doi.org/10.1111/j.1523-1739.1990.tb00294.x
https://doi.org/10.1002/ece3.3530
https://doi.org/10.1111/j.1365-294X.2010.04657.x
https://doi.org/10.1111/j.1365-294X.2010.04657.x
https://doi.org/10.1111/j.1365-294X.2010.04691.x
https://doi.org/10.1899/08-171.1
https://doi.org/10.1899/08-171.1
https://doi.org/10.1890/13-0442.1
https://doi.org/10.1111/mec.13486
https://doi.org/10.1111/mec.13486
https://doi.org/10.1650/7376
https://doi.org/10.1007/s10980-013-9861-5


     |  8343van REES Et al.

Tremblay, M. A., & St Clair, C. C. (2011). Permeability of a hetero-
geneous urban landscape to the movements of forest song-
birds. Journal of Applied Ecology, 48, 679–688. https://doi.
org/10.1111/j.1365-2664.2011.01978.x

Trizio, I., Crestanello, B., Galbusera, P., Wauters, L., Tosi, G., Matthysen, 
E., & Hauffe, H. (2005). Geographical distance and physical barriers 
shape the genetic structure of Eurasian red squirrels (Sciurus vul-
garis) in the Italian Alps. Molecular Ecology, 14, 469–481. https://doi.
org/10.1111/j.1365-294X.2005.02428.x

Underwood, J. G., Silbernagle, M., Nishimoto, M., & Uyehara, K. (2013). 
Managing conservation reliant species: Hawai’i’s endangered en-
demic waterbirds. PLoS ONE, 8, e67872. https://doi.org/10.1371/
journal.pone.0067872

US Fish and Wildlife Service (2011). Recovery plan for Hawaiian water-
birds, second revision. Portland, Oregon: US Fish and Wildlife  
Service.

U.S. Fish and Wildlife Service (USFWS) (1977). Hawaiian Waterbirds 
Recovery Plan (Portland, Oregon: United States Fish and Wildlife 
Service, Endangered Species Program, Region 1).

U.S. Fish and Wildlife Service (USFWS) (2010) National Wetlands 
Inventory Website.

Van Strien, M. J., Keller, D., & Holderegger, R. (2012). A new analytical 
approach to landscape genetic modelling: least- cost transect analysis 
and linear mixed models. Molecular Ecology, 21, 4010–4023. https://
doi.org/10.1111/j.1365-294X.2012.05687.x

Verbeke, G. (1997). Linear mixed models for longitudinal data. 
In G. Verbeke, & G. Molenberghs (Eds.), Linear Mixed Models 
in Practice (pp. 63–153). New York, NY: Springer. https://doi.
org/10.1007/978-1-4612-2294-1

Waits, L. P., Cushman, S. A., & Spear, S. F. (2016). Applications of land-
scape genetics to connectivity research in terrestrial animals. In N. 
Balkenhol, S. A. Cushman, A. T. Storfer, & L. P. Waits (Eds.), Landscape 

Genetics: Concepts, Methods, Applications (pp. 119–219). Sussex, UK: 
Wiley-Blackwell.

Waser, P. M., & Strobeck, C. (1998). Genetic signatures of interpopula-
tion dispersal. Trends in Ecology & Evolution, 13, 43–44. https://doi.
org/10.1016/S0169-5347(97)01255-X

Worthington, D. J. (1998). Inter- island dispersal of the Mariana Common 
Moorhen: a recolonization by an endangered species. The Wilson 
Bulletin, 110, 414–417.

Wright, S. (1943). Isolation by distance. Genetics, 28, 114.
Zeller, K. A., Creech, T. G., Millette, K. L., Crowhurst, R. S., Long, R. A., 

Wagner, H. H., … Landguth, E. L. (2016). Using simulations to evalu-
ate Mantel- based methods for assessing landscape resistance to gene 
flow. Ecology and Evolution, 6, 4115–4128. https://doi.org/10.1002/
ece3.2154

Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating land-
scape resistance to movement: a review. Landscape Ecology, 27, 777–
797. https://doi.org/10.1007/s10980-012-9737-0

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.

How to cite this article: van Rees CB, Michael Reed J, 
Wilson RE, Underwood JG, Sonsthagen SA. Landscape 
genetics identifies streams and drainage infrastructure as 
dispersal corridors for an endangered wetland bird. Ecol Evol. 
2018;8:8328–8343. https://doi.org/10.1002/ece3.4296

https://doi.org/10.1111/j.1365-2664.2011.01978.x
https://doi.org/10.1111/j.1365-2664.2011.01978.x
https://doi.org/10.1111/j.1365-294X.2005.02428.x
https://doi.org/10.1111/j.1365-294X.2005.02428.x
https://doi.org/10.1371/journal.pone.0067872
https://doi.org/10.1371/journal.pone.0067872
https://doi.org/10.1111/j.1365-294X.2012.05687.x
https://doi.org/10.1111/j.1365-294X.2012.05687.x
https://doi.org/10.1007/978-1-4612-2294-1
https://doi.org/10.1007/978-1-4612-2294-1
https://doi.org/10.1016/S0169-5347(97)01255-X
https://doi.org/10.1016/S0169-5347(97)01255-X
https://doi.org/10.1002/ece3.2154
https://doi.org/10.1002/ece3.2154
https://doi.org/10.1007/s10980-012-9737-0
https://doi.org/10.1002/ece3.4296

