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Lung cancer is the leading cause of cancer-related deaths worldwide, and its occurrence
is related to the accumulation of gene mutations and immune escape of the tumor.
Sequencing of the T-cell receptor (TCR) repertoire can reveal the immunosurveillance
status of the tumor microenvironment, which is related to tumor escape and
immunotherapy. This study aimed to determine the characteristics and clinical
significance of the TCR repertoire in lung cancer. To comprehensively profile the TCR
repertoire, results from high-throughput sequencing of samples from 93 Chinese patients
with lung cancer were analyzed. We found that the TCR clonality of tissues was related to
smoking, with higher clonality in patients who had quit smoking for less than 1 year. As
expected, TCR clonality was correlated with stages: patients with stage IV disease
showed higher clonality than others. The correlation between TCR repertoire and
epidermal growth factor receptor (EGFR) status was also investigated. Patients with
EGFR non-L858R mutations showed higher clonality and a lower Shannon index than
other groups, including patients with EGFR L858R mutation and wild-type EGFR.
Furthermore, we analyzed the TCR similarity metrics—that is, the TCR shared between
postoperative peripheral blood and tissue of patients with non-distant metastasis of lung
cancer. A similar trend was found, in which patients with EGFR L858R mutations had
lower overlap index (OLI) and Morisita index (MOI) scores. Moreover, the OLI showed a
positive correlation with several clinical characteristics, including the tumor mutational
burden of tissues and the maximum somatic allele frequency of blood; OLI showed a
negative correlation with the ratio of CD4+CD28+ in CD4+ cells and the ratio of CD8
+CD28+ in CD8+ cells. In conclusion, TCR clonality and TCR similarity metrics correlated
with clinical characteristics of patients with lung cancer. Differences in TCR clonality,
Shannon index, and OLI across EGFR subtypes provide information to improve
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Abbreviations: TCR, T-cell receptor; TM
complementarity-determining region 3; O
MOI, Morisita index.
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understanding about varied responses to immunotherapy in patients with different
EGFR mutations.
Keywords: T-cell receptor repertoire, lung cancer, clonality, high-throughput sequencing, epidermal growth
factor receptor
INTRODUCTION

Accumulation of gene mutations and tumor escape from
immunosurveillance are the main causes of tumors.
Immunotherapy is among the most active research topics in
clinical oncology, because it can provide treatments that help
prevent the immune escape of tumors. Immune-checkpoint
blockers have created enormous interest among cancer
immunologists and oncologists (1). Because of the great
success of immune-checkpoint blockers in improving survival
in patients with lung cancer, more attention has been paid to the
mechanism of immune escape, and finding biomarkers that can
effectively predict the efficacy of immunotherapy has become an
important goal (2–4).

With the wide application of immunotherapies in lung cancer,
including as first-line and adjuvant therapies, programmed death
ligand 1 and tumor mutational burden (TMB) are no longer
sufficient to predict therapeutic outcomes; for adjuvant and
neoadjuvant therapy, their predictive efficiency is only 20%–50%
in patients with advanced disease (5, 6). T cells, which form a
major component of adaptive immunity, are related to immune
escape and interact with anticancer treatments (7–9). Therefore,
additional investigation of the T-cell receptor (TCR) repertoire
could provide more insight into tumor immunity and might
provide new biomarkers to predict the efficacy of immunotherapy.

The TCR repertoire, which reflects individuals’ immunity
during aging, infections, and even cancer, consists of thousands
of TCR clonotypes. The diversity and specificity of TCR are
determined by the highly variable complementarity determining
region 3 (CDR3) (10). Therefore, distinctively identifiable TCR
CDR3 regions can be used to analyze the TCR repertoire. TCR
repertoire analysis has potential applications in distinguishing
TCR clonality, diversity (Shannon index, richness, etc.), and
overlap of unique TCR b-chain sequences identified between
tissue and blood [the overlap index (OLI)]. CDR3 clonality and
OLI are important tools in cancer diagnosis, therapy, and
prognosis (11–13); studies have found that patients with high
clonality and high OLI scores respond better to immunotherapy
(11, 12) and that patients with significant changes in clonality
before and after treatment have poor prognoses (7, 11, 14). Thus,
analyzing baseline TCR clonality will enhance our understanding
of the mechanisms of anticancer immunity and may provide new
predictive biomarkers for anticancer therapies (14). Moreover,
the existence of heterogeneity in the TCR repertoire in different
types of cancers (15–19) and the intratumor heterogeneity that
B, tumor mutational burden; CDR3,
LI, overlap index; JI, Jaccard index;
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exists in early-stage lung cancer (20, 21) highlight the need for
additional detailed studies of lung cancer in a large population.

Most studies of the TCR repertoire have focused on advanced
and localized lung cancer (22, 23). TCR characteristics of early-
stage lung cancer in European and American populations have
also been reported recently (13). With the use of immunoscores
in prognosis assessment of patients with lung cancer and the
development of immunotherapy as an adjuvant therapy, it has
become necessary to evaluate the TCR repertoire in Chinese
patients with early-stage lung cancer (24–26). In this study, we
retrospectively conducted a systematic analysis of the CDR3
clonality of the TCR b chain in surgical tissues from Chinese
patients with lung cancer to characterize the TCR repertoire of
lung cancer.
MATERIALS AND METHODS

Patient Cohorts
Ninety-three patients with lung cancer who received anticancer
therapy at the Cancer Center of Peking Union Medical College
Hospital (Beijing, China) provided written informed consent for
this study. Surgical tissue and postoperative blood were obtained
from 74 patients with non-distant metastasis, and needle biopsy
results were obtained from 19 patients with advanced lung cancer.
Patients with autoimmune disease or AIDS were excluded from the
study. Clinical information was collected from the hospital
information system and confirmed with the relevant doctors.

Next-Generation Sequencing–Based
Somatic Mutation Detection and
Calculation of TMB
Epidermal growth factor receptor (EGFR) status was known for
all 93 patients in this study. Tissue and postoperative peripheral
blood samples (7–10 days after surgery) from 20 patients with
nondistant metastasis were analyzed by next-generation
sequencing using a 1,021-gene panel. Genetic analysis was
conducted as previously described (27). Briefly, tumor tissues
were subjected to genomic tumor DNA extraction using a
QIAamp DNA mini kit (Qiagen, Valencia, CA). Circulating
tumor DNA was used to prepare sequencing libraries using
KAPA DNA library preparation kits (Kapa Biosystems,
Wilmington, MA), and genomic DNA sequencing libraries
were prepared with Illumina TruSeq DNA library preparation
kits (Illumina, San Diego, CA). The libraries were sequenced on a
NextSeq CN 500 system (Illumina, San Diego, CA) after
hybridization to custom-designed biotinylated oligonucleotide
probes (Roche NimbleGen, Madison, WI) targeting 1,021 genes
(Supplementary Table 1).
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Using default parameters, the sequencing data were analyzed
and the adaptor sequences and low-quality reads were removed.
The clean reads were aligned to the reference human genome
(hg19) with the Burrows-Wheeler aligner (version 0.7.12-r1039).
GATK (version 3.4-46-gbc02625), MuTect (version 1.1.4),
Contra (v2.0.8), and NCsv (in-house) software were used to
call variants, copy number variants, and structural variants.
Then, variants were filtered by manual verification to exclude
synonymous variants, known germline variants in dbSNP, and
variants that occurred at a population frequency of greater than
1% in the Exome Sequencing Project.

The TMB was calculated as the number of somatic
nonsynonymous single-nucleotide variants and small
insertions/deletions per megabase in the coding region (with a
variant allele fraction ≥0.03 for tissues) (28, 29).

High-Throughput DNA Sequencing of TCR
b-Chain Genes
TCR sequencing and TCR quantification were performed as in
previous research (22, 30, 31). The CDR3 region of the TCR b
chain was inclusively and semi-quantitatively amplified by
multiplex polymerase chain reaction (PCR), including PCR1 and
PCR2. A set of 32 V forward and 13 J reverse primers was used to
perform multiplex PCR1 assays to achieve as much amplification
as possible of V(D)J combinations. PCR2 universal primers were
used in the second round of PCR. The TCR CDR3 region was
sequenced using an Illumina HiSeq X ten system, and reads of
151-bp lengths were obtained. Then, the CDR3 sequences were
identified and assigned using the MiXCR software package (32).

As previously reported (12), the Shannon index was
calculated as follows, where ni is the clonal size of the
clonotype (i.e., the number of copies of a specific clonotype), S
is the number of different clonotypes, and N is the total number
of TCR-cell receptor sequences analyzed:

Shannon index = −oS
i=1

ni
N

ln
ni
N

T-cell clonality was defined as 1−(Shannon index)/ln(number
of productive unique sequences). A maximally diverse
population has a clonal score of 0, and a perfectly monoclonal
population has a clonality score of 1.

The OLI, the Jaccard index (JI), and the Morisita index (MOI)
were used to assess the similarity of TCR repertoires between
tumor samples and postoperative blood samples (7–10 days after
surgery) from each patient. The metric of TCR repertoire overlap
was used to calculate the OLI, as previously reported (11). Briefly,
for two samples, a and b, we identified the number of TCR CDR3
sequences present in both samples, along with the sequencing read
count of each sequence in each sample. The TCR repertoire overlap
between samples was defined as the sum of the sequencing reads
from shared TCR sequences divided by the total number of
sequencing reads observed in both samples. The JI is also a
measure of the similarity in the TCR repertoire between samples,
taking into account the specific rearrangements regardless of their
respective frequency. MOI is another a measure of TCR repertoire
similarity between samples, taking into account the specific
Frontiers in Oncology | www.frontiersin.org 3
rearrangements and their respective frequencies. All metrics
range from 0 to 1, in which 1 represents an identical TCR
repertoire and 0 represents completely distinct TCR repertoires.

Flow Cytometry
The protocol for flow cytometry was similar to that used in a
previous study (33). Briefly, fresh blood samples were collected
from patients 7–10 days before surgical treatment. Ten specific
monoclonal antibodies were used to differentiate lymphocyte
subsets. First, 100 mL of blood was mixed with the specific
monoclonal antibodies and incubated at room temperature for
15 minutes in the dark. The red blood cells in the mix were lysed
with the FACS lysing solution (BD Biosciences, San Jose, CA).
Then, flow cytometry was used to analyze the residual white
blood cells, and the proportions of the lymphocyte subsets were
calculated with the FlowJo version 10 data analysis software
(FlowJo, Ashland, OR). Lymphocyte subsets were determined by
the percentages of total lymphocytes.

Statistical Analysis
The Mann-Whitney test and a one-way analysis of variance were
used to compare differences between groups. Correlations
between variables were analyzed using Spearman’s rank test.
All statistical analyses were performed using GraphPad Prism
5.0. In this study, all tests were two sided, and p values less than
0.05 were considered statistically significant.
RESULTS

Patient Cohorts
The characteristics of the patients are summarized in Table 1. As
shown, patients were age 27–81 years (median age, 57.81 years; age
data not available in two patients), and 38 patients (40.86%) were
men. Smoking status was not recorded for 21 patients (22.58%); 59
TABLE 1 | Clinical characteristics of 93 patients.

Characteristic Total No. (N = 93) %

Median (range) age, years 57.81 (27–81) 97.85
Sex
Male 38 40.86
Female 55 59.14
Smoking
Current/former 13 13.98
Never 59 63.44
NA 21 22.58
Stage
I 60 64.52
II 4 4.30
III 10 10.75
IV 19 20.43
Histologic subtype
Adenocarcinoma 74 79.57
Squamous 9 9.68
Other type 10 10.75
M
arch 2021 | Volume 11 | Article 5
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patients (63.44%) had never smoked. Almost all (12/13) smoking
patients had quit. Pathological stages were I, II, or III for 74
patients (79.57%), and disease was stage IV for 19 patients
(20.43%). Patients with stages I, II, or III disease were treatment
naïve before curative lung resection, and five patients with stage IV
disease experienced relapse after several lines of therapy. The main
histologic subtype was adenocarcinoma (79.57%).

Correlation Between TCR Repertoire and
Clinical Characteristics
We retrospectively analyzed the TCR repertoire results from 93
patients with lung cancer. Data from different groups were
analyzed to examine whether TCR repertoire was related to
clinical characteristics, such as age, sex, smoking history, and
histology. The clonality ranged from 0.063 to 0.935 (mean=0.200);
the Shannon index ranged from 2.48 to 9.00 (mean=5.98). TCR
repertoire, clonality, and Shannon index were not affected by age
(Figure 1A) and were similar in men and women (Figure 1B). No
difference was found between current/former smokers and never-
smoking patients with respect to TCR repertoire. However,
patients who had quit smoking for less than 1 year had higher
clonality than those who had quit smoking for more than 1 year or
who had never smoked (Figure 1C). In our cohort, no correlation
was found between TCR repertoire and histology, whether
measured by clonality or Shannon index (Figure 1D).

Although the characteristics of the TCR repertoire in lung cancer
have been extensively studied, there has been limited investigation
of the correlation between TCR repertoire and stage. We assessed
the relationship between TCR repertoire and pathological stage.
Clonality was significantly higher in patients with stage IV versus
stage I/II disease; those with stage III disease showed intermediate
Frontiers in Oncology | www.frontiersin.org 4
clonality, which was not significantly different than clonality
observed at other stages (Figure 2A; Supplementary Figure 1).
There was no correlation between Shannon index and stage
(Supplementary Figure 3). Furthermore, among patients with
non-distant metastasis, TCR repertoire in patients with versus
without lymph node metastasis did not differ (Supplementary
Figures 2 and 3). We also analyzed the effects of tumor size on
TCR repertoire in patients without lymph node or distant
metastasis. The stratification by median tumor size (1.2 cm) is
shown in Figure 2B; clonality was higher when the tumor diameter
was greater than 1.2 cm, but not significantly so (p=0.0663); no
correlations were found between tumor size and Shannon index
(Supplementary Figure 3). Because of the high proportion of
patients with stage Ia disease in our study, we also analyzed the
correlation between Shannon index and tumor size without these
patients. There was a negative, and nonsignificant, correlation trend
(Spearman r=−0.334; p=0.150; Supplementary Figure 3). These
results suggest that patients with advanced lung cancer have higher
TCR clonality and that the clonality of the TCR repertoire is closely
associated with tumor stage.

Correlation Between TCR Repertoire and
EGFR
The impact of EGFR on immunotherapy has been reported in
recent studies (34). Studying the relationship between EGFR and the
TCR repertoire improves understanding about the application of
immunotherapy in lung cancer (13, 35). To assess the relationship
between EGFR status and the TCR repertoire, we collected and
explored the gene mutations of patients. EGFR mutations were
detected in 36.5% (34/93) of patients, including 44.1% (15/34) with
L858R mutations and 35.3% (12/34) with exon 19 deletions (19del).
A B

C D

FIGURE 1 | Relationship between T-cell receptor (TCR) repertoire and individual characteristics. (A) Correlation between age and clonality or Shannon index.
(B) Comparison of TCR repertoire between male and female patients. (C) Comparison of TCR repertoire between smoking and never-smoking patients.
(D) Comparison of TCR repertoire between patients with adenocarcinoma (adenous) and squamous carcinoma disease. Statistical analyses were performed using
the Mann-Whitney test and Spearman’s rank test. Boxes depict the interquartile range with the line at the median and the whiskers at the 5th–95th percentiles.
*p < 0.05.
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Patients were divided into three groups according to their mutations
(1): EGFR-mutated group, consisting of patients with EGFR-
sensitive mutations; (2) other-driver group, consisting of patients
with mutations of genes listed in the National Comprehensive
Cancer Network guideline (KRAS, ALK, BRAF, ROS1, ERBB2,
RET, NTRK) other than EGFR; and (3) a negative group, to
which the remaining patients were assigned. As shown in Figure
3A, the three groups had similar TCR clonalities. The EGFR-
mutated group was divided into subgroups; patients with EGFR
19del and other EGFR-sensitive mutations (EGFR other mutations)
had significantly higher clonality than those with EGFR L858R
mutations (Figure 3B). The subgroup with EGFR non-L858R
mutations (i.e., those with EGFR 19del and EGFR other
mutations) also had significantly higher clonality than the
negative group, and patients with EGFR L858R mutations had
significantly lower clonality than other groups (Figure 3C). All of
these differences could be replicated in patients with stage I–III, but
not stage IV, disease (Figures 3C–F; Supplementary Figure 4),
possibly because of the limited number of patients with stage IV
disease. Similarly, no difference in the Shannon index was found
between the EGFR-mutated group and other groups (Figure 3G).
However, the EGFR L858R subgroup had a higher Shannon index
compared with the EGFR non-L858R and EGFR wild-type groups
(Figures 3H–L).

Similarity of TCR Repertoire Between
Postoperative Blood and Tissue in
Patients With Non-Distant Metastasis
Because TCR repertoire reflects tumor status, we further analyzed
the TCR similarity metric for postoperative peripheral blood and
tissue from patients with lung cancer and non-distant metastases.
The subset of unique TCR sequences found within each patient’s
tumor tissue was evaluated with respect to its detection in the
postoperative peripheral blood. By restricting our analysis to the
unique TCR sequences found in the tumor tissues, we could explore
the correlations between clinical characteristics and TCR repertoire.

We evaluated the relationship between age and TCR
similarity metrics. Increasing age showed a significant positive
Frontiers in Oncology | www.frontiersin.org 5
correlation with the OLI and JI (Figure 4A). Because smoking is
a risk factor for lung cancer, we next compared the TCR
similarity metrics between smoking and never-smoking
patients. Smoking patients showed significantly higher OLI
scores and lower MOI scores than never-smokers (Figure 4B);
a higher JI was noted in smoking patients, but it was not
significantly different compared with smokers (p=0.0797).
Hence, no correlation between TCR similarity metrics and sex
or pathology was identified (Supplementary Figure 5).

Given the correlations of clonality with pathological stage,
tumor size, and lymph node metastasis, the correlations between
these characteristics and TCR similarity metrics were examined.
No correlations were found between TCR similarity metrics and
stage or lymph node metastasis (Supplementary Figures S6 and
S7). We also analyzed the correlation between tumor size and
TCR similarity metrics in patients with lung cancer and found a
positive correlation between tumor size and the OLI (Spearman
r=0.371; p=0.0033) or the JI (Spearman r=0.280; p=0.0274);
however, no correlation existed with the MOI (Spearman r=-
0.105; p=0.4148; Figure 4C). Twenty-two patients had flow
cytometry results from preoperative blood. The correlation
between flow cytometry and TCR similarity metrics was
analyzed. The OLI did not show an association with CD4+
(Spearman r=0.287; p=0.195) or CD8+ (Spearman r=0.287;
p=0.195) T cells (Supplementary Figure 9). A negative
correlation was found between the OLI and the ratio of CD4+
CD28+ in CD4+ T cells or the ratio of CD8+CD28+ in CD8+ T
cells, as shown in Supplementary Figure 9. No correlation
between flow cytometry and the JI or MOI was found.

We also analyzed the relationship between TCR similarity
metrics and the TMB. The TMB was significantly positively
correlated with the OLI (Spearman r=0.585; p=0.0067) and the JI
(Spearman r=0.613; p=0.0041; Figure 5A). Because the samples
were postoperative peripheral blood, mutations were detected in
only six of the 18 samples. Although the blood TMB was not
significantly correlated with TCR similarity metrics, the OLI was
significantly correlated with the maximum somatic allele
frequency of gene mutations in the blood, assuming that the
A B

FIGURE 2 | Clonality of T-cell receptor repertoire stratified by pathological stage and tumor size. (A) Comparison of clonality among different pathological stages.
(B) Comparison of clonality in patients with primary tumor diameter greater than or less than 1.2 cm and without lymph node metastasis. Inset shows the correlation
between tumor size and clonality in patients without lymph node metastasis. Statistical analyses were performed using the Mann-Whitney test and Spearman’s rank
test. *p < 0.05.
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A B C

D E F

G H I

J K L

FIGURE 3 | Correlation between T-cell receptor repertoire and EGFR mutations. (A, G) Comparison of clonality/Shannon index among the three groups.
(B, H) Differences in clonality/Shannon index within EGFR subtypes. (C, I) Comparison of clonality/Shannon index between EGFR subtype and other groups.
(D, J) Differences in clonality/Shannon index among three groups of patients with stage IV disease. (E, K) Differences in clonality/Shannon index within EGFR
subtype of patients with stage I–III disease. (F, L) Comparison of clonality/Shannon index between EGFR subtype and other groups of patients with stage I–III
disease. Statistical analyses were performed using the Mann-Whitney test. *p < 0.05, **p < 0.01, ***p < 0.001. wt, wild type.
Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 5377356

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. TCR Repertoire In Lung Cancer
undetected maximum somatic allele frequency was 0
(Supplementary Figure 9). Furthermore, the correlation
between TCR similarity metrics and EGFR mutation was
analyzed. Like the earlier results, no difference in the OLI or
MOI was observed among the EGFR-mutated, other-driver, and
negative groups (Figures 5B, C), but the EGFR-mutated group
had a higher JI than the other groups (p=0.015 vs. other-driver;
p=0.017 vs. negative groups; Supplementary Figure 10). The
EGFR non-L858R subgroup within the EGFR-mutated group
had a significantly higher OLI than the EGFR L858R subgroup
did (Figure 5B). The EGFR non-L858R subgroup also had a
higher OLI than the other-driver and negative groups (Figure
5B). All these differences also were observed in MOI
comparisons; the EGFR 19del subgroup also had a significantly
higher MOI compared with the EGFR L858R subgroup or the
other-driver and negative groups (Figure 5C). However, no
difference within the EGFR-mutated group was found in JI
comparisons (Supplementary Figure 10). Given these results,
we annotated the clonotypes of our patients using the VDJdb
(36), McPAS-TCR (37), and TBAdb (38) databases. A median
(range) of 7.45% (0%–44.83%) of clonotypes were annotated by
VDJdb, and all were related to pathogens. Other databases had
similar annotation rates: 7.04% (0%–40%) with McPAS-TCR
and 5.50% (0.4%–65.50%) with TBAdb. Of these, only 9.52% and
7.87% of annotated clonotypes, in the respective databases, were
Frontiers in Oncology | www.frontiersin.org 7
related to cancer. The ratio of cancer-related TCRs to non–
cancer-related TCRs was not associated with clinical
characteristics and molecular characteristics, including age,
smoking, tumor size, and EGFR mutations. Similarly, no
difference was found in the EGFR-mutated group
(Supplementary Figure 12).

To explore the prognostic value of the TCR similarity metrics,
patients with stage I–III disease were observed. During a median
follow-up of 416 days, five patients—two with stage I disease and
three with stage III disease—experienced relapse. As shown in
Supplementary Figure 11, three patients presented in the high
OLI range, using the median OLI value (0.33) as the cut-off. The
disease-free survival of patients with stage III disease was
assessed in the high and low OLI groups according to the
median OLI; no difference was found between the two groups
(p=0.942; Supplementary Figure 11). Similarly, no difference
was found when patients were divided into high or low JI
(median, 0.023) or MOI (median, 0.185) groups on the basis of
median values (p=0.771 and p=0.665, respectively;
Supplementary Figure 11). Our data do not yet indicate
whether TCR similarity metrics are associated with prognosis,
and more population survival information is needed to confirm
the prognostic value of the TCR repertoire.

Taken together, these findings indicate that the TCR similarity
metrics were closely associated with clinical characteristics and gene
A

B

C

FIGURE 4 | Correlation between T-cell receptor (TCR) similarity metrics and individual characteristics. (A) Correlation between age and TCR similarity metrics.
(B) Comparison of TCR similarity metrics between smoking and never-smoking patients. (C) Correlation between TCR similarity metrics and tumor size. Statistical
analyses were performed using the Mann-Whitney test and Spearman’s rank test. *p < 0.05, **p < 0.01. MOI, Morisita Index; OLI, Overlap Index.
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mutations; low OLI or JI scores correlated with a favorable clinical
status, suggesting that these indices may have the potential to
predict patient prognosis.
DISCUSSION

The adaptive immune system is very important in fighting
diseases, especially cancer. It is widely accepted that tumors are
caused by the accumulation of genetic mutations and immune
escape. Many studies have identified mutations in cancer genes,
and some targeted drugs have been developed (39). Recently, the
study of tumor immune escape and immune microenvironment
has attracted considerable research attention. A better
understanding of the immune microenvironment could help us
better understand tumors and guide treatment (40). In this study,
we performed TCR repertoire analysis in a cohort of 93 Chinese
patients with lung cancer and reported the characteristics and
clinical significance of TCR clonality, the Shannon index, and the
OLI in lung cancer, especially in patients with early-stage disease.
Frontiers in Oncology | www.frontiersin.org 8
The TCR repertoire has been investigated in several studies, and
its relationship to immunotherapy in lung cancer has been shown
(12, 13, 22). Recent studies have demonstrated changes in the TCR
repertoire are associated with clinical parameters (13, 41). These
studies showed that clonality was related to smoking and histology.
Most of the smokers in our cohort (92.3%) had quit smoking, so we
found no association between smoking and TCR. However, we did
observe significantly higher clonality in patients who had quit
smoking for less than 1 year or who still smoked compared with
never smokers. The clonality was also higher in patients who had
quit smoking for less than 1 year compared with those who had quit
smoking for more than 1 year. Consistent with the results of Kargl
et al., who found that the duration of smoking was positively
correlated with clonality, our study confirms that duration of
cessation may also affect clonality (41). The study by Kargl et al.
also confirmed the correlation between TCR repertoire and
histology; patients with squamous cell carcinoma had higher
clonality and lower richness than patients with adenocarcinoma.
However, no such difference was found in our study, even in disease
stages I–III. Given that squamous cell carcinoma is associated with
A

B

C

FIGURE 5 | Relationships of T-cell receptor (TCR) similarity metrics with molecular characteristics. (A) Correlation between TCR similarity metrics and tumor
mutation burden (TMB) of tissues. (B) Differences in Overlap Index (OLI) among EGFR, other-driver, and negative groups, and differences in OLI among EGFR
subtypes. (C) Differences in Morisita Index (MOI) among EGFR, other-driver, and negative groups, and differences in MOI among EGFR subtypes. Statistical analyses
were performed using the Mann-Whitney test and Spearman’s rank test. *p < 0.05, **p < 0.01. Mut, mutation.
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smoking (42, 43), the proportion of smokers in the patient
population may have influenced the results. In our cohort, five of
nine patients with squamous cell carcinoma were smokers, but four
fifths of them had quit smoking for more than 6 months. Thus, the
histology results may have been influenced by the proportion of
smokers. Additional research is needed because of the limited
number of squamous cell carcinoma patients in our cohort.

We demonstrated that clonality was positively correlated with
pathological stage. Programmed death ligand 1, an effective
biomarker for the prediction efficacy of immunotherapy in
patients with advanced lung cancer, has no correlation with
the efficacy of neoadjuvant or adjuvant immunotherapy in early-
stage disease, indicating immunoheterogeneity between
advanced and early-stage populations (44, 45). Similarly,
clonality differences were observed between stage IV and stage
I–III groups in our study. Studies have shown a negative
correlation between tumor size and richness and no correlation
between clonality and tumor size (13, 22). We also found no
significant correlation between clonality and tumor size,
although the larger tumor size group showed slightly higher
clonality (p=0.06). The conflicting results of TCR diversity may
be related to large number of patients with stage Ia disease in our
cohort. Recent studies have suggested that CD8+ T-cell
infiltration is weak in patients with early-stage lung cancer and
that patients with positive CD8+ T-cell infiltration had a higher
percentage of subclonal mutations (23, 46). When we excluded
patients with stage Ia disease from analyses, a negative, though
nonsignificant, correlation trend was found between the
Shannon index and tumor size (r=−0.3343; p=0.150). However,
this trend was not found in patients with stage Ia disease.
Therefore, we hypothesized that larger tumor size is related to
malignancy in stage I disease, so large size may cause more
immune responses, such as inflammation, resulting in higher
TCR diversity.

EGFR, as a common biomarker in lung cancer, was widely
tested to guide clinical treatment. Recent studies have suggested
that mutations in this gene may affect anti-tumor immune
responses (34). The biology underlying the lower clinical
response rates to immunotherapy in lung cancer with EGFR
mutations has been investigated in several studies (13, 35) and is
thought to be related to the higher diversity and lower clonality
of patients with EGFRmutations. In our cohort, those with EGFR
non-L858R mutations showed higher clonality, higher OLI
scores, and lower Shannon index scores than other patients.
No difference was found between EGFR-mutated and wild-type
EGFR groups in our study, possibly because of the higher
proportional distribution of patients to the EGFR non-L858R
mutations group. The patients with EGFR L858R mutations also
exhibited lower MOI scores compared with those in the EGFR
19del group. Previous studies have confirmed that patients with
EGFR 19del benefit more from treatment with EGFR tyrosine
kinase inhibitors versus patients with L858R mutations (47–49).
Our results suggest that EGFR 19del tumors could better induce
T-cell expansion or recruit T cells, which may induce the
different response to EGFR tyrosine kinase inhibitors.
However, recent studies have shown that patients with EGFR
Frontiers in Oncology | www.frontiersin.org 9
19del have lower TMBs and poorer immunotherapeutic efficacy
compared with patients who have EGFR L858R mutations and
wild-type EGFR (50). In previous reports about EGFR status,
most patients were not treated with first-line immunotherapy
(50), and the TCR repertoire may have changed with treatment
(14); thus, these previous reports do not conflict with our results.
According to the higher TCR diversity associated with EGFR
mutations (13) and our results, we propose possible explanations
for higher clonality and MOI of EGFR 19del patients: Patients
with EGFR 19del may have produced more bystander T cells
because of inflammation and viral infection, for example;
immune studies have shown that approximately 90% of
infiltrating CD8+ T cells in patients with cancer are bystander
T cells, unrelated to treatment (51, 52). Bystander T cells occupy
the tumor space, where T cells are reportedly distributed spatially
(28); thus, patients with EGFR 19del would have higher clonality,
resulting in poorer immune treatment efficacy. However, no
correlation was found between EGFR subtype and bystander
TCR in annotation results in our study. Only approximately 7%
of clonotypes were annotated in our study, so we believe that
additional exploration of the composition of T cells by EGFR
subtype will answer outstanding questions.

In addition, patient characteristics and the TMB may affect
the efficacy of treatments (53–55). We found that OLI and JI
scores were significantly associated with patient characteristics
and TMB. By definition, a higher OLI or JI score means that
greater numbers of tumor-specific infiltrating lymphocytes in
tumor tissue are shared with postoperative peripheral blood.
However, higher OLI and JI scores were detected in older
patients, those with larger tumors, smokers, and those with
higher TMBs—all of which were associated with poorer
prognosis—but these relationships (except smoking) were not
established with the MOI. Given the definition of the three
metrics, these results might suggest that more low-frequency
clonotypes were found in the blood of these patients, whereas
previous studies have suggested that these low-frequency TCRs
were bystander T cells (20, 56). The correlation of OLI score and
the CD8+CD28+ ratio in CD8+ T cells may support our view
that higher OLI may be related with more bystander T cells. In
non–small-cell lung cancer, higher peripheral proliferating
CD8+ T cells and lower CD4+ T cells, compared with healthy
controls, have been observed (33, 57). As an essential co-
stimulatory, CD28 on CD8+ T cells interacts with B7
molecules on antigen-presenting cells to activate the anti-
tumor immune response of CD8+ T cells to tumor antigens
(58). Several previous investigations showed that the high levels
of peripheral CD8+CD28+ T cells were linked to better
prognosis (33, 58–60). In non–small-cell lung cancer, Liu et al.
revealed that high levels of CD8+CD28+ T cells in peripheral
blood before anti-tumor treatment (chemotherapy/radiation/
immunotherapy/surgery) were associated with prolonged
progression-free survival and overall survival (58, 60). This
negative correlation between OLI and CD8+CD28+ suggests
that patients with high OLI scores may have poorer survival.
According to our follow-up results, 60% of patients who
experienced relapse were assigned to the high OLI group,
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indicating that TCR similarity is a potential prognostic factor.
Additional follow-up studies are needed to confirm
these findings.

Our study has several limitations. First, our results are limited
by the retrospective nature of our analysis; the relationship
between TCR similarity metrics and prognosis must be verified
in prospective studies. Second, the hypothesis of bystander T
cells with regard to EGFR 19del was not supported by our
annotated results and MOI assessment; additional exploration
of the composition of T cells in EGFR subtypes will improve
understanding about the mechanism of TCR repertoire
differences among EGFR subtypes. Moreover, dynamic changes
in the TCR repertoire are lacking.
CONCLUSIONS

In conclusion, this study offers novel evidence that TCR repertoires
are related to tumor status and gene mutation and that different
EGFRmutation subtypes are correlated with TCR clonality and the
Shannon index. Furthermore, the TCR similarity metrics correlated
with several clinical characteristics and with tumor mutation status.
These results could improve understanding of the immune
microenvironment of tumors and have the potential to guide
treatment and prognostic assessment of patients.
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