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E N G I N E E R I N G

Optimal and continuous multilattice embedding
E. D. Sanders1, A. Pereira2, G. H. Paulino1*

Because of increased geometric freedom at a widening range of length scales and access to a growing material 
space, additive manufacturing has spurred renewed interest in topology optimization of parts with spatially varying 
material properties and structural hierarchy. Simultaneously, a surge of micro/nanoarchitected materials have 
been demonstrated. Nevertheless, multiscale design and micro/nanoscale additive manufacturing have yet to be 
sufficiently integrated to achieve free-form, multiscale, biomimetic structures. We unify design and manufactur-
ing of spatially varying, hierarchical structures through a multimicrostructure topology optimization formulation 
with continuous multimicrostructure embedding. The approach leads to an optimized layout of multiple micro-
structural materials within an optimized macrostructure geometry, manufactured with continuously graded inter-
faces. To make the process modular and controllable and to avoid prohibitively expensive surface representations, 
we embed the microstructures directly into the 3D printer slices. The ideas provide a critical, interdisciplinary link at 
the convergence of material and structure in optimal design and manufacturing.

INTRODUCTION
Many natural structures and materials such as wood, bone, and shells 
synthesize spatially varying mechanical properties and structural 
hierarchy to achieve compelling functionalities (1). For example, teeth 
have not only a hard and brittle outer layer (enamel) that is prone to 
cracking but also a tough inner layer (dentin) that mitigates crack 
propagation into the tooth’s interior (2); the mantis shrimp’s dactyl 
club exhibits functionally graded elasticity and hardness that leads 
to high impact resistance needed for striking its prey (3); bamboo’s 
fiber reinforcement is functionally graded radially along the culm 
(stalk) cross section for high bending rigidity per unit mass (4); and 
the internal bone structure of the cuttlefish contains a porous, layered 
architecture that simultaneously resists high pressures experienced 
in the deep sea while remaining lightweight and enabling the cuttle-
fish to control its buoyancy (5, 6).

Many of these natural features have been borrowed to enhance 
the performance of engineered structures and materials. For exam-
ple, reinforced concrete is a multimaterial system with properties 
exceeding that of the constituent materials; sandwich panels use 
structural hierarchy to enhance their strength-to-weight ratio; and 
engineered foams provide energy absorption, thermal insulation, 
and buoyancy in various engineering applications (7). Topology 
optimization provides a rational way to further elicit functionalities 
from such systems [e.g., artificial materials with negative thermal 
expansion (8,  9) and structures exhibiting prescribed deforma-
tions (10–12)].

Fundamental to what we know today as topology optimization is 
the homogenization-based method proposed by Bendsøe and Kikuchi 
in 1988 (13) in which an optimized material distribution is deter-
mined using homogenized microstructural-material properties, in-
terpolated as a function of the microstructure’s porosity and orientation. 
A key limitation that sidelined this approach in favor of other meth-
ods [e.g., the solid isotropic material interpolation (SIMP) method 
(14, 15)] was manufacturability, due to geometric complexity, small 
length scales, and connectivity of the microstructures. With recent 

advances in additive manufacturing, several attempts to revive the 
homogenization-based approach have been pursued (16–25), yet 
only a few physical realizations have been demonstrated (25).

Although additive manufacturing is pushing architected materials 
to new limits [e.g., unit cells with 300-nm minimum feature size by 
two-photon lithography (26, 27) and hierarchical structures span-
ning length scales from tens of nanometers to tens of centimeters by 
projection microstereolithography (28, 29)], such complex micro-
structures have yet to be cohesively coupled with macrostructures 
of equally complex geometry as obtained from topology optimization. 
For example, most manufactured topology-optimized parts com-
posed of architected materials have box-like macrostructures with 
heterogeneity attributed only to unit cell density (30–34). On the 
other hand, free-form, topology-optimized macrostructures have 
been embedded with a homogeneous microstructural material (35). 
The realization of geometrically heterogeneous architected materials 
embedded and manufactured within free-form, three-dimensional 
(3D), topology-optimized macrostructures, remains a challenge. A 
limiting factor has been a means to effectively represent the 3D ge-
ometry of complex, spatially varying, multiscale parts in a way that 
is meaningful (to a 3D printer). Multimaterial and multiscale addi-
tive manufacturing is shifting from impractical surface representa-
tions to procedural (36) or voxel representations (37–39) that are 
less memory intensive. Here, we integrate this current trend in multi-
scale additive manufacturing with multiscale topology optimization 
to achieve structures with unprecedented complexity at both the 
macro- and microscales.

In an effort to achieve free-form, multiscale structures with spa-
tially varying mechanical properties and microstructural geome-
tries, we propose a multimicrostructure, density-based, topology 
optimization formulation that simultaneously determines an opti-
mized macrostructural geometry and distribution of a set of porous 
microstructural materials with distinct, possibly anisotropic me-
chanical behavior. We focus on volume-constrained compliance 
minimization problems, but the ideas readily extend to other prob-
lems [e.g., stress-constrained topology optimization (40)]. We also 
overcome a number of challenges in manufacturing spatially vary-
ing, multiscale, topology-optimized parts with functionally graded 
microstructural-material interfaces via a multimaterial slicing and 
continuous multimicrostructure-embedding scheme at the level of 
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the 3D printer slices. We demonstrate the capabilities of our proposed 
approach using a commercially available masked-stereolithography 
(m-SLA) 3D printer from Prusa Research.

RESULTS
Topology-optimized parts, manufactured with continuously 
embedded microstructures
We begin by using the proposed multimicrostructure topology op-
timization formulation (see Materials and Methods) and continuous 
multimicrostructure-embedding scheme to design and manufac-
ture a cantilever beam, with minimized compliance, f, according to 
the domain and boundary conditions defined in Fig. 1A.

To demonstrate that the proposed multimicrostructure-embedding 
scheme is capable of generating smooth, well-connected transitions 
between microstructures composed of unit cells with similar or dis-
similar geometries that may or may not have clear connectivity, we 
design and manufacture the cantilever beam considering three dif-
ferent combinations of two microstructural materials. In Fig. 1A, 
we consider materials composed of octahedron unit cells with different 
bar diameters. In Fig. 1B, we consider a simple cubic and a truncated 
octahedron unit cell. In Fig. 1C, we consider a face-x and a center-x 
unit cell. The unit cells and associated normalized, directional ten-
sile and shear moduli,   E  11  ′   / (E    ̂      i  )  and   G  12  ′   / (G    ̂      i  ) , obtained using 
computational homogenization, are provided at the left of Fig. 1 for 
each of the three cases. In addition to normalizing by the tensile and 
shear moduli of the bulk material, E and G, we also normalize by the 
unit cell volume fraction,     ̂      i   , to capture the conflicting volume and 
stiffness requirements in the volume-constrained compliance min-
imization problem. The directional shear moduli plots represent an 
envelope of shear stiffness for critical orientations of shear (see sec-
tion S1). In all cases, the bulk materials associated with microstruc-
tural materials 1 and 2 are limited to a domain volume fraction 
of     ̄      1   = 0.07    ̂      1    and     ̄      2   = 0.03    ̂      2   , respectively.

In each case, a smooth and continuous transition is demonstrat-
ed in the manufactured part. Note that the topology optimization 
formulation allows spatial freedom within the domain, leading to 
organic material interfaces. As a result, the microstructural materials 
may require connectivity at any arbitrary cross section (not necessar-
ily at the unit cell boundaries), which poses a challenge in obtaining 
well-connected structures after manufacturing. A 1D illustration of 
this challenge is illustrated for the three different representative com-
binations of microstructures in Fig. 2. In Fig. 2A, a well-connected 
interface with abrupt transition is shown between the two octahe-
dron unit cells that have the same geometry but different bar diam-
eters. In Fig.  2B, a discontinuous interface is shown between the 
simple cubic and truncated octahedron unit cell for which connec-
tivity at any arbitrary interface is, in general, not guaranteed. In 
Fig. 2C, a disconnected interface is shown between the face-x and 
center-x unit cell for which connectivity is only guaranteed at the 
unit cell boundaries. To achieve smooth and continuous transitions 
between the unit cells, we define a set of transitional unit cells that 
are obtained by interpolating the bar diameter in Fig. 2A, interpo-
lating the unit cell geometry in Fig. 2B, and composing the two unit 
cells into a series of hybrid unit cells in Fig. 2C. The transitions in 
Fig. 2 are shown in 1D, but in the manufactured parts, they can occur 
in any arbitrary direction in 3D space.

We choose the transitional unit cells to achieve smooth and con-
tinuous geometry transitions and do not directly enforce any requirements 

on how the microstructural-material properties vary over the tran-
sition region (see plots of unit cell geometry versus normalized modu-
lus in Fig.  2). The transition regions demonstrate monotonically 
decreasing stiffness over the transition in Fig.  2A, monotonically 
increasing stiffness followed by some oscillations in Fig. 2B, and a 
stiffening effect, much like standard connections used in engineer-
ing, in Fig. 2C. The microstructural-material property transitions in 
Fig. 2A can be approximated by an exponential function of the form 
E11(x) = E11(0)e−x, where the length scale of inhomogeneity in the 
tensile modulus (similar for the shear modulus) is characterized by 
1/ = w/ ln  (E11(0)/E11(w)), with w as a given transition region 
length (e.g., if w = 1 in Fig. 2A, then 1/ = 0.55). Other transitioning 
techniques can be used to achieve desired homogenized material 
property transitions [see, e.g., (41)]. The geometry and homoge-
nized material property transitions are shown in more detail in 
movie S3.

Multimaterial slicing and continuous 
multimicrostructure embedding
The manufactured parts in Fig. 1 are a result of the multimaterial 
slicing and continuous multimicrostructure-embedding scheme, 
illustrated in Fig. 3 and a flowchart in fig. S3, which overcomes 
several existing challenges in manufacturing multimicrostructure 
topology-optimized parts. Homogenized material properties are used 
in the multimicrostructure topology optimization step, but we re-
fer to the output simply as multimaterial density data since the 
microstructural-material geometries have yet to be embedded and we 
process the data as if it were multiple, solid, isotropic materials until 
the multimicrostructure-embedding step. Figure 3 (A to D) shows 
various ways of representing multimaterial topology optimization 
density data to highlight challenges in communicating the data to a 
3D printer. Oftentimes, the topology optimization density field(s) 
coincide spatially with a mesh used for the finite element analysis 
[here, we use centroids of a hexahedral (hex) mesh]. By discarding 
densities less than a cutoff value (typically 0.5), the density data rep-
resented directly on the underlying hex mesh lead to poor resolu-
tion (Fig. 3A). Instead, it is typical to generate a smooth isosurface 
of the data; however, for multimaterial, care is needed to avoid dis-
jointed material interfaces caused by low densities resulting from 
the density filter (see Eq. 2 in Materials and Methods) used to regu-
larize the topology optimization problem (Fig.  3B). To promote 
well-connected material interfaces and capture material variations 
through the volume of the part, we project the density fields onto a 
tetrahedral (tet) mesh generated within an isosurface of the com-
posite density field (Fig. 3C). Furthermore, we functionally grade 
the interfaces by applying a convolution filter (see Eq. 2 in Materials 
and Methods) to the multimaterial tet data (Fig.  3D), leading to 
controlled mixing at the interfaces (influence of the filter radius is 
investigated in fig. S5). Both the abrupt-transition and functionally 
graded multimaterial tet data can be directly processed for multi-
material 3D printing [e.g., inkjet (38, 42), grayscale digital light pro-
cessing (DLP) (43, 44), and multi-vat DLP (45, 46)]; however, the 
functionally graded, multimaterial tet data are needed for continu-
ously embedding the microstructural materials into the part.

We choose an image-based manufacturing approach (m-SLA) 
that enables us to easily embed the microstructures directly in the 
pixelated 3D printer slices and avoid a prohibitively expensive sur-
face representation (STL) of the multimicrostructure-embedded 
part. We start by defining a set of transitional unit cells that provide 
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a continuous shape morphing between each of the microstructural 
materials in our design (Fig. 3E). These transitional microstructural 
materials map to the graded regions of the functionally graded tet 
mesh according to a color mapping. We slice the functionally grad-
ed tet mesh to obtain color-coded “macro-slices” for each print lay-
er. Using a consistent layerheight, we also slice each unit cell and tile 
the slices over the build area to obtain a stack of slices representing 
a one-unit-cell-high tessellation of the unit cell over the entire build 
area (a small region of the first layer of the “micro-slices” for each 
transitional unit cell is shown in Fig. 3E). Next, we use the colored 

macro-slices to map into the appropriate micro-slices and replace 
each pixel in the macro-slice with the corresponding pixel of the 
micro-slice. Essentially, we perform a Boolean intersection of the 
macrostructure with tessellations of each of the unit cells, according 
to the color mapping; however, we do it at the slice level rather than 
in the 3D geometry to avoid an expensive STL of the multimicro-
structure-embedded part (additional details on the multimaterial 
slicing and multimicrostructure-embedding scheme are provided 
in Materials and Methods and in a flowchart in fig. S3). By comparing 
the “embedded slices” of the multimaterial tet mesh and the functionally 

A

B

C

Fig. 1. Two-microstructural-material topology-optimized cantilever beams and multimicrostructure-embedded m-SLA parts. Unit cells have (A) the same geometry 
and smooth/continuous transition by variable bar diameter, (B) different geometry with smooth/continuous transition by shape interpolation of the unit cell geometry, 
and (C) different geometry with smooth/continuous transition by hybrid unit cells composed of the basic unit cells. Directional tensile and shear moduli (based on ho-
mogenized properties) are plotted for each microstructural-material at the left of (A), (B), and (C). In all cases, the bulk materials are limited to a domain volume fraction 
of     ̄     1   = 0.07    ̂     1    and     ̄     2   = 0.03    ̂     2    for microstructural materials 1 and 2, respectively. Variables     ̂ d   i  

bar
   and     ̂     i    are the unit cell bar diameter and volume, respectively, and   d i  

bar   
is the manufactured bar diameter corresponding, in this case, to unit cells with edge length of 1.5 mm. In design, we model half of the domain and impose symmetry 
boundary conditions along the x2 − x3 plane. Printed cantilevers are 14.5 cm tall. Scale bars, 1.5 mm. Photo credit: Emily D. Sanders, Georgia Institute of Technology.
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graded tet mesh in Fig. 3 (C and D), it is clear that functional grad-
ing is critical to ensure connectivity of the microstructural materials. 
Macro-slices, micro-slices, embedded slices, and the macro-to-micro 
mapping for the other two, two-microstructural-material cantilever 
beams are provided in fig. S4.

Effect of porous, anisotropic microstructural materials 
in topology optimization
Next, we investigate how porous, anisotropic microstructural mate-
rials affect the geometry, topology, microstructure distribution, and 

structural efficiency of the topology-optimized parts. We design the 
same cantilever beam, but considering free selection from different 
subsets of seven porous, anisotropic microstructural materials. For 
comparison, we first design a reference beam considering a single, 
solid, isotropic material with domain volume fraction limited to  
   ̄     = 0.022  (Fig. 4A). Then, using the same volume limit on the bulk 
material, we design the beam considering microstructural materials 
composed of the unit cells indicated to the right of each design in 
Fig. 4 (B to G). The volume constraint is active in all cases, and all 
designs in Fig. 4 (A to G) have the same volume of bulk material at 

A

C

B

Face-x
Center-x

Abrupt/
discontinuous

Smooth/
continuous

Simple
cubic Truncated

octahedron

Abrupt/
discontinuous

Smooth/
continuous

Octahedron Octahedron

Abrupt/
discontinuous

Smooth/
continuous

Fig. 2. Smooth and continuous microstructure connectivity. (A) Two octahedron unit cells with different bar diameters for which connectivity is always guaranteed 
and a smooth transition is achieved by interpolating the bar diameter. (B) A simple cubic and a truncated octahedron unit cell for which connectivity is, in general, not 
guaranteed and a smooth and continuous transition is achieved by interpolating the unit cell geometry. (C) A face-x and center-x unit cell for which connectivity is only 
guaranteed at the unit cell boundaries and a smooth and continuous transition is achieved using hybrid unit cells composed of the two basic unit cells. The line plots 
show how the normalized tensile and shear moduli, E11/E and G12/G (in the reference frame and based on homogenized properties), vary over the transitional unit cells. 
Variables     ̂ d   i  

bar
   and     ̂     i    are the unit cell bar diameter and volume, respectively.
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convergence (within a tolerance of 4% after postprocessing). Normal-
ized directional tensile and shear moduli,   E  11  ′   / (E    ̂      i  )  and   G  12  ′   / (G    ̂      i  ) , 
are plotted for the solid, isotropic material and the porous, aniso-
tropic microstructural materials in Fig. 4 (H and I, respectively). To 
more easily understand the microstructural-material placement, the 
multimaterial tet meshes (before applying functional grading) are 
plotted for each design in Fig. 4, and the reported objective function 
values correspond to these multimaterial tet meshes with abrupt 
interfaces.

As in Fig.  1, the microstructures in Fig.  4  (B  to  G) distribute 
themselves according to the mechanics of a cantilever beam. That is, 
microstructures with higher tensile stiffness in the x3 direction tend 
toward the tension/compression regions farthest from the neutral 
axis of the beam, and more isotropic microstructural materials that 
are also stiffer in shear (in the x2 − x3 plane) tend toward the in-
clined members and regions of high shear. In addition, not all of the 
available microstructural materials are used. For example, in Fig. 4 
(E and F), only the most efficient in tension in the x3 direction and 
the most isotropic and efficient in shear in the x2 − x3 plane are se-
lected. The beam geometry is also influenced by the available micro-
structures. For example, the tension/compression members farthest 
from the neutral axis become increasingly inclined from the supports 
to the load point as the microstructural material becomes more iso-
tropic. Notice that the design in Fig. 4B avoids this inclination as 
much as possible and the inclination of these members gradually 
increases as the microstructural material becomes more isotropic 
from microstructure 3  in Fig. 4  (E and G) to microstructure 5  in 

Fig. 4F, microstructure 8 in Fig. 4C, and microstructure 6 in Fig. 4D.  
Although the objective function values, f, normalized to that of the 
reference case in Fig.  4A, f0, indicate inferior stiffness, multiscale 
structures tend to have increased buckling resistance (47) and can 
provide other biomimetic functionalities, e.g., buoyancy and impact 
resistance (see additional discussion in section S3).

Scaling to larger build volumes
No printer is able to print structures at unlimited size; thus, scaling 
is an important practical consideration. To demonstrate scalability 
of the proposed multimicrostructure-embedding scheme, we de-
sign and manufacture two additional structures at a larger scale: a 
hyperbolic paraboloid canopy structure and an Eiffel Tower–in-
spired structure. Although we are limited by the printer’s display 
area (2560 × 1440 pixels) and build height (15 cm), we slice the parts 
for a larger build volume and then divide the slices into smaller im-
ages that the printer can handle (i.e., the structures are printed in 
pieces and assembled). To slice for a larger build volume, we simply 
increase the number of pixels per slice (for increased length and 
width) and generate a larger number of slices (for increased height). 
Since we process small subsets of the pixels at a time (in parallel), 
the increase in number of pixels does not lead to increased memory 
requirements but does lead to increased slice time.

The hyperbolic paraboloid canopy structure is subjected to a uni-
formly distributed, vertical load on the top surface of the canopy, 
which is defined on the domain x1, x2 ∈ [ − 0.5,0.5] by the equation 
  x  3   =  x 1  2  −  x 2  2  + 1 . The canopy itself is a passive region occupied by a 
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Fig. 3. Multimaterial slicing and continuous multimicrostructure embedding. We demonstrate various ways of representing multimaterial topology optimization 
data for 3D printing and the proposed procedure for continuously embedding multiple microstructures into topology-optimized parts. In (A), the data are projected 
directly onto the underlying hex mesh, leading to stairstepping features at the boundaries and material interfaces. In (B), a separate isosurface is generated for each 
material individually, leading to disjointed interfaces. In (C) and (D), the data are projected onto a tet mesh generated inside an isosurface of the composite data. By ap-
plying a convolution filter to the multimaterial tet data, we avoid the abrupt material interfaces shown in (C) and obtain the functionally graded interfaces shown in (D). 
In (E), we define a number of transitional unit cells that enable us to move smoothly between the two microstructural materials (8 of the 25 transitional unit cells are 
shown here). We slice each unit cell, tile the slices over the build area, and assign a color to each set of micro-slices. The colors are used to map the macro-slices to the 
embedded slices shown in (C) and (D). The embedded slices in (C) are disconnected, while those in (D) are well-connected because of the transitional unit cells mapped 
to the functionally graded regions.
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face-x microstructural material (shown in blue in Fig. 5), i.e., it does 
not participate in the optimization. A short tube just above the struc-
ture’s fixed support is another passive region occupied by a solid, 
isotropic material (shown in red in Fig. 5). No material can occupy 
the inner volume of the tube or the space above the canopy. In the 
remainder of the domain, we use the proposed multimicrostructure 
topology optimization formulation to design a structure composed 
of octet and truncated octahedron unit cells (shown in cyan and 
yellow in Fig. 5) to transfer the loads from the canopy to the fixed 

support. The total optimizable domain volume fraction is limited 
to    ̄     = 0.0096 . The topology optimization problem is described in 
more detail in fig. S7.

The final design and multimicrostructure-embedded, manufac-
tured canopy structure are shown in Fig. 5. Details of the transition 
regions between microstructural materials are provided in Fig.  6. 
The manufactured part fits inside a bounding box of dimensions 
11.6 cm by 11.6 cm by 14.4 cm, and the embedded unit cells are scaled 
to have an edge length of 2 mm (at this scale, the bar diameters are 

A DB C

GFE

H

Fixed
supports

I

Load

Fig. 4. Effect of porous, anisotropic microstructural materials in topology optimization. The multimicrostructure topology optimization scheme selects both the 
appropriate microstructural materials and their locations. The design in (A) considers a single, solid, isotropic material with objective function value, f0. The designs in 
(B to G) each consider a different subset, indicated to their right, of seven porous, anisotropic microstructural materials. A single volume constraint is specified in each 
case such that the total volume of bulk material occupies, at most, a domain volume fraction of    ̄    = 0.022  [the volume constraint is active in all cases, and all designs in 
(A to G) have the same volume of bulk material within a 4% tolerance after postprocessing]. Normalized directional tensile and shear moduli (based on homogenized 
properties) are provided in (H) for the solid, isotropic material and in (I) for the seven porous, anisotropic microstructural materials. Variable     ̂ d   i  

bar
   is bar diameter,     ̂     i    is unit 

cell volume, and  f /  f  0    is the objective function normalized to that of the structure in (A).
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300 m for the octet unit cells and 400 m for the face-x and trun-
cated octahedron unit cells). Because the part exceeds the printer’s 
build volume, we generate 2560 × 2560 pixel slices and print half of 
the structure at a time. Additional images of the canopy structure, 
including support structures needed during printing and the print-
ed parts before assembly, are provided in fig. S8. Movies S1 and S2 
illustrate the full design and manufacturing process for the canopy 
structure.

Inspired by Gustave Eiffel’s open-lattice, multiscale Eiffel Tow-
er, we also use the multimicrostructure topology optimization for-
mulation to design an Eiffel Tower–inspired structure. The domain 
and boundary conditions provided in fig. S7C are roughly based on 
those of the actual Eiffel Tower. Three floors are defined between 
the base and the top of the tower. The width of each floor reduces to 
imitate the shape of the actual tower, which was chosen by Eiffel to 
efficiently resist wind loading (48, 49). Here, we adopt the shape of 
the original tower and design the remaining form, considering only 
vertical (gravity) loads. The structure is fully fixed at the corner re-
gions of its base. Uniformly distributed, vertical loads with total 
force equal to 1, 0.766, and 0.3 are applied at floors 1, 2, and 3, re-
spectively, and a point load of magnitude 0.01 is applied at the top 
of the tower. The tower is designed considering face-x, octet, and 
truncated octahedron microstructures with total domain volume 
fraction limited to    ̄     = 0.008 .

The final design and multimicrostructure-embedded, manufac-
tured Eiffel Tower–inspired structure are shown in Fig. 7 (A and B, 
respectively). The manufactured part fits inside a bounding box of 
dimensions 8.2 cm by 8.2 cm by 26.0 cm, and the embedded unit 
cells have the same scale as that used for the canopy structure. Be-
cause the part exceeds the printer’s build volume, we generate 2560 × 

2560 pixel slices and print the bottom portion of the tower in two 
pieces and the top portion of the tower as a third piece, as shown in 
Fig. 7C. Additional images of the Eiffel Tower–inspired structure 
are provided in fig. S9, and a comparison of the computer and phys-
ical model dimensions for the Eiffel Tower–inspired structure (and 
all other models) is provided in table S1.

DISCUSSION
Aiming toward convergence of design and manufacturing, we inte-
grate porous, anisotropic microstructural materials into a general 
multimaterial topology optimization formulation and establish a pro-
cedure to (i) translate the multimaterial topology optimization data 
to a 3D printable, well-connected part with functionally graded in-
terfaces and (ii) continuously embed multiple microstructures into 
the functionally graded part by mapping slices of a set of continuously 
varying microstructures into slices of the macrostructure. Surface 
representations typically used to communicate with a 3D printer cannot 
adequately represent microstructures at the resolution of the 3D 
printer within a complex macrostructure geometry, as demonstrat-
ed by our approach. Furthermore, most existing structures com-
posed of architected materials contain a single microstructure type 
and cannot attain spatially varying mechanical properties with well- 
connected interfaces, as demonstrated by our approach. Thus, the 
ideas presented here enable a new class of multiscale optimized 
structures that enhance our ability to mimic nature.

The presented multiscale structures are designed to maximize 
stiffness, and we show that by including additional microstructural 
materials that increase the design space of directional stiffness at the 
microstructural material level, the global stiffness of the macrostructure 

Fig. 5. Canopy structure. Topology-optimized design (top) and manufactured part (bottom) with a height of 14.4 cm and unit cell edge lengths of 2 mm. Photo credit: 
Emily D. Sanders, Georgia Institute of Technology.



Sanders et al., Sci. Adv. 2021; 7 : eabf4838     14 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 13

tends to increase. Although strength criteria are not considered in 
design here, when compared to discrete interfaces, we anticipate that 
the functionally graded interfaces between microstructural materi-
als will redistribute stress concentrations and mitigate detrimental 
effects of interfaces on strength. Strength criteria can be considered 

using topology optimization with local stress constraints (40). De-
fects introduced by the manufacturing process (e.g., imperfect and 
nonuniform microstructure nodal connectivity and strut cross sec-
tions) are also not considered here, but are expected to influence the 
mechanical performance of the additively manufactured parts, es-
pecially as the minimum feature size of the microstructures approaches 
the resolution of the 3D printer (50, 51).

Although the proposed multimaterial topology optimization for-
mulation can handle a sufficiently general class of porous, anisotropic 
microstructural materials (i.e., those for which an elasticity tensor can 
be provided), the current multimicrostructure-embedding scheme requires 
a few simplifying assumptions: (i) Each microstructural-material must 

A

B

C

D

A B

C D

Fig. 6. Canopy structure transition regions. (A) Octet unit cells with bar diameter 
of 300 m to face-x unit cells with bar diameter of 400 m. (B) Truncated octahe-
dron unit cells with bar diameter of 400 m to face-x unit cells with bar diameter of 
400 m. (C) Truncated octahedron unit cells with bar diameter of 400 m to octet 
unit cells with bar diameter of 300 m. (D) Solid to truncated octahedron unit cells 
with bar diameter of 400 m. Scale bars, 2 mm. Photo credit: Emily D. Sanders, 
Georgia Institute of Technology.

A B

C

Fig. 7. Eiffel Tower–inspired structure. (A) Topology-optimized design and man-
ufactured part (B) after assembly and (C) before assembly, with a unit cell edge 
length of 2 mm. The assembled structure is 26 cm tall. Photo credit: Emily D. Sanders, 
Georgia Institute of Technology.
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be periodic. (ii) The same translation operations must be used to 
create each periodic microstructural material from its associated 
unit cell. (iii) A set of transitional unit cells must be defined to en-
sure a smooth, well-connected transition between the different unit 
cell geometries. The transitional unit cells can be devised using the 
intuitive approaches proposed here or other methods that may have 
better control over material property transitions (41, 52). In addi-
tion to the lattice-like unit cells considered here, unit cells consist-
ing of plate elements or triply periodic minimal surfaces (53) can be 
directly integrated with our approach. In addition to cubic materials, 
periodic materials without cubic symmetry [see examples by Zok et al. 
(54)] can be handled. Nonperiodic materials [e.g., spinodal archi-
tectures (55–58)] will be the subject of future work.

In characterizing microstructural materials using homogenized 
properties, we assume infinite periodicity and separation of length 
scales (59), neither of which can be verified in the manufactured parts. 
Two factors prevent infinite periodicity: the presence of multiple 
microstructures and truncation of the periodic microstructure tessel-
lations at the structure boundaries. The first factor can be mitigated 
by avoiding abrupt transitions between the microstructural materials, 
which is facilitated by the proposed continuous multimicrostructure- 
embedding scheme. The boundary remains a challenge. Our parts 
contain truncated unit cells at the boundaries that likely influence 
the mechanical behavior. These edge effects cannot be completely 
removed, but making the unit cells conform to the boundary (35, 37) 
can alleviate them.

Inadequate separation of length scales is due to the fact that we 
cannot print the microstructure at an infinitely small scale or the 
macrostructure at an infinitely large scale. However, the approach 
pursued here is scalable; that is, the maximum macrostructure size 
and minimum microstructure feature size are dictated by the 3D 
printer and not the data representation. Thus, our approach pro-
vides a means to obtain a practical separation of length scales, e.g., 
by using large-area projection microstereolithography (29) or high-area 
rapid printing (60) or by assembling the part from a number of 
components manufactured at a practical scale. The latter approach, 
in combination with our multimicrostructure-embedding scheme, 
could make optimized, multiscale, architectural engineering–scale 
structures possible. Furthermore, the scalability and modularity of 
the proposed scheme facilitates extension to other existing and yet 
to be invented additive manufacturing technologies that will enable 
the method to be explored in ways not yet anticipated.

MATERIALS AND METHODS
Problem setting and optimization formulation
The multiscale topology optimization formulation is stated as a multi-
material problem for volume-constrained compliance minimization 
of an elastostatic body that accommodates many candidate materi-
als and many local or global volume constraints (61–63)

   

  min  
Z∈ [  

¯
  ,  ̄   ]   N×m 

    f =  F   T  U subject to

    
 g  j   =   

 ∑ i∈ G  j        ∑ ℓ∈ E  j        A  ℓ    m  V  ( y  ℓi  )  ────────────  
 ∑ ℓ∈ E  j       A  ℓ   

   −    ̄  v    j   ≤ 0, j = 1, … , K
   (1)

In Eq. 1, we define a density field,  Z =  { z  ℓ1  , … ,  z  ℓm  } ℓ=1  N    , where zℓi is a 
density design variable for each of the m candidate materials at the 
centroid of each of the N elements used to discretize the design 

domain, . The elemental density field,  Y =  { y  ℓ1  , … ,  y  ℓm  } ℓ=1  N    , is ob-
tained as yi = Pzi, where yi and zi are the ith column of Y and Z, re-
spectively, and P is a regularization map (density filter) that enforces 
well-posedness of the problem and a minimum length scale (64, 65). 
The coefficients of P are defined as

   P  ij   =   
 h  ij    A  j   ─ 

 ∑ k=1  N      h  ik    A  k  
  ,  h  ij   = max [0,  (R −  ‖ x  i   −  x  j  ‖  2  )   q ]  (2)

where ‖xi − xj‖2 is the Euclidean norm between the centroids of ele-
ments i and j, R is a filter radius, and q defines the order of the filter 
(e.g., linear filter when q = 1) (66). We specify j = 1, …, K volume 
constraints that control any subset of the candidate materials in any 
subregion of the domain. Hence, 𝒢j and Ej represent the set of materi-
al and element indices associated with constraint j, respectively. Further-
more, A𝓁 represents the volume of element ℓ.  V =  {   ℓ1  , … ,    ℓm  } ℓ=1  N     is 
the material volume for each of the m candidate materials in each of 
the N elements, where   v  ℓi   =  m  V  ( y  ℓi   ) =  y  ℓi      ̂      i    accounts for the mate-
rial porosity via the unit cell volume,     ̂      i   , of material i, and     ̄      j    is the 
volume fraction limit for constraint j. When the subscript, j, is omitted, 
it is understood that there is only one volume constraint.

The same discretization used for the optimization problem is also 
used to solve for the displacement field, U, via the discretized state 
equations of static elasticity, (K + I)U = F, which are derived from 
the principle of minimum potential energy with a Tikhonov regu-
larization term,    _ 2    U   T  U , included in the expression of total potential 
energy. The Tikhonov regularization term prevents the stiffness matrix 
from becoming singular because of low-density regions of the do-
main (67). In the state equations, the stiffness matrix,  K =  ∑ ℓ=1  N      k  ℓ   , is 
assembled from the element stiffness matrices,   F  i   =  ∫ 

   ~    N  
     t ·  N  i   ds  is the 

vector of design-independent nodal loads, t is the traction applied 
on the portion,     ~    N   , of the domain boundary, and N is the vector of 
interpolation (shape) functions used to interpolate quantities be-
tween the mesh nodal points.

The formulation in Eq. 1 is not specific to any type of material. 
Instead, the material properties are embedded in the stiffness ma-
trix, which is a function of the penalized element densities,  W =  
{ w  ℓ1  , … ,  w  ℓm  } ℓ=1  N    , where   w  ℓi   =  m  W  ( y  ℓi   ) =  y  ℓi  

p   ,  with p > 1 [SIMP (14, 15)] 
to penalize intermediate densities. Then, the element stiffness ma-
trix of element 𝓁 is obtained via a material interpolation function, 
mM, that penalizes material mixing (63, 68)

   k  ℓ   =  m  M  ( w  ℓ  ′   ) =   ∑ 
i=1

  
m

     w  ℓi    ∏ 
 
j=1

  j≠i  

  
m

   (1 −   w  ℓj   )  k ℓi  
0  , ℓ = 1, … ,  N  (3)

where   w  𝓁  ′    is the 𝓁th row of W,    (    k ℓi  
0   )    

jk
   =  ∫ 

   ℓ  
      B j  

T   D i  
H   B  k   dx  is the ele-

ment stiffness matrix for material i in element 𝓁, 𝓁 is the domain 
of element ℓ, B is the strain-displacement matrix of shape function 
derivatives, and   D i  

H   is the (homogenized) elasticity matrix charac-
terizing material i, which is supplied as input for each of the candi-
date materials in Eq. 1. In addition, the parameter, 0 <  < 1, controls 
the amount of allowable mixing. In general, we seek solutions with-
out material mixing (i.e.,  = 1); however, the problem in Eq. 1 is 
convex for  = 0 and p = 1, and a continuation scheme on these pa-
rameters can be used to bias the solution toward the convex one at 
the beginning of the optimization iterations (63).
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Gradient-based solution scheme
To solve Eq. 1, we adopt a gradient-based approach in which we use 
derivatives of the objective and constraint functions with respect to the 
design variables to iteratively guide the design toward an optimal solu-
tion. We adopt the Zhang-Paulino-Ramos Jr. (ZPR) design variable 
update scheme (61), which uses Lagrangian duality to solve a series of 
convex approximate subproblems of Eq. 1 around the current design, 
Z0. The ZPR update scheme was derived specifically for the multima-
terial formulation of interest in Eq. 1, in which each design variable is 
associated with a single volume constraint. Because of separability, 
the constraints can be updated independently, leading to an update 
scheme that efficiently handles a large number of volume constraints at 
a cost on par with that of the optimality criteria update scheme (69).

The original ZPR update scheme was derived for a monotonically 
decreasing objective function. Since the derivatives of the objective 
function in Eq. 1 may become positive in regions of material mixing 
(62,  63), we integrate sensitivity separation into the ZPR update 
scheme (70,  71) by decomposing the objective function gradient 
into positive and negative components to arrive at the following 
nonmonotonic, convex approximation of the objective function

   

  ̃  f  (Z ) = f( Z   0  ) +   ∑ 
i=1

  
m

      
(

      ∂  f    −  ─ ∂    i  
   |    

 z  i  = z i  
0 
  )   

T

 (   i  ( z  i   ) −    i  ( z i  
0  ) +

    

  
(

      ∂  f   +  ─ ∂  z  i  
   |    

 z  i  = z i  
0 
   
)

     
T

 ( z  i   −  z i  
0 )

    (4)

The approximation in Eq. 4 is the sum of a constant term that 
can be neglected for optimization, a monotonically decreasing convex 
function in exponential intermediate variables,   ξ  ℓi  ( z  ℓi   ) =  z ℓi  

−α , α > 0 , 
and a monotonically (linearly) increasing function. For decomposi-
tion of the objective gradient, we adopt the scheme proposed in 
(70), which uses approximate second-order information to account 
for the curvature of the objective function such that the negative 
and positive components, respectively, are

     ∂  f   −  ─ ∂  z  ℓi  
   = min  (  −   

∣ h ℓi  
0  ∣ z ℓi  

0  
 ─ 1 +    ,   ∂ f ─ ∂  z  ℓi  

   )  ,   ∂  f   +  ─ ∂  z  ℓi  
   =   ∂ f ─ ∂  z  ℓi  

   −   ∂  f   −  ─ ∂  z  ℓi  
     (5)

where   h ℓi  
0    is a Broyden-Fletcher-Goldfarb-Shanno (72) approxima-

tion of the diagonal terms of the objective function’s Hessian matrix.
For brevity, we omit the full derivation of the ZPR update scheme 

considering sensitivity separation with approximate second-order 
information but refer the reader to (70), where they arrive at the 
following update

    z ℓi  
new  =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩
   
 z ℓi  

+  ,
  

 z ℓi  
*   ≥  z ℓi  

+  
   z ℓi  

−  ,   z ℓi  
*   ≤  z ℓi  

−    

 z ℓi  
*  ,

  

otherwise

    (6)

with   z ℓi  
new   as the design at the next iteration and   z ℓi  

*    as the candidate 
design for the next iteration that is accepted if it is within bounds

    z ℓi  
−   = max  (    

¯
  ,  z ℓi  

0   − M )  ,    z ℓi  
+   = min  (    ̄   ,  z ℓi  

0   + M )     (7)

defined by box constraints,    ̄     and     _    , and move limit, M. The candi-
date design,   z ℓi  

*   , is obtained from a fixed-point iteration of the form

    z ℓi  
*   =   

¯
   +  ( B  ℓi  )     

1 _ 1+   (    ∑ 
k=1

  
N
     P  ℓk    z ki  

0   −   
¯

   )     (8)

where

   B  ℓi   = −   
   ∂  f   −  _ ∂  z  ℓi  

  |    
Z= Z   0 

  
  ───────────  

   ∂  f   +  _ ∂  z  ℓi  
 
 |    Z= Z   0 

   +     j     
∂  g  j   _ ∂  z  ℓi  

 
 |    Z= Z   0 

  
    (9)

and Eq. 8 includes the heuristic ZPR filter introduced in (62, 63).
The sensitivities needed in Eqs. 5 and 9 are found using the 

chain rule

    ∂ f ─ ∂  z  i  
   =   ∂  y  i   ─ ∂  z  i  

     ∂  w  i   ─ ∂  y  i  
     ∂ f ─ ∂  w  i     ,     

∂  g  j   ─ ∂  z  i  
   =   ∂  y  i   ─ ∂  z  i  

     ∂  V  i   ─ ∂  y  i  
     
∂  g  j   ─ ∂  V  i  

  ,  

                            i = 1, … , m, j = 1, … , K  (10)

where ∂yi/∂zi = PT and the other components are as follows

              ∂ f _ 
∂  w  ℓi  

  = −  U   T    ∂ K _ 
∂  w  ℓi  

  U,  ∂  w  kj   _ 
∂  y  ℓi  

   =  {    py ℓi  
p−1 ,  if ℓ = k and j = i   

0,
  

otherwise
     (11)

             
∂  g  j   ─ ∂    ℓi  

   =    A  ℓ   ─ 
 ∑ ℓ∈   j       A  ℓ   

  ,    
∂    kj   ─ ∂  y  ℓi  

   =  {      ̂      i  ,  if ℓ = k and j = i   
0,

  
otherwise

     (12)

To compute Eq. 11, we also need the following derivative

        ∂  k  k   ─ ∂  w  ℓi  
   =  

⎧

 
⎪

 ⎨ 

⎪
 

⎩

    

             ∏ 
 
j=1

  j≠i  

  
m

   (1 − γ  w  ℓj   )  k ℓi  
0  −

  

 

                                 
 p=1  p≠i  

  
m

  γ  w  ℓp     ∏ 
  
r=1

  r≠p  
r≠i

  

  
m

   (1 − γ  w  ℓr   )  k ℓp  0  ,  if ℓ = k    

0,                        

  

otherwise

    (13)

The iterative solution scheme is said to have converged when 
either the maximum number of iterations is reached or the change 
in the design is small

    max (∣ Z   new  −  Z   0 ∣)  ──────────────    ̄    −   
¯

     ≤ tol  (14)

Topology optimization algorithmic parameters 
and computational resources
The topology optimization results were obtained using the follow-
ing algorithmic parameters: ZPR move limit, M = 0.15; ZPR inter-
mediate variable exponent,  = 1; and box constraints,     _    = 0  
and    ̄    = 1 . To bias the solution toward the convex one, we perform 
five continuation steps on the material interpolation parameters: p = 
[1,1.5,2,2.5,3] and  = [0,0.2,0.5,0.8,1]. Each continuation step is 
said to converge after reaching the maximum number of iterations, 
MaxIter = [100,100,100,100,200], or the convergence tolerance, tol = 
0.01. In each problem, the initial guess is specified such that the 
volume fraction limit of each constraint is evenly distributed among 
the design variables associated with each available material. For ex-
ample, in the seven-microstructural-material design in Fig. 4G, the 
initial value of each design variable is    ̄  v   / 7  (the effect of the initial 
guess is studied in section S4). For the cantilever problems, the filter 
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exponent and radius are q = 3 and R = 0.064, respectively, and the 
problem is solved on half of the domain (symmetry enforced on the 
x1 − x3 plane) on a 3 × 0.625 × 1 hex mesh with 192 × 40 × 64 elements, 
for a total of 491,520 elements. For the canopy problem, the filter 
exponent and radius are q = 3 and R = 0.032, respectively, and the 
problem is solved on a 1 × 1 × 1.5 hex mesh with 80 × 80 × 120 ele-
ments; however, elements with centroid above the hyperbolic 
paraboloid surface and interior to the tube are removed, for a total 
of 510,411 elements. For the Eiffel Tower–inspired problem, the fil-
ter exponent and radius are q = 3 and R = 0.025, respectively, and 
the problem is solved on a quarter of the domain (symmetry en-
forced on the x1 − x3 and x2 − x3 planes) on a 0.5 × 0.5 × 2.75 hex 
mesh with 46 × 46 × 253 elements, for a total of 535,381 elements. 
All problems were run using MATLAB 2019a on an Intel(R) Xeon(R) 
central processing unit (CPU) ES-1660 v3 @ 3.0 GHz with 256-GB 
random- access memory (RAM) and NVIDIA Quadro M5000 
graphics processing unit (GPU) or MATLAB 2018b on a Dual Intel(R) 
Xeon(R) Silver 4116 CPU@2.10 GHz with 256-GB RAM and NVIDIA 
Quadro P1000 GPU.

Homogenized properties of porous, anisotropic 
microstructural materials
The formulation in Eq. 1 can handle any material for which the full 
material tensor is available. For simplicity, we consider microstruc-
tural materials composed of a periodic tessellation of lattice-based 
unit cells defined on the unit cube, where the lattice elements are 
cylindrical bars. Effective macroscopic properties are obtained using 
computational homogenization (59, 73), specifically using an edu-
cational MATLAB code (74). The geometry of the lattice unit cell is 
inscribed in a hex mesh that is used in the homogenization compu-
tations. Borrowing ideas from the educational polygonal mesh genera-
tor, PolyMesher (75), we use signed distance functions to compute 
the signed distance of each hex centroid from the boundary of the 
cylinders. Any hex element with a negative signed distance to one of 
the cylinders’ boundaries is determined to be inside the unit cell 
structure and is assigned a value of one. All other hex elements are 
void and are assigned a value of zero. Such implementation facili-
tates extension to other types of unit cells (e.g., unit cells composed 
of noncylindrical bars or plates). The educational homogenization 
code (74) outputs the homogenized stiffness elasticity tensor of mi-
crostructural material i in matrix (Voigt) notation,   D i  

H  , and we can 
easily compute the volume fraction of microstructural material i’s 
unit cell,     ̂      i   , as the sum of the solid hex element volumes. These two 
properties,   D i  

H   and     ̂      i   , are needed for each candidate microstructural 
material defined in Eq. 1. The directional tensile and shear moduli 
are extracted from   D i  H   after performing a coordinate transforma-
tion [see section S1 and references (76, 77) for more details].

In all cases studied here, the bulk material has Young’s modulus, 
E = 1, and Poisson’s ratio,  = 0.3. In addition, the computational 
homogenization is performed using a hex mesh with at least 160 × 
160 × 160 elements.

Multimaterial slicing and continuous 
multimicrostructure embedding
Although the multimaterial interpolation in Eq. 3 prevents material 
mixing, small mixing regions occur at the material interfaces as an 
artifact of the density filter used in topology optimization. Further-
more, in some elements that contain mixing, the total density of 
material may sum to greater than one (62). Thus, we first remove 

mixing from the converged topology-optimized result and limit the 
total element densities to one by assigning

   y  ℓi   =  {    min  [  1,  ∑ k=1  m      y  ℓk   ]     if  y  ℓi   = max [ y  ℓ1  , … ,  y  ℓm  ]     
0

  
otherwise

  , ℓ = 1, … , N   (15)

At this stage, we maintain intermediate densities at the structure 
boundaries and at the material interfaces that also result from the 
density filter. Using an appropriate isovalue (i.e., one that preserves 
the volume fraction specified in topology optimization to within a 
tolerance of 4%), we generate an isosurface of the composite density 
field, which is defined as   y ℓ  

c  =  ∑ i=1  m      y  ℓi  , ℓ = 1, … ,  N , and generate a 
tet mesh within, using the iso2mesh toolbox (78), which relies on 
TetGen (79). Making use of the disjointed isosurfaces generated for 
each material individually (see Fig. 3B), we use the inpolyhedron func-
tion from MATLAB’s file exchange to determine which tet centroids 
fall within each of the material isosurfaces and assign a material accord-
ingly. A relatively small number of tets near the material interfaces 
that do not fall within any of the disjointed isosurfaces (i.e., interface 
tets) are assigned a material according to the nearest density of the 
postprocessed topology optimization data. The functionally graded 
tet mesh is then obtained by applying the filter in Eq. 2 to tets within 
radius, R, of the interface tets (fig. S5 shows the effect of the magnitude 
of R on the length scale of the graded region). For the cantilever 
problems, the filter power and radius used to generate the function-
ally graded tet mesh are q = 1 and R = 0.10, respectively, for the 
canopy problem, q = 1 and R = 0.04, and for Eiffel Tower–inspired 
problem, q = 1 and R = 0.08, where the filter radius, R, is relative to the 
dimensionless domain dimensions provided in Fig. 1 and fig. S7.

Next, we slice the multimaterial tet mesh by thinking of the printer’s 
build volume as a 3D voxel matrix, where the voxel dimensions are 
controlled by the printer’s pixel dimensions and the layerheight. 
From the functionally graded tet mesh, we generate a scattered in-
terpolant, F(x1, x2, x3), that takes in a voxel’s 3D coordinate and 
outputs a nearest-neighbor interpolated material. The 3D printer 
has more than 11 billion voxels, but using the postprocessed topol-
ogy optimization data on the underlying hex mesh, we reduce the 
number of voxels that need to be evaluated. First, all voxels that fall 
outside the hex mesh are known to be void. In addition, all voxels 
that fall within a hex element with density equal to one can be im-
mediately assigned the corresponding material. Thus, we only need 
to determine a material for the subset of voxels that fall within gray-
scale hex elements, i.e., those near the structure boundaries and at 
the material interfaces. From this subset of voxels, we find those that 
fall inside of the composite isosurface (using inpolyhedron), evalu-
ate them using the scattered interpolant, F(x1, x2, x3), and assign a 
material accordingly. Memory requirements are controlled by eval-
uating small subsets of the voxel matrix in parallel.

Using the multimaterial voxel matrix, we can easily obtain pix-
elated slices for each layer, using color to represent the functionally 
graded materials. Next, we generate the mapping between color and 
microstructure and embed the microstructures into the pixelated 
slices as described in Results. Last, the images are converted to black 
and white and sent to the 3D printer in png format. A flowchart 
summarizing the overall process from design to manufacturing is 
provided in fig. S3. All computations needed to translate the multi-
material topology optimization data to microstructure-embedded 
3D printer slices were done using MATLAB 2019a on an Intel(R) 
Xeon(R) CPU ES-1660 v3 @ 3.0 GHz with 256-GB RAM.

mailto:CPU@2.10
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m-SLA manufacturing
All physical models were fabricated using the Original Prusa SL1 m-SLA 
3D printer (Prusa Research, Czech Republic), which shines ultraviolet 
light onto the underside of a resin vat, masked by a 2560 × 1440 pixel 
liquid crystal display according to pixelated images (slices), to cure 
the part layer by layer. The pixel edge length is 47.25 m, and we 
print with a 50-m layer height. The build volume is 120.96 mm by 
68.04 mm by 150 mm. All models are built using Prusa’s Transparent 
Red Tough Resin with 6-s exposure time per layer. Slicing and multi-
microstructure embedding are done with the in-house MATLAB 
code described previously, and the generated black-and-white png 
images for each layer are provided to the 3D printer. Support material 
was not required for any of the cantilever designs or the Eiffel Tower–
inspired structure. The canopy required a support structure, which 
was designed using Rhino software (see fig. S8). Because of build 
volume restrictions, the canopy and Eiffel Tower–inspired structure 
were printed in two parts and three parts, respectively, and bonded 
together using Krazy Glue (see photos in Fig. 7 and fig. S8).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/16/eabf4838/DC1
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