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Prediction and estimation of phenomena of interest in aquatic environments

are challenging since they present complex spatio-temporal dynamics. Over

the past few decades, advances in machine learning and data processing

contributed to ocean exploration and sampling using autonomous robots. In

this work, we formulate a reinforcement learning framework to estimate spatio-

temporal fields modeled by partial differential equations. The proposed

framework addresses problems of the classic methods regarding the

sampling process to determine the path to be used by the agent to collect

samples. Simulation results demonstrate the applicability of our approach and

show that the error at the end of the learning process is close to the expected

error given by the fitting process due to added noise.
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1 Introduction

The use of autonomous underwater and surface vehicles (AUVs and ASVs) for persistent

surveillance in coastal and estuarine environments has been a topic of increasing interest.

Examples of studies enabled by these vehicles include the dynamics of physical phenomena,

such as ocean fronts, temperature, the onset of harmful algae blooms, salinity profiles,

monitoring of seagrass and coral reefs, and fish ecology.

Due to the stochastic nature of these vital environments and the large spatial and temporal

scales of significant processes and phenomena, sampling with traditional modalities (e.g.,

manned boats, buoys) is sparse and predictive models are necessary to augment decision-

making to ensure that robotics assets are at the right time and the right place for sampling.

However, no single model provides an informed view or representation of these or any other

ocean feature that enables intelligent sampling in a principled manner. Therefore, it is critical

to forecasting where a robot should sample in the immediate future so that sufficient

information is provided on getting to the desired location within a dynamic environment.

Our ideas are inspired by commonly used underwater vehicles in environmental and

infrastructure monitoring problems such as the AUV Ecomapper shown in Figure 1. This

vehicle can measure water quality parameters, currents, and bathymetric information.

However, its mission endurance is limited to a few hours due to its battery constraints,

therefore, efficient sampling strategies are needed.
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The contributions of this paper are the following:

1) A novel framework combining classic methods with

reinforcement learning to estimate ocean features, which

are modeled as spatio-temporal fields.

2) A technique to get a set of informative samples to estimate

spatio-temporal fields, which an agent can collect and

process.

3) An extension to the classical partial differential equations

fitting methods to estimate models incorporating

reinforcement learning.

This paper is an expansion of our preliminary work in Padrao

et al. (2022) and extends it to include the estimation of ocean

features using partial differential equations. The rest of the paper

is organized as follows. In Section 2, we review related work to

our approach. Section 3 gives the preliminaries needed to build

our method and formulate our problem. Section 4 presents the

Reinforcement Learning Methods used to solve our approach,

and the results are presented in Section 5. Finally, Section 6

concludes our paper and gives direction for future work.

2 Related work

2.1 Oceanic monitoring sampling

Over the last decade, it has become clear that autonomous

marine vehicles will revolutionize ocean sampling. Several

researchers have investigated approaches for ASVs and AUVs

for adaptive ocean sampling Yuh (2000)-Smith et al. (2010c) and

fundamental marine sampling techniques for ASVs and AUVs

are discussed in Singh et al. (1997). Besides control algorithms for

Oceanic Sampling, an alternative approach is to use static sensor

placements to maximize information gathering Zhang and

Sukhatme (2008).

2.2 Adaptive sampling with marine
vehicles

Our work connects also with research on control design for

AUVs for adaptive ocean sampling, Yoerger and Slotine (1985);

Frazzoli et al. (2002); Low et al. (2009); Rudnick and Perry (2003);

Yuh (2000); Frank and Jónsson (2003); Graver (2005); Barnett

et al. (1996); Carreras et al. (2000); Ridao et al. (2000); Rosenblatt

et al. (2002); Turner and Stevenson (1991); Whitcomb et al. (1999,

1998); McGann et al. (2008b), McGann et al. (2008a), McGann

et al. (2008c), Yoerger and Slotine (1985)-McGann et al. (2008c).

Applications of ocean sampling techniques for autonomous

vehicles are discussed in Singh et al. (1997)-Eriksen et al.

(2001). This body of research differs from the proposed

research in that we plan to utilize predictive models in the

form of Partial Differential Equations (PDE) to enable effective

sampling, navigation, and localization within dynamic features.

2.3 Reinforcement learning in marine
robotics

Reinforcement learning in marine robotics, especially model-

free methods, is an attractive alternative to finding plans for

several reasons. First, executing marine robotics experiments and

deployments is expensive, time-consuming, and often risky;

controllers learned through RL can represent significant time

and cost savings and shorten the time to deployment. Second,

system identification can sometimes be challenging in marine

environments due to several factors such as unmodeled dynamics

and environment’s unknowns; for that reason, model-free RL

approaches can be an alternative in these scenarios. Examples of

approaches that have used RL for ASVs or AUVs include path

planning Yoo and Kim (2016), control Cui et al. (2017) and

tracking Martinsen et al. (2020).

2.4 Machine learning for partial differential
equations

Our ideas are also connected to the use of Machine Learning

models in the context of Partial Differential Equations. Due to

their usefulness and impact in several domains, there have been

efforts to use modern machine learning techniques to solve high

dimensional PDEs Han et al. (2018), find appropriate

discretizations Han et al. (2018), and control them

Farahmand et al. (2017).

3 Preliminaries and problem
formulation

3.1 Partial differential equations

Partial differential equations (PDEs) have been used tomodel

water features of interest such as pH, temperature, turbidity,

salinity, and chlorophyll-A. Depending on the nature of their

motion, they can be modeled through diffusion, advection or a

FIGURE 1
YSI-Ecomapper autonomous underwater vehicle.
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combination of both. It is important to evaluate how they behave

given certain initial conditions to understand their evolution in

time. We model the ocean features of interest as a scalar field

f: R2 × [0,∞) → R.

3.1.1 Advection equation
The advection equation models how a given ocean feature

(e.g., algae bloom, oil spill, chemical contaminants, etc.) is

transported by a given flow which goes in the direction of

b ∈ R2; it is also called the transport equation. The model the

space is given by 1.

zf

zt
+ b · ∇f � g x, t( ), for x, t( ) ∈ R2 × 0,∞( )
f x, 0( ) � h x( ), for t � 0

(1)

has the solution shown in Evans (1998).

f x, t( ) � h x − tb( ) + ∫t

0
g x + s − t( )b, s( )ds︸���������︷︷���������︸
By theDuhamel′s principle

. (2)

Provided that g(x, t) ∈ C(R2) and has a compact support for

each t ∈ [0,∞). This function gmodels if there are sinks or fonts

of the ocean feature in the domain. If the sign of g (x, t) is positive,

we consider that point as an ocean feature source; if it is negative,

we consider it as an ocean feature sink. On the other hand, h(x) is

the initial distribution of the ocean feature at the beginning.

3.2 Estimation of the parameters of a PDE

Once we chose a PDE as a model, it is crucial to estimate

the parameters of the PDE to get a reliable model. This

problem belongs to the family of inverse problems since

those parameters are sensitive to the observations and

given initial conditions Richard et al. (2019) Antman et al.

(2006). Because of this sensitivity, it is computationally

expensive to find the PDE parameters. There are

optimization-based techniques to solve this problem. These

techniques problems balance the fitting parameter to the

observations and the model sensitivity to those parameters.

One of most used methods is the Tikhonov regularization

technique Nair and Roy (2020) Bourgeois and Recoquillay

(2018). It comprises solving a regularized optimization

problem to get a regularized solution. It can be highly

efficient depending on the regularization norm (especially

if the L2 norm is used). However, it depends on the

regularization constant to achieve good results.

Other approaches to solving the PDE estimation problem

take advantage of Bayesian theory Xun et al. (2013). In this

case, bayesian learning is connected to regularization since the

regularization problem coincides with the maximization of

the likelihood of the parameters given the observations Bishop

(1995). Therefore, Machine Learning techniques have been

proposed to take advantage of the capability of the models to

discover hidden relationships between the input data and the

final estimation Jamili and Dua (2021). Most of those models

use the fact that the samples are given in advance. This work

proposes a learning mechanism to select samples that can

reasonably estimate the model without exploring the complete

domain. This principle has been used in numerical integration

problems resulting in several quadrature rules, such that

Gauss–Kronrod, Gauss-Legendre, or Newton cotes Kincaid

et al. (2009). Those methods have proven to be more efficient

since they can give reliable estimations using few points. In

this work, we employ an intelligent agent capable of sampling

the environment, searching for reliable samples, and using

them to compute the parameters of a PDE. Also, this allows

estimating the ocean feature behavior in the domain according

to Eq. 2.

3.3 Model definition

We modeled the marine environment as a 2-D water layer

(representing, for example, the surface) denoted as W ⊂ R2

where W is an open and bounded set. The obstacle-free state

space for our robot is represented by S � W\O, where O
represents the set of locations that are not accessible to the

robot.

To estimate the flow field, we define a scheme of fitting

problems based on the known initial conditions of Eq. 1 h(x) and

the current samples acquired by the agent. First, we expect to

collect samples yi at the location xi and time ti for i = 1, . . . , n such

that the field minimizes the mean square error of the collected

samples. Taking advantage of the closed solution described in the

homogeneous version of Eq. 1, the fitting error function ef(b) is
defined as

ef b; x1, . . . , xn( ) � 1
n
∑n
i�1

f xi, ti( ) − yi( )2

� 1
n
∑n
i�1

h xi − tib( ) − yi( )2 (3)

where n is the number of collected samples. Next, we define the

fitting error ef (x1, . . . , xn) associated to the locations

ef x1, . . . , xn( ) � min
b∈R2

ef b; x1, . . . , xn( ). (4)

The fitting error expressed in Eq. 4 measures how well can

the best fitted model prediction of the given samples

(i.e., predict yi given xi and a parameter vector b. It is the

“best” in the sense that is the minimum achievable error

produced by the model given the samples x1, . . . , xn).

Nevertheless, we can notice that if the locations x1, . . . , xn
are wrongly chosen, the fitting error can be low, but its

capability of estimating the entire field may lead to over-
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fitting problems. To handle this issue, we add a new error term

based on how well one sample can be predicted using the

remaining ones. This is known as cross-validation. In this

case, we propose the following cross-validation scheme. For

each 1 ≤ i ≤ n let bpi defined as

bpi � arg min
b∈R2

ef b; x1, . . . , xi−1, xi+1, . . . , xn( ). (5)

We define the cross validation error ecv (x1, . . . , xn) as

ecv x1, . . . , xn( ) � 1
n
∑n
i�1

h xi − tib
p
i( ) − yi( )2, (6)

and it measures on average how well the samples can fit a model,

which is estimating the remaining sample. This avoids the over-

fitting problems and allows to measure how reliable are the taken

samples. Lastly, we define the total error etotal (x1, . . . , xn) or just

etotal as

etotal x1, . . . , xn( ) � ef x1, . . . , xn( ) + ecv x1, . . . , xn( ). (7)

This error compound aims to have an equal trade off between

the sample estimation measured by ef (x1, . . . , xn) and the

reliability of the samples measured by ecv (x1, . . . , xn).

The agent is modeled as a rigid body that moves in R2 and

can be described by a non-linear system as

_x � f x, u( )
z � o x, r( ) (8)

Such that f (x, u) is the motion model of the vehicle, o (x, r) is

the observation model of the vehicle, and r are additive, zero-

mean noise to account for modeling errors and sensor

imperfections.

Let S be the state space, i e., the set of all possible states x ∈ S
and U be the action space, which represents the set of all possible

actions. Therefore, a configuration of the vehicle can be described by

x � x, y, ϕ( )
u � uv, uω( ) (9)

In which (x, y) is the position of the vehicle and ϕ ∈ (−π/4, π/
4) is the vehicle’s heading; the forward speed v and the angular

velocity of the agent orientation ω can be set directly by the action

variables uv and uω, respectively. The kinematic model of the

agent _x � f(x,u) is described by Eq. 10.

_x � uv cos ϕ + vx
_y � uv sin ϕ + vy
_ϕ � uω

(10)

where vx and vy account for the velocity components of the

environment (flow field) in x and y directions.

Let xS ∈ S be the initial location of the agent. It is assumed that

the agent takes advantage of ocean current dynamics as it drifts and

moves forward with or against the currents and rotates clockwise or

counterclockwise. Therefore, the action space is defined as

U � 0, vmax/2, vmax[ ] × ϕmin, ϕmax( ) (11)

We discretize the action space to obtain a finite subset of U
defined as

A � vmax, 0( ), vmax/2, 0( ), vmax,−ϕ( ), vmax,+ϕ( ), vmax/2,−ϕ( ),{
vmax/2,+ϕ( ), 0, 0( )} (12)

The description of the actions of the agent are summarized in

Table 1.

For the observation model, we assume that the vehicle uses

an IMU to measure its heading angle ϕ and has access to GPS at

surface level. Also, the vehicle can observe its state with

uncertainties due to sensor imperfections and the dynamic

nature of the underwater environment. The observation space

Z, the set of all possible sensor observations z ∈ Z, is given by

Z � xmin, xmax( ) × ymin, ymax( ) × ϕmin, ϕmax( ). (13)

The observation model o(x) is represented by

z � o x, r( ) � Ix + r (14)

Where r ∈ R3 is noise distributed as r ~ N (0,Σ) with Σ a

diagonal covariance matrix to account for modeling errors and

sensor imperfections and I is the identity matrix. It was also

considered that the measurement noises of each sensor are

uncorrelated and have constant covariance.

These elements allow us to formulate the following problem.

Problem: Given an aquatic environment W, the action set of the

agent A, the state space S � W × (ϕmin, ϕmax), the vehicle’s

motion model, observations of a given ocean feature in several

locations, estimate the flow field (and therefore the ocean feature

distribution) by minimizing cross-validation error and error

fitting within a given fixed number of steps.

4 Methods

Because of the computational effort required to tackle

problems with large state spaces, tabular learning methods

may be unfeasible Sutton and Barto (2018). As a result,

combining approximation solutions of reinforcement

learning methods with generalization techniques yields a

computationally viable solution for real-world problems.

To update the agent policy based on actions taken, we suggest

using SARSA(λ) algorithm in conjunction with a linear function

approximation technique based on stochastic semi-gradient

descent. The agent is in state st ∈ S, takes action at ∈ A, and

receives reward rt at each time step t. In this method, we can

estimate the action-value function q̂(s, a) for the behavior policy
π in a systematic way. The SARSA(λ) algorithm also chooses an

action based on the ε-greedy approach. Therefore, actions with

the highest estimated values are chosen with a high probability,
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but random actions are picked with a low probability ε

independent of their estimated values.

The action-value function approximation is defined as

q̂ s, a,w( ) ≈ q s, a( ) (15)

Wherew ∈ Rd is the weight vector of the semi-gradient descent

method. The weight vector update is defined by Eq. 16

wt+1 � wt + α Gt − q̂ st, at,wt( )[ ]▽q̂ st, at,wt( ) (16)

where α is the step size, andGt is the return function. Applying linear

function approximation, Eq. 15 can be modified to

q̂ s, a,w( ) � w⊤x s, a( ) � ∑d
i�1

wixi s, a( ) (17)

Where x ∈ Rd is the feature vector. Each component xi (s, a)

of the feature vector corresponds to a feature of the state-action

pair (s, a) and maps it to a real value. As a result, the gradient of

the approximate action-value function can be modified as

▽q̂(st, at,wt) � x(st, at) and Eq. 16 reduces to

wt+1 � wt + α Gt − q̂ st, at,wt( )[ ]x st, at( ) (18)

4.1 Reward function design

In reinforcement learning problems, designing a reward

function is not a trivial task, Ng et al. (1999). To avoid

spurious exploration, we defined a terminal condition with a

fixed number of observations taken to determine when to

reset the environment for a new episode. To encourage the

agent to minimize the fitting and cross-validation errors

within a given number of steps, we provide a reward that

is inversely proportional to the sum of the errors at the

terminal state. For each episode, the agent collects

20 observations, and the reward function is defined as

r s, a( ) �

100
etotal

, if the number of observations � 20

c2, if the number of observations< 5
c1c

1.5
2 , otherwise

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(19)

where c1 is the ratio between total error at previous and current

step and c2 � 1 − (etotal20 )0.4.

4.2 Linear methods and feature
construction: tile coding

In reinforcement learning systems, feature construction is

critical since it values each state of the agent. The main

techniques for feature construction of linear methods are

polynomial-based, Fourier basis and tile coding Sherstov and

Stone (2005). As such, tile coding is a computationally effective

feature design technique that divides the state space into divisions

called tiles. Each element in the tiling is referred to as a tile.

Different tilings are separated by a fixed-size fraction of the tile

width Sutton and Barto (2018). If there are n tilings and each tiling

has m × m tiles, the feature vector is x(s) ∈ Rn×m×m. One of the

main advantages of using tile coding with binary feature vectors is

that the weighted sum in the approximate value function (Eq. 17)

is easy to compute. Figure 2 shows an example of the

representation of tile coding for two-dimensional continuous

state space. In this case, x(s) is a feature vector with twelve

components, one for each tile in each tiling. Each component

of x(s) is inactive (zero-valued) except active components x0(s),

x4(s) and x8(s) that corresponds to the current location states of the

agent. As a consequence, there are n active features in x(s) because

every position in state space falls into precisely one tile in each of

the n tilings. Let the weight vector w � [w0, . . . , w11]⊤ and the

action space be A = {a0, a1, a2}. The feature vector regarding

actions a0, a1 and a2 is x (s, a0) = x (s, a1) = x (s, a2) =

[1,0,0,0,1,0,0,0,1,0,0,0]⊤. Thus, the action-value function

approximation q̂(s, a,w) described in Eq. 17 is computed as

q̂ s, a,w( ) � ∑d
i�1

wi (20)

for each action in action space.

With tile coding, design issues for discrimination and

generalization should be taken into account. The number and

size of tiles, for example, affect the granularity of state

discrimination, or how far the agent must move in state

space to change at least one component of the feature vector.

Aside from that, the shape of the tilings and the offset

TABLE 1 Description of the actions of the agent.

(vmax, 0) moving forward with maximum speed vmax

(vmax/2, 0) moving forward at half the speed vmax/2

(vmax, − ϕ) turning clockwise by ϕ and moving with maximum speed

(vmax, + ϕ) turning counterclockwise by ϕ and moving with maximum speed

(vmax/2, + ϕ) turning clockwise by ϕ and moving at half the maximum speed

(vmax/2, + ϕ) turning counterclockwise by ϕ and moving at half the maximum speed
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distance between them have an impact on generalization. As

an example, if tiles are stretched along one dimension in state

space, generalization will extend to states along that

dimension as well Sutton and Barto (2018).

4.3 Eligibility traces in reinforcement
learning

In problems with large state spaces, the eligibility trace is a

technique to promote computational efficiency of reinforcement

learning methods. The eligibility trace is a vector zt ∈ Rd whose

components maintain track of which components of the weight

vector wt have contributed to recent state values and temporarily

records the occurrence of estimated events. Therefore, components

ofwt thatmost frequently contribute to valuations of previous states

are considered eligible for an update Singh et al. (1995). Eligibility

trace components are updated based on the trace-decay parameter

λ ∈ [0, 1], which specifies the pace at which the trace fades away

exponentially. In contrast with n-stepmethods that perform action-

value updates after a given number of steps, eligibility traces provide

updates continually over the learning process. For this reason, agent

behavior can bemodified right after a new state is found rather than

being delayed n steps.

The act ion-value return funct ion Gt i s a funct ion

approximat ion of the n-step return defined as

Gt: t+n � rt+1 +/ + γn−1q̂ st+n, at+n,wt+n−1( ), t + n<T (21)
where γ is the discount rate that regulates the relative importance

of near-sighted and far-sighted rewards. Thus, the λ-return Gλ
t is

written as

Gλ
t � 1 − λ( ) ∑T−t−1

n�1
λn−1Gt: t+n + λT−t−1Gt (22)

In this way, the update rule for the weight vector in Eq. 16 is

modified as follows

wt+1 � wt + α Gλ
t − q̂ st, at,wt( )[ ]∇q̂ st, at,wt( )

� wt + αδtzt
(23)

where the action-value estimation error δt is defined as

δt � rt+1 + γq̂ st+1, at+1,wt( ) − q̂ st, at,wt( ) (24)

The action-value representation of the eligibility trace is

defined as

z−1 � 0
zt � γλzt−1 +▽q̂ st, at,wt( ), 0≤ t≤T (25)

The complete algorithm for SARSA(λ) is presented in table 1,

Sutton and Barto (2018).

Algorithm 1. SARSA(λ) with linear function approximation.

FIGURE 2
An example of tile coding representation of a continuous 2D state space. The agent is a point in the state space to be represented by the active
tiles of the three tilings. Active tiles are described by solid lines and have a value of 1. Inactive tiles are described by dashed lines and have a value of 0.
Therefore, the feature vector is x(s) = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0].

Frontiers in Robotics and AI frontiersin.org06

Padrao et al. 10.3389/frobt.2022.878246

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.878246


5 Results and discussion

Simulation results are presented in Figure 3. For each

simulation, we ran a set of simulations consisting of

400 episodes with 20 steps each to investigate how the agent

behaves under the effect of the flow field and the variation of the

step size α and the trace decay rate λ. For tile coding, we used

eight tilings, each tiling containing 8 × 8 tiles. Thus, the feature

vector is x(s) ∈ R8×8×8. Throughout the simulation, the ε-greedy

parameter was fixed at 0.15, indicating that actions with the

highest estimated returns are selected 75% of the time. In this

way, higher values of the ε-greedy parameter can lead to an

increase in the exploratory behavior of the agent. Besides, to

perform the contaminant estimation we selected the functions,

keeping the notation at Eq. 1, as g (x, t) = 0 to mean that there are

no more sources of the Ocean feature around the domain and

h x( ) � a · exp −‖x − c‖qq
σq

( ). (26)

h(x) models the initial distribution of the ocean feature.

Where a = 100 controls the scale, q = 2 manages the decay

rate, ‖ ·‖p is the Lp norm defined in R2 for 1 ≤ p ≤ ∞, σ = 40

combined with q can be interpreted as the standard deviation of

h(x) and c is the point where the ocean feature reaches its

maximum. Lastly, each observation was corrupted using

Gaussian noise ϵ ~ N (0, 1).
Figures 3A,B shows the total estimation error and agent

reward with respect to variation of the step size α. The step size is

interpreted as the fraction of the way the agent moves towards the

target. Smaller values of the step size α provided an increase in

rewards through the episodes and a slight decrease in the

estimation error. Additionally, the trace decay rate λ was fixed

FIGURE 3
Simulation results of the proposed learning framework with the variation of step size α (A,B), trace decay rate λ (C,D), and ϵ-greedy parameter
(E,F) with respect to the total number of steps per episode and returns per episode.
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at 0.9. Figures 3C,D shows the total estimation error and agent

reward with respect to variation of trace decay rate λ of the

eligibility trace zt in Eq. 25. Larger values of λ resulted in a

significant decrease in the estimation error and an increase in

rewards. Figures 3E,F shows the total estimation error and agent

reward with respect to variation of the ε-greedy parameter.

Although higher values of the ε-greedy parameter can lead to

higher exploratory agent behavior, simulation shows similar

results with different values of ε.

Figure 4 shows different paths taken by the agent in

different simulation scenarios. Circles represent level sets of

the ocean feature distribution at the end of the simulation. We

notice the highest feature concentration location at the center,

and the outer circles represent lower ocean feature levels

assuming a radial diffusion. Optimal paths have the

characteristic of following the ocean feature and crossing its

level sets to obtain information at different levels to estimate the

entire field.

Finally, Figure 4D shows the difference between the

estimated and the true ocean feature distributions at the final

time. Both of them are similar once the parameters for the true

flow field is b = (5,5)⊤ and the estimated is b̂ � (4.928, 5.037)⊤.
We notice that ‖b − b̂‖2 ≈ 0.0809, but etotal is close to 2 at the end

of the reinforcement learning process. This can be explained

because the fitting error ef is on average the difference between

the real observation and the corrupted one. If we assume that the

true observations f (xi, ti) and the corrupted ones yi are related by

yi = f (xi, ti) + ϵi for each i, where ϵi are i.i.d. Random variables

such that ϵi ~ N (0, σ2) for each i. Then, we can notice Bishop

(1995) that both, the fitting error ef and the cross-validation error

ecv approximate the variance σ2. Since E[ϵi2] � Var(ϵi) +
E[ϵi]2 � σ2 and

ef x1 , . . . , xn( ) � min
b∈R2

1
n
∑n
i�1

f xi , ti( ) − yi( )2 � 1
n
∑n
i�1

h xi − tib( ) − yi( )2 � 1
n
∑n
i�1

ϵ2i � σ2︸�����︷︷�����︸
as n→∞

ecv x1 , . . . , xn( ) � 1
n
∑n
i�1

h xi − tib
p
i( ) − yi( )2 � 1

n
∑n
i�1

ϵ2i � σ2︸�����︷︷�����︸
as n→∞

(27)

By the large numbers law. Therefore, etotal = ecv + ef ≈ 2.

To increase the complexity of our simulations, we chose to a

double-gyre system; a commonly occurring oceanic feature that is

relatively easy to model and analyse Provost and Verron (1987),

Wolligandt et al. (2020), Smith et al. (2015), Shadden et al. (2005),

Shen et al. (1999). The flow is described by the stream-function

ψ x, y, t( ) � A sin πfdg x, t( )( )sin πy( ) (28)

Where fdg (x, t) = a(t)x2 + b(t)x, a(t) = μ sin (ωdgt), b(t) =

100, −,200μ sin (ωdgt) over the domain (0, 200) × (0, 100). In Eq.

28, A describes the magnitude of the velocity vectors, ωdg is the

frequency of gyre oscillation, and μ is the amplitude of motion of

the line separating the gyres, Shadden et al. (2005). Then the flow

FIGURE 4
Agent path with the variation of step size α (A), trace decay rate λ (B), and ε-greedy parameter (C). (D) Difference between the true and the
estimated ocean features.
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field produced the double gyre is the vectorial field v (x, y, t) =

∇ψ(x, y, t).

The PDE (1) considers constant flow fields given by the

vector b. For this reason, we need to consider an extension of

this equation defined in the bounded domain W called the

advection-diffusion equation

zf

zt
− ρΔf + ∇ · fv( ) � g x, t( ), for x, t( ) ∈ W × 0,∞( )

f x, 0( ) � h x( ), for t � 0
zf

zn
� 0, for x ∈ zW.

(29)

Which considers non-constant flow fields, the addition of the

diffusion term ρΔf with a small diffusivity coefficient ρ and the

homogeneous Neumann boundary conditions with outer normal

vector n is due to the numerical difficulties found and reported

when the pure advection equation is solved by numerical

methods Evans (1998).

Figure 5 illustrates the spread of a given ocean feature

through time under the influence of a double-gyre flow field.

For the simulation of the reinforcement learning framework and

the double-gyre system, we ran a total of 10 episodes with 10 steps

each. Although we used tile coding as a computationally effective

feature in our reinforcement learning framework, it is still necessary

to solve the partial differential equation given in Eq. 29 at each step

of each episode. Moreover, to find the fitting and cross-validation

errors it is necessary to solve an optimization problem involving the

solution of the PDE as a subroutine several times. In order to

simulate this computationally intensive optimization algorithm, we

took advantage of Florida International University’s Phosphorus, a

20-core Intel(R) Xeon(R) Silver 4114 CPU at 2.20 GHz server, and a

Bayesian optimization algorithm intended to handle black box

functions which are costly to evaluate. True values for the

frequency of gyre oscillation ωdg and the amplitude of gyre

FIGURE 5
Spread of a given ocean feature through time under the influence of a double-gyre flow field with A= 10, μ= 0.25, and ωdg= π/5 at (A) t= 0 s (B)
t = 5 s (C) t = 10 s.

TABLE 2 Learning simulation parameters and results. True and learned
double-gyre model parameters over 10 learning episodes.

Learning simulation parameters

Number of episodes 10 with 10 steps each

Tile coding 8 tilings with 8 × 8 tiles each

Step size α 0.9

Trace decay rate λ 0.9

ε-greedy parameter 0.15

Double-Gyre Model Parameters and Results

True μ 0.25

Learned μ 0.2481

True ωdg π/5 ≈ 0.6283

Learned ωdg 0.6344

FIGURE 6
Path followed by the agent, double gyre field to estimate the parameters described in Table 2 at different episodes (A) episode 3, (B) episode 7.
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motion μ are set to 0.25 and π/5 ≈ 0.6283, respectively. Considering

only 10 episodes, the learned values for ωdg and μ were 0.2481 and

0.6344, respectively, with the smallest estimation error in episode 7.

Learned parameters are summarized in Table 2 and Figure 6 shows

the paths taken by the agent at different episodes while estimating

the flow field. The agent follows the contaminant, but careful

examination should be made at the gyre separation line once the

agent could take an undesired action, resulting in feature

mistracking. This behavior is illustrated when we compared

paths in Figures 6A,B.

6 Conclusion

In this work, we presented a novel method for estimating a

spatio-temporal field using informative samples taken by a

trained agent. This allowed estimating the distribution of the

ocean feature, keeping track of its localization and distribution at

each time. It was possible to address the problem of selecting

meaning samples such that they help to perform the estimation

of the field. Therefore, this develops a different perspective in

estimation procedures, which has been addressed using other

techniques having pre-defined models to show a priori which

samples should be taken.

Moreover, we proposed combining the classical

regularization methods used to estimate parameters in

partial differential equations with the optimization

processes used to carry out those estimates. We merged

machine learning techniques, which are more flexible and

capable of learning complex patterns from different sources,

to choose the sample locations to keep track of and estimate

the ocean feature field.

Future work

For future work, we consider the expansion of the proposed

method for 3D environments. This can be accomplished by

augmenting the vehicle model (state space, action space,

observation space) and validating the proposed framework

with deployments in aquatic environments such as in the

Biscayne Bay area, Florida, United States. Besides that, it is

possible to refine our estimation strategies with cooperative

agents. A primary direction for future work is to incorporate

a combination of heterogeneous agents in order to provide better

estimates of the locations of the ocean feature. In this work, we

assume known initial conditions for a given linear, constant flow

field. A second direction for future work is to investigate how

effective the proposed estimation framework is for time-varying

flow fields and actual oceanic data from the Regional Ocean

Modeling System (ROMS) Shchepetkin and McWilliams (2005).

ROMS data set that provides current velocity prediction data

consisting of three spatial dimensions (longitude, latitude, and

depth) associated with time. Finally, tracking oceanic features,

such as the Lagrangian coherent structures (LCS) contributes to a

wide range of applications in ocean exploration Hsieh et al.

(2012). Therefore, an additional direction of our work is to

expand the current work towards an efficient method for LCS

tracking using machine learning techniques.
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