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Abstract

Biased motion of motile cells in a concentration gradient of a chemoattractant is frequently studied on the population level.
This approach has been particularly employed in human sperm chemotactic assays, where the fraction of responsive cells is
low and detection of biased motion depends on subtle differences. In these assays, statistical measures such as population
odds ratios of swimming directions can be employed to infer chemotactic performance. Here, we report on an improved
method to assess statistical significance of experimentally determined odds ratios and discuss the strong impact of data
correlations that arise from the directional persistence of sperm swimming.
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Introduction

Chemotaxis refers to biased motion of cells or organisms in a

concentration gradient of an external chemical factor, a so-called

chemoattractant. Chemotaxis requires a fine-tuned interplay of

motility and sensation and different navigation strategies are

implemented by nature: bacterial chemotaxis relies on biased

random walks for which the frequency of random tumbling events

is regulated in response to temporal changes of chemoattractant

concentration, which are perceived during swimming in a spatial

concentration gradient [1]. Large and slowly moving cells like the

slime mold Dictyostelium can detect a concentration gradient by

spatial comparison along their cell length [2]. Finally, sperm cells

from marine invertebrates with external fertilization use a clever

strategy of temporal sampling a concentration field along circular

and helical paths to enhance fertilization rates [3,4]. Chemotaxis

has also been demonstrated in human sperm [5,6]. Human sperm

chemotaxis also seems to rely on temporal sampling [7], but the

precise navigation strategy remains elusive. Research on human

sperm chemotaxis is further complicated by the fact that only a

fraction (about 5–10%) of the entire sperm population is

chemotactically responsive at any given time [8]. This responsive

subpopulation consists of capacitated cells [8], i.e., of cells that

underwent a process of maturation conferring on them, among

others, the abilities to be guided to the oocyte by thermotaxis and

chemotaxis [6], to bind to the oocyte, and to fertilize it [9]. It has

been proposed that within a larger population of uncapacitated

sperm cells residing in the oviductal isthmus, small subpopulations

transiently become capacitated [8], probably ensuring a constant

supply of capacitated sperm cells for fertilizing the egg over a

prolonged period of time [10].

Up to now it has not been possible to isolate the chemotactically

responsive cells and human sperm chemotaxis assays are usually

done on a population level that comprises both responsive and

(many) non-responsive cells. This makes considerable demands on

the statistical handling of the experimental data.

In this report, we reconsider the earlier approach introduced by

Gakamsky et al. [11] based on the analysis of the distribution of

frame-to-frame swimming direction angles. We argue that

directional persistence of sperm swimming results in correlations

of successive swimming directions along a sperm track, and that

this has to be taken into account appropriately by the statistical

analysis of the swimming directions. We propose a method to

assess the statistical significance of population measures of

chemotactic performance, which is more immune to ‘‘false

positives’’ than the original procedure. Empirical significance

thresholds are determined using a variant of block bootstrapping

[12] that comprises re-sampling by selection of entire sperm tracks.

In our case, the ‘‘blocks’’ are therefore just the individual sperm

tracks. We apply this method to real tracking data of human sperm

cells swimming in a concentration gradient of the chemoattractant

progesterone as a proof of the principle. We further illustrate this

phenomenon using simulated data based on a simple mathemat-

ical model for noisy swimming paths.

Results

Odds ratio as a statistical measure for chemotactic
performance

In experiments, sperm cells swim in a plane, close to a boundary

surface of the observation chamber [13,14]. Each recorded planar

sperm trajectory is characterized by a time-series of swimming

directions of the frame-to-frame displacement vectors. The pool of

all these swimming directions from many sperm cells represents a

convenient data set that is robust with respect to errors of the

tracking algorithm, which can for example occur if paths cross
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[11]. Even if it is not known which of the observed cells are indeed

chemotactically responsive, chemotactic behavior of a subpopula-

tion of cells shows up in this population data set as a non-uniform

distribution of swimming direction angles. The odds value N+/N2

is a common measure for the non-uniformity of a large data set of

angles and is defined as the ratio of the number N+ of angles

pointing up-gradient (245u,y,45u) divided by the correspond-

ing number N2 of angles pointing down-gradient (135u,y,225u),
where angles y are measured relative to the gradient direction

(inset in Figure 1A). This odds value N+/N2 has to be compared to

the odds value N+
0/N2

0 obtained for no-gradient control

conditions and the odds ratio is defined as

O:R:~
Nz

N{

=
N 0

z

N 0
{

ð1Þ

Generally, values of the odds ratio larger than unity characterize

positive chemotaxis towards a chemoattractant, whereas values

smaller than unity characterize negative chemotaxis away from a

chemorepellent. A question arises, however, concerning appropri-

ate significance thresholds to interpret experimentally determined

odds ratios. We emphasize that the standard formula for the

confidence interval of an odds ratio [15] should not be applied:

This formula assumes statistical independence of data points. We

will see below that successive angles along the same paths are

correlated.

Directional persistence of sperm swimming paths
Figure 1A shows the planar trajectory of the sperm head of a

human sperm cell swimming in a shallow observation chamber.

This trajectory reveals a fast wiggling motion of the sperm head

with the frequency of the flagellar beat that results from

counterbalancing forces from the beating flagellum [16]. We can

define an averaged swimming path that averages over several beat

cycles, see the purple curve. This averaged swimming path reveals

directional persistence of sperm swimming. This directional

persistence of sperm swimming is also visible in the orientational

correlation function [17] for the swimming angle

C(t)~vcos½y(t0zt){y(t0)�w ð2Þ

This orientational correlation function shows fast oscillations

(reflecting sperm head wiggling), and attains elevated values even

after several seconds (reflecting continued directional persistence,

Figure 1B). Of note, this correlation function cannot be described

by a simple exponentially decaying function as in the case of the

simple persistent random walk model, see eq. (4) below. Instead,

the decay of this orientational correlation function is characterized

by more than one time-scale, which include a fast time-scale of

rapid head wiggling as well as a slow time-scale at which the net

swimming direction changes.

Significance thresholds for experimental odds ratios by
bootstrapping

Gakamsky et al. [11] used bootstrapping on control data of

frame-to-frame direction angles to empirically determine signifi-

cance thresholds as a function of sample size for a population

measure of chemotactic performance (in their study, a suitable x2-

value). This method of bootstrapping is reviewed in [18]: multiple

selection of sub-data sets from a large control data set mimics the

repetition of control experiments and allows one to accurately

assess the expected variability of a quantitative measure like the

odds ratio or x2-value. Special care has to be taken, however, if

successive data points are correlated. In our particular case, angle

data from different sperm tracks can be considered independent,

whereas successive swimming direction angles from the same

sperm track are correlated (see above).

Due to these angle data correlations, simple bootstrapping that

constructs subsamples as random selections from pooled angle

control data can be problematic. To avoid these problems, we use

a variant of block bootstrapping: For a given test sample size N,

our algorithm constructs subsamples comprising approximately N

angles that consist of all the angles corresponding to a random

selection of tracks (selection with replacement, details in section

‘Materials and Methods’). Odds ratios are then computed for

random pairs of sub-samples. Multiple repetition of this procedure

yields a unimodal control distribution of odds ratios (upper inset in

Figure 1C). The median of this distribution is equal to unity within

experimental error. This distribution reflects the variability of the

odds ratio that is expected due to small sample number. From this

distribution we can read off the 95% percentile 1+D95%. By

definition, exactly 5% of the control odds ratios will be above the

95% percentile (upper inset in Figure 1C, upper tail of histogram

colored magenta). We will use the 95% percentile as an empirical

significance threshold to test for positive chemotaxis (see section

‘Chemotactic experiments’). The rate of ‘‘false-positives’’ (type-I

error) for this upper-tail test is 5%: Under the assumption that the

null hypothesis holds true (no chemotaxis), the likelihood for

observing in an experiment a particular odds ratio that is larger

than the 95% percentile of the control distribution is by definition

5%. Thus, by design, this significance threshold corresponds to a

significance level of 5%. Similarly, we can employ the 5%

percentile, 12 D5%, as a significance threshold to test for negative

chemotaxis. Exactly 5% of the control odds ratios will be below the

5% percentile (upper inset in Figure 1C, lower tail of histogram

colored cyan).

Note that for small N, the 5% and the 95% percentiles are not

symmetric, reflecting the skewness of the odds ratio distribution.

For large N, the difference between percentiles and the median

scales like the inverse square root of N, consistent with the law of

large numbers (Figure 1C).

Under the assumption that directional persistence of sperm

swimming is not significantly enhanced in the presence of a

potential chemoattractant, a significant O.R. is thus a strong and

robust indicator of positive taxis. To verify this assumption in our

chemotactic experiments, we compared the averaged orientational

correlation function for the case of sperm swimming in a

concentration gradient of Progesterone (1 nM) with that for

control conditions and found very good agreement (not shown).

We emphasize that the block construction of sub-samples during

bootstrapping is pivotal to account for the correlations that are

hidden in the data and to predict correct significance thresholds.

Consistency check of test design
We checked our test protocol for consistency of test design by

determining the frequency of false-positives (‘‘type-I-errors’’). We

first computed odds ratios for 28 disjoint pairs of control data sets

not used before. (Each individual control data set comprised a total

of N<50,000 angles in the ‘‘up-gradient’’ and the ‘‘down-

gradient’’ bin together.)

We compared these control odds ratios against the significance

threshold as computed by block bootstrapping in the preceding

section (1+D95% = 1.30 for N = 50,000). One out of the 28 odds

ratios exceeded this threshold. This absolute frequency of false-

positives amounts to a relative frequency of 3.6% (with a

symmetric 95%-confidence interval for the relative frequency

equal to [0.2%, 20.2%] according to references [14,19]). This

Testing for Biased Motion in Population Assays
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Figure 1. Directional persistence of sperm swimming paths prompts adapted statistical test for motion bias. A. One out of 30,000
control human sperm tracks (blue) and the corresponding averaged swimming path (purple; computed using a second-order Savitzky-Golay filter).
The fast wiggling of the sperm head center is clearly visible. For later odds ratio calculations, angles y between a preferred direction and the frame-
to-frame displacement vectors were binned according to the color wheel shown; the color-coded track illustrates the binning. B. Orientational
correlation function C(t) of the swimming direction angle y for the sperm track from panel A (solid blue). This correlation function shows fast
oscillations resulting from periodic head wiggling as well as slow decay on a time-scale of several seconds, which reflects directional persistence of
sperm swimming. Also shown is a sample average of this autocorrelation (dotted blue) computed by averaging individual angle autocorrelation
functions from n = 4,000 long sperm tracks (duration .10 sec). We can further define an analogous angle autocorrelation function for the direction
angle of the averaged path (solid purple: for the averaged path from panel A; dotted purple: sample average). C. Empirical significance thresholds for
the odds ratio of swimming direction angles for a human sperm population assay: An odds ratio O.R. = (N+/N2)/(N+

0/N2
0) greater than 1+D95%(N) with

sample size N = min(N++N2,N+
0+N2

0) should be statistically significant for positive chemotaxis at a 5%-confidence level. The test for negative
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relative frequency of false-positives is close to the chosen

significance level of 5% indicating a consistent test design.

We also applied a test protocol published previously in [11] to

the same 28 pairs of control data and found a rate of false-positives

(12 out of 28, 43%, confidence interval [25.0%, 62.6%]) that was

significantly higher than the anticipated significance level (5%).

This inconsistency could be traced back to the use of simple

bootstrapping instead of block bootstrapping in this former study

(see Text S1). Nevertheless, published results are still statistically

significant even if the new, more stringent significance thresholds

are used [20].

Chemotactic experiments
As a proof of the principle for our new statistical method, we

present a particular chemotactic experiment of human sperm cells

swimming in a concentration gradient of the chemoattractant

progesterone (Figure 1D). Progesterone at picomolar concentrations

has been previously demonstrated to be a chemoattractant for

human sperm in vitro [21]. There is furthermore evidence for a

chemotactic role of progesterone also in the physiological context,

possibly guiding sperm cells to the cumulus cells surrounding the

oocyte [20]. Here, we reconfirm sperm chemotaxis in vitro in

response to progesterone at picomolar concentrations using our

improved statistical method. By tracking more than n = 9,000 sperm

cells for each experimental condition, we were able to obtain

statistically significant odds ratios for applied progesterone concen-

trations of 10 pM and 100 pM despite the fact that the chemotactic

bias was low on the population level and, in particular, not

detectable by eye. Significance thresholds were determined by block

bootstrapping based on an extensive control data set comprising

n = 30,000 sperm tracks. We remark that a large set of tracking data

is essential to achieve statistical significance.

For a nanomolar concentration of progesterone, the obtained

odds ratio was not statistically significant. This is consistent with

earlier findings that showed reduced chemotaxis at nanomolar

progesterone concentrations [21]. Quite generally, it is to be

expected that the dependence of a chemotactic response on the

chemoattractant concentration is not a saturation curve but rather

peak-like, because saturating chemoattractant concentrations can

impede the detection of a concentration gradient [6].

A simple mathematical model of stochastic swimming
paths with tunable directional persistence

As shown above, directional persistence of sperm tracks results

in correlations of subsequent swimming direction angles and

thereby reduces the effective number of independent angles. To

understand this phenomenon better, we now study a simple

mathematical model for swimming paths, which allows us to tune

directional persistence as a control parameter (example paths in

Figure 2A). We will see that an increase in directional persistence

reduces the effective number of independent data points

(Figure 2C) and thus results in higher significance thresholds for

tests of biased motion (Figure 2B).

A simple mathematical model for animal swimming paths is

provided by the persistent random walk [22,23] (inset in

Figure 2A). Though not sophisticated enough to capture the

complexity of sperm swimming paths (Figure 1A), this model

allows us to illustrate how directional persistence affects testing of

biased motion. A persistent random walk is characterized by a

swimming direction angle y(t) that undergoes rotational diffusion

with some rotational diffusion coefficient Drot (that has units of an

inverse time). Mathematically, the motion of a persistent random

walker in two-dimensional space is given by

dx

dt
~v0cos(y),

dy

dt
~v0sin(y),

dy

dt
~

ffiffiffiffiffiffiffiffiffiffiffi
2Drot

p
j ð3Þ

where v0 is the (constant) swimming speed and j(t) denotes

Gaussian white noise with variance 1. Planar persistent random

walks are characterized by a decay of directional persistence on a

characteristic time-scale set by the persistence time t= 1/Drot

C(t)~vcos½y(t0zt){y(t0)�w~exp({
t

t
) ð4Þ

In the limit of long observation times t»t, we recover a simple

random walk with effective diffusion constant Deff = v0
2 t.

We now assume that the persistent random walker has the

ability to align its path with respect to a uniform external field

parallel to the positive x-axis at a rate b/t such that its swimming

direction angle now obeys

dy

dt
~{

b

t

� �
sin(y)z

ffiffiffiffiffiffiffiffiffiffiffi
2Drot

p
j ð5Þ

Using the Fokker-Planck formalism, one shows that the angles

follow a distribution that is independent of the persistence time t,
P(y),exp[ß cos(y)]. The motion of the persistent random walker

is biased with a net drift in x-direction ,Dx. = v0 Dt I1(ß)/I0(ß)

where I0 and I1 are modified Bessel functions of the first kind.

Suppose a hypothetical experimentalist observes a number n of

these biased persistent random walks of duration T each and

samples each track at constant time intervals Dt. As a control, n

unbiased persistent random walks are also sampled. This

experimentalist now wishes to decide about a possible bias of

motion and therefore computes an odds ratio based on a bin count

chemotaxis reads O.R.,12D5%. Significance thresholds were determined by block bootstrapping based on a large control data set of swimming
direction angles of 30,000 sperm tracks. For various sample sizes N, we sampled a distribution of odds ratios by computing odds values for suitable
random subsamples of size about N. Each subsample comprises the full angle data corresponding to a random selection of tracks. Upper inset:
Distribution of odds ratios for N = 106 by bootstrapping. The 5% and 95% percentiles of this distribution represent the significance thresholds 12D5%

and 1+D95%, respectively. Lower inset: Significance thresholds D*5% and D*95% for a simulated control data set devoid of correlations as a function of
test sample size N* (continuous lines, green D*5%, red D*95%). We obtain almost identical ‘‘significance thresholds’’, if we employ simple
bootstrapping drawing subsamples from pooled experimental angle data (not shown). The significance thresholds determined by block
bootstrapping (open symbols, green D5%, red D95%) superpose with those for the simulated control data if we renormalize sample size as N* = 0.029N,
i.e. D*5%(N*) <D5%(N) and D*95%(N*)<D95%(N). N* can be regarded as an effective number of independent data points in an experimental sample of
size N. D. Odds ratios characterizing biased motion of human sperm cells in a concentration gradient of the chemoattractant progesterone for
various initial concentrations (black dots). Errorbars denote symmetric 90%-confidence intervals that were determined using bootstrapping based on
the data from this particular experiment. Using bootstrapping on a separate, very large control data set, we can assign accurate significance levels p
to each odds ratio. These significance levels represent the likelihood that the odds ratios in this particular experiment were drawn from the control
distribution.
doi:10.1371/journal.pone.0032909.g001
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of frame-to-frame direction angles as described above, see eq. (1).

To assess statistical significance of an observed odds value,

significance thresholds are required. These can be derived by

block bootstrapping as described above for a large simulated

control data set of unbiased persistent random walks. Figure 2B

shows significance thresholds 1+D95%(N;t) as a function of sample

size N = N++N2 and correlation time t. Interestingly, all curves

superpose with a single master curve, D95%(N;t) =D*95%(N*), when

renormalizing sample size NRN*, see inset. N* can be regarded as

an effective number of independent data points in an experimental

sample of size N. The renormalization factor N*/N is close to one

for t,Dt (low correlations between successive angles), and

approximately scales as Dt/t for larger t with Dt,t,T, (clusters

of correlated angles have size ,t/Dt) (Figure 2C).

Testing simulated odds values against these significance

thresholds by definition correctly reproduces a rate of type-I-

errors (‘‘false positives’’) equal to the significance level of 5%. The

rate of type-II-errors (‘‘false negatives’’) decreases with sample size

N, but increases with the persistence time t/Dt (Figure 2D).

Discussion

In this report, we presented a test for biased motion on the

population level. We compute significance thresholds for a

measure of biased motion, the odds ratio, by using block

bootstrapping based on an extensive control data set. The key

point of our work and difference to the earlier approach [11] is to

implement the bootstrapping in a way that accounts for

correlations in the control data set. This is achieved by

constructing sub-samples during bootstrapping that comprise a

random selection of entire tracks (with ‘‘tracks’’ representing the

‘‘blocks’’). Correlation between different tracks could result from

hydrodynamic interactions [24], but can be safely ignored at the

sperm densities used here. Our method allows a robust

determination of significance thresholds. Testing against no-

gradient controls results in a rate of false-positives that is consistent

with the chosen significance level (5%). We applied this method to

a population assay of human sperm chemotaxis. The specific

values for the significance thresholds given here may depend on

Figure 2. Effect of tunable directional persistence on tests of motion bias for a simple mathematical model of stochastic swimming
paths. A. Orientational correlation function C(t) of the (frame-to-frame) swimming direction angle of simulated persistent random walks for two
values of the persistence time t=Dt (red) and t= 10Dt (blue). Also shown are two example tracks. B. 95% percentile of the odds ratio distribution of
simulated persistent random walks as a function of sample size N for different values of the persistence time t (green: t= 0.1Dt, red: t=Dt, blue:
t= 10Dt). (For each value of t, we used simulated control data sets each comprising 104 persistent random walks of duration 100Dt.) Lower inset:
Significance threshold D*95% for a simulated control data set devoid of correlations as a function of test sample size N* (magenta line). The
significance thresholds determined by block bootstrapping of simulated persistent random walks superpose with those for the correlation-free
control data if we renormalize sample size as N* = rN, i.e. D*95%(N*) <D95%(N). N* can be regarded as an effective number of independent data points
in a sample of size N. C. The ‘‘effective number of independent data points’’ N* in a sample of size N of angles of simulated persistent random walks is
a function of the persistence time t. The ratio N*/N was determined from a superposition of percentiles-curves of the odds ratio distribution for
different values of t by rescaling NRN* (‘‘data collapse’’), see inset of Figure 2B. D. We can test simulated biased persistent random walks for the
presence of biased motion by comparing the corresponding odds ratio to ‘‘empirical’’ significance thresholds as computed in Figure 2B. This involves
the risk of type-II errors (‘‘false negatives’’), in which biased motion is falsely classified as unbiased (the null hypothesis is falsely accepted). The rate of
such a type-II errors decreases with sample size N, but increases with the persistence time t of the biased persistent random walks (green: t= 0.1Dt,
red: t=Dt, blue: t = 10Dt). Parameter: b= 0.1. (Note that curves do not superpose as a function of the effective number N* of independent data points
as the mean of the odds ratio distribution ,O.R.. depends on t. This is a result of our use of frame-to-frame displacements vectors and an effective
averaging of stochastic turning for t,Dt. If the hypothetical experimentalist could sample instantaneous swimming directions at discrete times, the
corresponding ,O.R.. would be largely independent of t and the corresponding error rate curves would superpose.)
doi:10.1371/journal.pone.0032909.g002
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our specific experimental setup and should be computed again

upon major changes of conditions. Our method is based on the

odds ratio as a quantitative measure of chemotactic performance,

but can easily be adapted for other measures such as a suitable x2-

value as used in [11].

Block bootstrapping is an established technique in the quantita-

tive disciplines to empirically determine robust statistical measures

of dependent data [12]. It has been used, for example, in the

statistical analysis of particle image velocimetry data at high

sampling rate [25]. In the biological sciences, however, the

awareness of weak correlations in time series data, and the resulting

problems for statistical analysis might be low despite existing

treatments (see, e.g., reference [26]). Here, we analyzed directional

swimming responses of sperm cells and thus highlighted subtleties

and possible pitfalls of statistical testing of correlated biological data.

Materials and Methods

Spermatozoa
Human semen samples were obtained from ten healthy donors

after 3 days of sexual abstinence. Informed consent was obtained

in written form from each donor. Ethics approval was granted in

written form by the Bioethics and Embryonic Stem Cell Research

Oversight Committee of the Weizmann Institute of Science.

Semen samples with normal sperm density, motility and

morphology [according to WHO guidelines, [27]] were allowed

to liquefy for 30–60 min at room temperature. Human sperma-

tozoa were separated from the seminal plasma by the migration–

sedimentation technique [28] using commercially available

Modified HTF medium (Irvine Scientific, Santa Ana, CA, USA)

supplemented with 0.3% human serum albumin (HSA, Irvine

Scientific, Santa Ana, CA, USA). Following this procedure, the

sperm concentration was adjusted to 46105 cells/ml in HTF

medium containing 0.3% HSA and 3.5% polyvinylpyrrolidone

(PVP 25K, Fluka, Buchs, Switzerland). The sperm suspensions

were incubated under an atmosphere of 5% CO2 at 37uC for an

additional 1 h (in total, 2 h together with the separation

procedure) to obtain capacitated spermatozoa [8].

Chemotaxis assay
Chemotaxis assays were performed at room temperature in a

disposable m-slide chemotaxis chamber, consisting of two large

volume reservoirs connected by a thin slit (Ibidi GmBH, Munich,

Germany), see also [29]. In a series of initial experiments, the

establishment of a stimulus concentration gradient was verified by the

use of rhodamine B. Sperm suspensions and stimulus solutions were

adjusted to room temperature prior to the experiment. The chamber

loading was according to manufacturer instructions: Both reservoirs

and the slit of the chamber were filled with spermatozoa, thus

avoiding any directional bias of the initial sperm concentration field in

the direction of the concentration gradient to be applied. The

chemoattractant was then applied within a sperm suspension to one

of the reservoirs. This avoided dilution of the cell concentration by the

application of the chemoattractant. Following loading, the slides were

incubated at room temperature for 20 min to allow the establishment

of a concentration gradient of the stimulus. The swimming of

spermatozoa in the observation area was video-recorded at 25 frames

per second for a total of 4 min using a Nikon Eclipse Ti microscope at

106magnification. Two different fields of view were interchanged

every 40 s by manually moving the microscope stage in the direction

perpendicular to the concentration gradient. This procedure reduced

oversampling of sperm cells swimming in tight circles. Subsequently,

sperm tracks were analyzed with custom-made software.

New bootstrap protocol
By combining control data from different sperm samples, we

compiled a large control data set of 30,000 sperm tracks; for each

track, the corresponding set of frame-to-frame direction angles was

stored. Then, again for each track, angles outside the bins of

interest (i.e. those satisfying 45u,y,135u or 225u,y,315u) were

discarded. To construct a subsample of size N, tracks were

randomly chosen from this large control data set (with replace-

ment) until the selected tracks together made up a total of about N

angles. (The true subsample size could deviate from N with

standard deviation ,40 angles, which is negligible for our

purposes.) Our selection of tracks represents a variant of block

bootstrapping. Using two random subsamples, an odds ratio can

be computed according to eq. (1). By repeated selection of (pairs

of) subsamples, we obtained a distribution of odds ratios (upper

inset in Figure 1C). The 95% percentile of this distribution,

1+D95%, is shown in the main panel of Figure 1C as a function of

subsample size N. We used this 95% percentile as the significance

threshold to test data from chemotactic experiments.

Old bootstrap protocol
For the convenience of the reader we cite the bootstrapping

protocol from an earlier work [11]. There, for a pair of control data

(from the same sperm sample), frame-to-frame direction angles from

all tracks of each data set were pooled, thus giving rise to two angle

pools. Angles outside the bins of interest (i.e. those satisfying neither

245u,y,45u nor 135u,y,225u) were discarded. Then, from

each angle pool, a subsample of size N was drawn by random

selection (with replacement). Binning of angles in these two

subsamples gives the numbers of angles in the ‘‘up-gradient’’ bin

(245u,y,45u) for the two subsamples, N1+ and N2+, respectively.

By construction, the number of angles in the ‘‘down-gradient’’ bin

(135u,y,225u), are N12 = N2N1+ and N22 = N2N2+ for the two

subsamples, respectively. The bin counts N1+, N12, N2+, and N22

represent a contingency table, from which a x2-value can be

computed using the standard formula x2 = [(N1+2N2+)2/

(N1++N2+)+(N122N22)2/(N12+N22)]/2. By repeated selection of

pairs of subsamples, one obtains a distribution of x2-values, from

which a 95% percentile can be read off. Interestingly, applying this

bootstrapping protocol to different pairs of control data gave quite

different x2-distributions, and thus a set of different values for the

respective 95% percentiles. In [11], it was proposed to use the

median of this set of 95% percentiles as significance threshold to test

data from chemotactic experiments.

Supporting Information

Text S1 Supporting Information Text contains a de-
tailed comparison of a previously published statistical
test for biased motion [11] and the new test proposed
here together with an analysis for the assoicated rate of
false-positive-testing.
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