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Function of intrinsically disordered proteins may depend on deviation of their
conformational ensemble from that of a random coil. Such deviation may be hard to
characterize and quantify, if it is weak. We explored the potential of distance distributions
between spin labels, as they can be measured by electron paramagnetic resonance
techniques, for aiding such characterization. On the example of the intrinsically disordered
N-terminal domain 1–267 of fused in sarcoma (FUS) we examined what such distance
distributions can and cannot reveal on the random-coil reference state. On the example of
the glycine-rich domain 188–320 of heterogeneous nuclear ribonucleoprotein A1 (hnRNP
A1) we studied whether deviation from a random-coil ensemble can be robustly detected
with 19 distance distribution restraints. We discuss limitations imposed by ill-posedness of
the conversion of primary data to distance distributions and propose overlap of distance
distributions as a fit criterion that can tackle this problem. For testing consistency and size
sufficiency of the restraint set, we propose jack-knife resampling. At current desktop
computers, our approach is expected to be viable for domains up to 150 residues and for
between 10 and 50 distance distribution restraints.

Keywords: low-complexity domains, RNA-binding proteins, ensemble structure, EPR spectroscopy, random coil,
intrinsically disordered, liquid-liquid phase separation

INTRODUCTION

Based on Anfinsen’s influential thermodynamic hypothesis, function of proteins was considered for a
long time to depend exclusively on domains that are well represented by a single conformer with
minimum free energy. Structure of such domains can be specified at atomic resolution and can be
characterized by well-established techniques, such as x-ray crystallography, NMR spectroscopy, and
cryo-electron microscopy. However, meanwhile it is also well-established knowledge that a
substantial fraction of the genome codes for intrinsically disordered domains (IDDs) or proteins
(IDPs) that are also functional, without relying for their function on three-dimensional structure
defined at atomic or near-atomic resolution (Uversky, 2019). Often, IDDs and IDPs are described as
structure-less, implying that they exhibit random-coil behavior similar to the one postulated for
chemically denatured proteins (Fitzkee and Rose, 2004). However, this assumption is at odds with
the observation that many disordered domains contain evolutionary conserved residues and that
mutations in such domains can be pathogenic. This applies even to disordered domains that have not
been found to fold upon binding to other proteins or nucleic acids, suggesting that conformation
space of proteins cannot be described by a dichotomy of atomic-resolution structure and complete
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absence of structure. Instead, there exists a continuum between
order and disorder (Uversky et al., 2005; Habchi et al., 2014).
IDDs are ubiquitous in nucleic-acid binding proteins, as has been
demonstrated early for transcription factors (Liu et al., 2006).
More recently, formation of membrane-less organelles by RNA-
binding proteins has been associated with the presence of IDDs
(Brangwynne et al., 2015; Uversky, 2017). Despite impressive
development of characterization techniques for IDDs over the
past two decades, quantification of weak deviation from random-
coil behavior has remained a complicated problem. In a dynamic
picture, such weak order corresponds to correlated motion of
residues or groups of residues with large sequence separation that
would not be expected in a random coil (Kurzbach et al., 2016). In
an ensemble-average picture, this correlated motion is expected
to cause heterogeneity of segmental radius of gyration across the
peptide sequence. In other words, sections of the chain will be
more or less compact, depending on where in the sequence they
are situated.

While the radius of gyration is easy to measure for the whole
chain, such measurements are not feasible for sections of the
chain. However, it is well known from polymer physics that the
radius of gyration and the root mean square (RMS) end-to-end
distance both scale by an exponential law with respect to the
number of residues, with the scaling exponent coinciding for ideal
chains. The end-to-end distance of chain sections is accessible by
distance measurements between spin labels using pulsed dipolar
spectroscopy (PDS) techniques, in particular by the double
electron resonance (DEER) experiment. Such measurements
are well established for proteins (Schiemann and Prisner,
2007; Jeschke, 2012). The primary data that they provide can
be processed into distance distributions (Jeschke et al., 2002;
Bowman et al., 2004; Chiang et al., 2005), which can in turn be
predicted from polymer physics models (Zheng et al., 2018) and
from ensemble models of a domain (Jeschke, 2016). Such
characterization by distance distribution measurements has
been applied to IDPs in the past (Drescher, 2012; Geist et al.,
2013). Here we develop a general approach for using distance
distribution data in ensemble modeling and for analyzing such
ensembles in terms of weak order.

The first approaches for experimentally informed ensemble
modeling of intrinsically disordered proteins utilized small-angle
x-ray scattering curves (Bernado et al., 2007) or ensemble mean
values of NMR parameters, such as various chemical shifts,
3JHNHa couplings, residual dipolar couplings, paramagnetic
relaxation enhancements, and nuclear Overhauser
enhancements (Marsh and Forman-Kay, 2012). The maximum
entropy principle allows for combining molecular dynamics
(MD) simulations with any type of constraints or restraints for
which a forward model exists that can compute the measured
quantity from atomic coordinates of a conformer (Cesari et al.,
2018). Alternatively, ensembles resulting from unbiased MD
simulations or other sampling techniques can be reweighted
based on the maximum entropy principle (Köfinger et al.,
2019). A somewhat similar approach, which has been
discussed for DEER data, estimates the maximum occurrence
of a conformer in an ensemble that is consistent with
experimental restraints (Gigli et al., 2018). Principles of

modeling proteins ensembles have been recently reviewed
(Bonomi et al., 2017).

Our approach is based on the idea that knowledge of the
probability distribution of experimental restraints, as is the case
with DEER distance distributions, provides us with additional
information compared to ensemble mean values. Hence we can
apply our restraints as “distribution restraints”. In a first
modeling step, distribution restraints can guide sampling, as
they allow for testing to what extent a single conformer is
consistent with experimental data (Jeschke, 2016). In a second
step, they can be used, together with other types of restraints, in
ensemble reweighting (Jeschke, 2021). For application work, such
integration with other types of data is desired and may often be
necessary in order to sufficiently restrain the model and test its
reliability. In the present study, we develop an approach that
provides ensemble models from only distance distribution data
and tests their robustness.

This development faces three obstacles. As a first obstacle, the
reference state of complete disorder is assumed, but not proved to
correspond to a Flory self-avoiding walk random coil. We need to
test whether this approximation is sufficiently good in the range
where label-to-label distance distribution measurements can be
performed. To that end, we analyze data from a recent study on
liquid-liquid phase separation (LLPS) of the intrinsically
disordered N-terminal domain (NTD) of fused in sarcoma
(FUS), where sections 10–29 and 105-128 exhibited featureless,
Gaussian-like distance distributions (Emmanouilidis et al., 2021).
Specifically, we address the question whether PDS EPR can
distinguish between Gaussian-like distributions and self-
avoiding walk distributions with variable scaling exponent ν
(SAW-ν distributions) within the segment-length range where
its distance distribution fidelity is best. This question is important
for specifying restraints in modeling. As a second obstacle,
conversion of primary data to distance distributions is an ill-
posed problem (Jeschke et al., 2002; Chiang et al., 2005; Gigli
et al., 2018), which may be particularly difficult to solve for very
broad distributions that extend to rather long distances (Jeschke
et al., 2004). We address this problem by systematic analysis of 19
distance distributions obtained on heterogeneous nuclear
ribonucleoprotein A1 (hnRNP A1), a human protein
predominantly active in mRNA regulation (Jean-Philippe
et al., 2013). HnRNP A1 consists of a glycine-rich domain
(188–320), which is an intrinsically disordered low-complexity
domain (LCD) with a similar amino acid composition as the
NTD of FUS, tethered to two folded RNA recognition motifs
(RRMs). We analyze DEER data obtained with one or both label
sites in the LCD of hnRNP A1 with different approaches and
check how this influences ensemble modeling. Apart from
addressing data analysis, hnRNP A1 also provides a reference
case for analyzing weak structure in flexible domains tethered to
folded domains with known structure. This is achieved by
including the previously reported solution structure of the
RRMs (Barraud and Allain, 2013) in the modeling. As a third
obstacle, it is difficult to estimate howmany distance distributions
are required for sufficiently restraining an ensemble model in the
regime of weak order. In order to answer this question, we
perform jack-knife resampling, where systematically one of the
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19 restraints for hnRNP A1 is left out and the corresponding
distance distribution is predicted by an ensemble model fitted to
the other 18 restraints. Finally, we discuss limitations of our
approach as well as possible extensions.

MATERIALS AND METHODS

Sample Preparation for hnRNP A1
A construct of His6-tagged wild-type hnRNPA1 (P09651, isoform
A1-A), was already available in the Allain group at ETH Zurich,
and a two-step affinity chromatography protocol was adapted
from (Barraud and Allain, 2013) to purify all mutants. Further
experimental details can be found in (Ritsch, 2019). In summary,
point mutations of the partially buried native Cys in the folded
domains to non-reactive residues (C43S, C175A), and to
introduce pair-wise engineered Cys spin labeling sites were
introduced by sequential application of site-directed
mutagenesis with PCR primers with the desired point
mutation. Spin labeling was performed with MTSL (2,2,5,5-
tetramethyl-3-pyrroline-3-methylmethanethiosulfonate) in
50 mM sodium phosphate buffer, pH 6.5, 100 mM L-arginine,
and 100 mM L-glutamate at approximately 10 times molar excess
and 10 μM hnRNP A1 concentration. Excess spin label was
removed on a PD10 desalting column (GE Healthcare), and
the labeled protein was concentrated in 10 kDa MWCO
centricons (Amicon Ultra-4 Centrifugal Filter Units, Merck
and Cie). DEER samples were prepared by mixing with d8-
glycerol (1:1 ratio, v:v), and transferring ∼35 μL solution at
approximately 25 μM hnRNP A1 concentration to 3 mm outer
diameter quartz capillaries and flash-freezing by immersion into
liquid nitrogen.

DEER Measurements on hnRNP A1
The DEER measurements were performed at a home-built high
power Q-band spectrometer (≈34 GHz) controlled by a Bruker
Elexsys E580 bridge in a home-built TE001-type resonator at
50 K. The 4-pulse DEER pulse sequence was used, with pulse
lengths of t(π) � t (π/2) � 16 ns. The pump pulse length was either
16 or 12 ns (on the maximum of the nitroxide spectrum), and a
pump/detection frequency separation of 100 MHz was used. The
first refocusing delays was t1 � 400 ns, and the second refocusing
delay was set individually for each sample (as long as possible to
be able to still detect a reasonably strong echo). The time-step was
either 12 or 8 ns.

Distance Distribution Analysis
The sample preparation and DEER measurements of FUS are
described in detail in (Emmanouilidis et al., 2021). Distance
distribution analysis for FUS was performed using DeerLab
0.9.0 (downloadable at jeschkelab.github.io/DeerLab/). Briefly,
we used a multi-pathway kernel K(t, r) of the form
K(t, r) � [Λ0 + λ1K0(t, r) + λ2K0(t − T0,2, r)]e−k(λ1 |t|+λ2|t−T0,2|)

where K0 is the elementary dipolar kernel, Λ0 accounts for the
contribution of unmodulated dipolar pathways, λ1 and λ2

describe the amplitudes of the modulated dipolar pathways,
T0,2 is the refocusing time of the additional modulated dipolar
pathway, and k is the background decay rate. While K0 is fixed,
Λ0, λ1, λ2, and k are fit parameters. We assumed an exponential
background function. The distance distribution P(r)was fitted by
Tikhonov regularization (using either the Bayesian information
criterion or the residual method for regularization parameter
selection), by fitting a single Gaussian distribution by varying
mean distance and full width at half maximum Γ, or by fitting the
SAW-ν model by varying RMS end-to-end distance and scaling
exponent ν. Standard deviations σr were computed as
σr � Γ/

����
8ln2

√
. The dispersed phase data were taken not from

the biphasic sample, but from monophasic dispersed FUS 1–267
sample in 0.6 M urea that had been prepared for obtaining initial
values and lower and upper bounds for fitting biphasic data, as
shown in (Emmanouilidis et al., 2021). Distance distribution
analysis for hnRNP A1 was performed by single-Gaussian
fitting in DeerAnalysis 2019 using default settings, by single-
Gaussian and Tikhonov analysis in DeerLab 0.8b, and by DeerNet
from Spinach version 2.5.5446. For Tikhonov analysis,
regularization parameters were either selected by the AIC
criterion or fixed at α � 5. In DeerAnalysis and DeerLab, a
monoexponential background function was assumed
corresponding to a homogeneous distribution of remote spin
labels in three-dimensional space. DeerNet is trained with
stretched exponential background functions (Worswick et al.,
2018), thus also allowing for fractal dimensionality lower than
three of the spatial distribution of remote labels. Results of single-
Gaussian analysis with LongDistances1 were provided by
Christian Altenbach and results of multi-Gaussian analysis by
DD (Stein et al., 2015) were provided by Eric Hustedt.

Generation of Raw Ensembles
Raw ensembles were generated in MMM using the Domain
Ensemble Modeller described in (Jeschke, 2016). Briefly, in
unrestrained mode the Domain Ensemble Modeller generates
peptide backbone models that conform to residue-specific
Ramachandran statistics for backbone torsions ϕ and ψ as
provided by (Hovmoller, 2002). In restrained mode, each
distance distribution restraint is tested in a given conformer as
soon as backbone coordinates for both sites are available. The
mean spin label position at the newly generated site is predicted
from backbone coordinates, the label-to-label distance is
computed, and a probability is estimated for this distance to
be consistent with a Gaussian restraint. If the product of these
probabilities for all evaluated restraints drops below a certain
threshold, the conformer is discarded and generation of a new
conformer is started. As such rejection of conformers typically
occurs well before they are completely generated, the approach
improves sampling of the part of conformational space that is
consistent with the restraints.

Restraints were set as 〈r〉, √2σr and an acceptance threshold
corresponding to probability 0.75 was used. For FUS, a fixed
number of conformers was generated in a single run. For FUS

1http://www.biochemistry.ucla.edu/Faculty/Hubbell/.
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1–267, this number was 90 and in all other cases it was 2,500. For
unrestrained FUS 1–100 and 67–166, two runs with 2,500
conformers each were performed. For hnRNP A1, PDB
structure 2LYV of UP1 (Barraud and Allain, 2013) was used
for the RRMs. Coordinates of only residues 1–187 were kept. In
all runs, LCD models were generated for all 20 models in the
NMR structure, expending 1 h computation time on eight
processor cores per NMR model. This generated about 400
conformers. For the unrestrained ensemble, 48 min were
expended per NMR model, leading to 2,146 conformers.

Ensemble Fitting
Ensemble fitting was performed with the module_ensemble_fit
function of MMMx (github.com/gjeschke/MMMx, commit
55a7fef). Distance distribution files were provided in a four
column format with the first column being the distance axis
(units of nanometers), the second column being the distance
distribution, and the third and fourth column the lower and
upper bound of the uncertainty band (used only for plotting). The
only change with respect to the corresponding module in MMM,
as described in (Jeschke, 2021), is adaptive block size in iterative
fitting. If less than 10% of the specified block size are available for
the next iteration, block size is increased by 50%. If the number of
retained conformers later drops, block size is reduced to the
originally specified value, which was 100 in our computations.

RESULTS

The Random-Coil Reference State
Probing the Reference State by DEER Distance
Distributions
Before we can address the problem of weak structure, we need to
establish what can be inferred by DEER distance distributions on
an unstructured protein. In particular, we are interested in the
question what level of detail can be realistically interpreted in an
ensemble model informed by such distributions. We analyze this
on the example of the NTD of FUS, where we used protein
constructs that do not contain any well-structured domains and
are thus well suited as a fully disordered reference system.

We define structure as deviation from the maximum-entropy
state of a protein domain under given solvent conditions. From a
polymer physics view, this maximum-entropy state corresponds
to a random coil. Since protein domains are not homopolymers,
some deviation from simple polymer physics models is expected.
For instance, Ramachandran angle preferences are residue-
specific even in loop regions of proteins (Hovmoller et al.,
2002), suggesting that the maximum-entropy state of a
domain depends on sequence. Therefore, the random-coil
reference state itself must be characterized first before
conclusions can be drawn on weak structure.

It has been demonstrated as early as 2004 that randomization
of backbone torsion angles of structured proteins leads to
ensembles whose RMS end-to-end distances R and radii of
gyration RG conform to expectations for random coils, with a
scaling law R∝N] where N is the number of residues and ] ≈ 0.6
for chemically denatured proteins (Fitzkee and Rose, 2004).

These conditions correspond to a Flory random coil in a good
solvent where it maximally expands (] � 3/5). A single-molecule
Förster resonance excitation transfer (FRET) study found
] ≈ 0.62 for denatured and IDPs, whereas foldable sequences
in water exhibited ] ≈ 0.48, close to the condition of a Θ-solvent
(] � 1/2) that offsets monomer-monomer interactions
(Hofmann et al., 2012). Accordingly, the distribution P(r) of
end-to-end distances in IDDs is expected to conform to a self-
avoiding random walk. Dependence of chain dimension on
solvent quality is then quantified by the scaling exponent ν.
An expression for P(r) as a function of R and ν has been
derived (SAW-ν model) and compared to molecular dynamics
(MD) simulations (Zheng et al., 2018). The distribution is skewed
with a steeper flank toward short distances than toward long
distances.

In recent work on the NTD of FUS, we found distance
distributions between spin labels for the two chain sections
10–29 and 105–128 that were experimentally indistinguishable
from a Gaussian distribution, which is symmetric
(Emmanouilidis et al., 2021). In particular, we have studied
this NTD in a denatured state in the presence of 3 M urea, in
a dispersed state at low concentration in the presence of 0.6 M
urea, and in a bulk condensed phase that is obtained at 0.6 M urea
concentration and higher protein concentration by liquid-liquid
phase separation and isolation of the condensed phase by
centrifugation. In order to rationalize the finding that
distributions are very well approximated in all three cases, we
first computed the distributions according to the SAW-ν model
for poor- and good-solvent conditions and compared them to a
Gaussian distribution (Figure 1A). Whereas in poor-solvent
conditions, where the chain maximally compacts (] � 1/3, red
line), asymmetry of P(r) is pronounced, it is only modest in good-
solvent conditions (green line). A fit of the good-solvent P(r) by a
Gaussian distribution (black line) shows rather minor deviations
that may be hard to resolve by EPR distance distribution
measurements. The main deviation at short distances is
usually below the lower limit of the distance range of PDS
techniques, whereas extension of the SAW-ν distribution to
longer distances than in a Gaussian distribution may be hard
to separate from intermolecular background.

In order to corroborate this hypothesis, we have generated
unrestrained ensembles of the NTD of FUS (residues 1–267) and
of two 100-residue sections thereof (1–100 and 67–166) by a
Monte-Carlo algorithm that samples from residue-specific
Ramachandran distributions of backbone torsion angles for
loop regions in proteins (Hovmoller et al., 2002). Otherwise,
this algorithm only avoids backbone and sidechain clashes
(Jeschke, 2016). The simulation of 100-residue sections
allowed to generate much larger raw ensembles than could be
obtained within the same computation time for the complete
NTD. The ranges were selected such that both studied
subsections 10–29 and 105–128 were flanked to both sides
with the maximum number of residues possible for a 100-
residue construct. We consider the ensuing ensembles as good
approximations for the maximum-entropy state of a protein
sequence. In order to compare them with the Flory random
coil model, which departs from a freely jointed chain model, we
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analyzed the scaling of the RMS end-to-end distance Rk for all
segments with their length k, assigning the CA-CA distance
between residues i and j to k � j-i (Jeschke, 2021). For an

ensemble of 90 conformers of FUS 1–267 (gray points in
Figure 1B), we find a best fit Rk � 5.23·k0.57 Å (dark gray line)
in rather good agreement with values inferred by FRET and MD

FIGURE 1 | End-to-end and label-to-label distance distributions simulated for the unrestrained NTD of FUS and sections thereof. Residue-specific Ramachandran
statistics was assumed as extracted by Hovmoller et al. (2002) from PDB for residues not denoted as helix or strand by DSSP. (A) End-to-end distributions predicted by
the self-avoid walk model with variable scaling exponent (SAW-ν) by Zheng et al. (2018) for a poor solvent (ν � 1/3, red) and for a good solvent (ν � 3/5, green) and fit of a
normal distribution to the good-solvent case (black). (B) Segment-wise root mean square CA-CA distances extracted from 90 simulated conformers of FUS 1–267
(gray), and 2,500 conformers of FUS 1–100 (light green) and FUS 66–167 (light red, horizontally shifted by 20 segments for clarity) and fits by a power law b·kν (solid black,
green, and red lines, respectively). (C)CA-CA distance distribution for residues 10–29 in 5,000 conformers of FUS 1–100 (light red dots) and fits by the SAW-νmodel (red
line) and a normal distribution (black line) as well as theMTSL-MTSL distance distribution (pale green dots) with fit by a normal distribution (green line). (D)CA-CA distance
distribution for residues 105–128 in 5,000 conformers of FUS 67–166 (light red dots) and fits by the SAW-νmodel (red line) and a normal distribution (black line) as well as
MTSL-MTSL distance distribution (pale green dots) with fit by a normal distribution (green line).

TABLE 1 | Fit parameters of experimental distance distributions for MTS labels attached at the ends of segments 10–29 and 105–128 in FUS NTD 1–267. The mean value
〈rDEER〉 and standard deviation σr,DEER are specified for Gaussian fits, while the RMS end-to-end distance RDEER and scaling exponent νDEER are specified for the SAW-ν
distribution.

Site1 Site 2 Conditions 〈rDEER〉 [Å] σr,DEER [Å] RDEER [Å] νDEER

10 29 3 M urea 36.7 9.4 37.4 0.85
10 29 0.6 M urea 31.8 9.9 33.2 0.75
10 29 Bulk condensed 29.7 10.9 31.8 0.64
105 128 3 M urea 39.7 11.2 40.9 0.82
105 128 0.6 M urea 35.9 11.5 37.3 0.76
105 128 Bulk condensed 31.6 11.7 33.7 0.64
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FIGURE 2 | Distance distribution measurements of sections delimited by spin labeling sites (10–29 or 105–128) measured with FUS NTD 1–267. The left column
shows primary data (black dots), their DeerLab fit by a single Gaussian distribution (green, left ordinate) and the fit residual (blue dots, right ordinate). Signals from minor
pathways at the end of 4-pulse DEER data or at the middle of 5-pulse DEER data were included in the kernel (Fabregas Ibáñez et al., 2020). The right column shows
distance distributions obtained by Tikhonov regularization with choice of the regularization parameter by the Bayesian information criterion or residual method
(black with gray uncertainty band), by single-Gaussian fitting (green with pale green uncertainty bands) and ensemble fits of the Gaussian distribution (red) from raw
ensembles of 2,500 conformers each.
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simulations for IDPs (Hofmann et al., 2012; Zheng et al., 2018).
Variation of the Rk for different pairs (i,j) at the same k appears to
be substantial. However, we could trace this back to the low
number of conformers used in this analysis. When we repeated
the analysis with ensembles of 2,500 conformers each for FUS
1–100 (green) and FUS 67–166 (red), we found a much narrower
distribution of the Rk around the best-fit scaling laws 5.25·k0.57 Å
and 5.17·k0.58 Å, respectively. We note, however, that the Rk are
not symmetrically distributed around the scaling law at all k. The
Rk appear to increase somewhat more steeply than the mean
scaling law for small k and somewhat less steeply for large k. This
point is extended below.

We have then inquired whether the distributions of CA-CA
distances in the unrestrained ensembles (red dots in Figures
1C,D) conform to the SAW-ν distribution (red lines). We find
R � 27.7 Å and ν � 0.78 with a RMS deviation (RMSD) of 0.163
for section 10–29 in FUS 1–100 and R � 31.9 Å, ν � 0.77 with
RMSD 0.171 for section 105–128 in FUS 67–166. The scaling
exponents ν appear to be too large, as they should not exceed 0.6
for a random coil in a good solvent. Moreover, Gaussian fits
(black lines) of the same distributions result in similar RMSD.We
find a mean value 〈r〉 � 27.0 Å and standard deviation σr � 8.2 Å
with RMSD 0.155 for section 10–29 in FUS 1–100 and 〈r〉 �
31.0 Å and standard deviation σr � 9.7 Å with RMSD 0.170 for
section 10–29 in FUS 105–128.

Measurement of the distribution between spin labels
further complicates detection of the asymmetry, as the
label-to-label distribution is a convolution of the CA-CA
distribution with a contribution from the sidechain rotamer
distribution of the label. In order to assess this effect, we have
simulated the label-to-label distribution by a rotamer library
approach (Polyhach et al., 2011) in MMM (Jeschke, 2018).
Since on the order of 100 × 100 rotamers at the two sites are
populated for each backbone conformer, the resulting
distributions (green points in Figures 1C,D) are much
smoother. They are fitted quite well by Gaussian
distributions (dark green lines) with 〈rlabel〉 � 29.7 Å and
standard deviation σr,label � 10.8 Å for section 10–29 in FUS
1–100 and 〈rlabel〉 � 33.4 Å and standard deviation σr,label �
12.1 Å for section 105–128 in FUS 67–166.

Figure 2, with original data taken from (Emmanouilidis et al.,
2021), demonstrates that the quality of Gaussian distribution fits
to the primary DEER data is high for FUS 1–267 denatured in 3 M
urea, fully dispersed at 5 μM protein concentration in 0.6 M urea,
and in bulk condensed phase after LLPS. In the left column,
primary data that were only phase and zero-time corrected (black
dots) are superimposed by fits in DeerLab (Fabregas Ibáñez et al.,
2020) in which a single Gaussian distance distribution and an
exponential background function are simultaneously fitted (green
line, left ordinate). The exponentially decaying background
accounts for interaction with spin labels in other FUS NTD
molecules that are assumed to be homogeneously distributed
in three-dimensional space. The residuals are shown as blue dots
(right ordinate). The only apparent deviations of the residual
from the expected white noise occur near zero time in the two
bulk condensed phase measurements and correspond to an
underestimate of the short distance contribution by the fit.
Note that an overestimate would be expected if the data were
better represented by an SAW-ν distribution. The likely cause of
the underestimate is neglect of the contribution at very short
distances in the DeerLab simulations, as it is expected to be
suppressed by insufficient excitation bandwidth. This
suppression appears to be weaker than assumed.

In the right column of Figure 2, distance distributions
obtained by Tikhonov regularization (black lines with gray
uncertainty bands, 95% confidence interval) are compared
with the fitted Gaussian distributions (dark green lines with
pale green uncertainty bands). Tikhonov regularization does
not make an assumption about the shape of the distribution,
except for a certain degree of smoothness. Although it can be
argued that the Tikhonov distributions deviate from the Gaussian
distributions toward the expected more asymmetric shape with
lower contributions at short distances and higher contributions at
the longest distances, these deviations are minor and are clearly
seen only in the bulk condensed phase data. Nevertheless, we have
attempted fits of the DEER data by the SAW-ν model. The fitted
distributions are shown as blue lines with pale blue uncertainty
bands in Figure 2, the fit parameters are reported in Table 1
alongside the parameters of the Gaussian fits, and the fits of the
primary data and fit residuals are shown in Supplementary

FIGURE 3 | Segment-wise root mean square CA-CA distances (dots) for chain sections 10–29 in FUS 1–100 (A) and 105–128 in FUS 67–166 (B) and attempted
fits by a scaling law b·kν. For unrestrained ensembles, the average is over 2,500 conformers with uniform population. For restrained ensembles, the average population-
weighted and the number of conformers in the fitted ensembles is given in the legend in parentheses.
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Figure S1. Only for FUS 1–267 in 3 M urea do the SAW-ν fits
differ significantly from the distributions obtained by Tikhonov
regularization or Gaussian fits. However, in these cases the
asymmetry is opposite to the expected one, with more gradual
increase of P(r) at short distances and steeper decrease at longer
distances. This can be traced back to the unphysical scaling
exponents of ν � 0.85 for segment 10–29 and 0.82 for segment
105–128 that we find by these fits. These findings reinforce our
conclusion that parameters of the SAW-ν model cannot reliably
be extracted by fitting DEER distance distributions for chain
segments containing about 20 residues. The maximum-entropy
reference state is well approximated by Gaussian label-to-label
distance distributions. On the one hand, this finding justifies the
use of Gaussian restraints in generating raw ensembles, as
introduced in (Jeschke, 2016). On the other hand, it suggests
that longer segments would need to be studied in order to extract
parameters of the SAW-ν model. Such an approach would,
however, be limited by uncertainty of the shape of DEER
distance distributions at distances longer than 50–80 Å.

We also note that measurements for the characterization of
LLPS are more sensible in the biphasic system containing both the
dispersed and condensed phase under otherwise identical
conditions, as such samples match the surface-to-volume ratio
of biological membraneless organelles and such measurements
require much less protein (Emmanouilidis et al., 2021). In such
systems, however, the separation of the distance distributions
corresponding to the dispersed and condensed phase introduces
further uncertainty. We have therefore limited our analysis in the
present study to the distance distributions of monophasic protein
samples (either in solution or a large phase-separated
compartment).

A Hybrid Experimental and Computational Approach
We have then turned to the question whether a hybrid
experimental/computational approach can shed more light on
the reference state. To that end we have generated six raw
ensembles of 2,500 conformers each of FUS 1–100 and 67–166
by the Monte Carlo approach introduced in (Jeschke, 2016) by
imposing the Gaussian restraints for sections 10–29 and 105–128,
respectively, in the denatured, dispersed, and bulk condensed
states. We have then refined these ensembles by fitting
populations of the conformers and discarding all conformers
with less than 1% of the population of the most populated
conformer, as described in (Jeschke, 2021). These
computations have been performed with an implementation of
the EnsembleFit module of MMM into the successor program
MMMx2. With this size of the conformer basis set, we find that
the Gaussian distance distributions can be fitted virtually
perfectly for both sections in all conditions tested (red dashed
lines in the right column of Figure 2). The overlap of the
normalized experimental and ensemble-simulated distance
distributions varies between 98.2% (105–128, 0.6 M urea,
dispersed) and 99.1% (10–29 0.6M urea, dispersed) with sizes
of the refined ensemble between 47 (10–29, 3 M urea, denatured)

and 145 (10–29, 0.6 M urea, dispersed) conformers. We found
that fit quality was converged with respect to adding further
conformers from the raw ensemble after evaluating about 1,000
conformers.We conclude that themethodology of generating raw
ensembles of conformers by aMonte Carlo approach and refining
and reducing these ensembles by population fitting can provide
relatively small ensembles that fully represent the information
contained in EPR-measured label-to-label distance distributions.

We have then tested whether these ensembles allow for
inference on the scaling exponent ν of random-coil models.
To that end, we have performed the analysis of the scaling of
Rk for all segments of length k for FUS sections 10–29 and
105–128 for all conditions tested. The data is displayed in
Figure 3 together with data from the unrestrained ensembles
(gray). In all cases we find that fits by a scaling law b·kν are
mediocre. Fitted scaling exponents ν are in a reasonable range
between 0.538 (FUS 10–29 unrestrained) and 0.619 (FUS 10–29,
3M urea), as are the Kuhn lengths b between 5.14 Å (FUS
105–128, 0.6 M urea) and 5.58 Å (FUS 10–29, 0.6 M urea).
However, deviations from the fits are systematic, with longer
RMS end-to-end distances for the longest segments than
predicted. This corresponds to chains that are stiffer than
predicted. Comparison of the unrestrained case with
Figure 1B reveals that such deviations are much smaller for
longer chains than for the short sections considered here. Such
behavior of shorter chain sections being stiffer than longer ones
we have encountered before in the context of semi-rigid organic
polymers (Godt et al., 2006; Jeschke et al., 2010). We note that the
sections studied here are oligomers in the sense of the Flory
random-coil model, as their length is less than ten times the Kuhn
length b. As a consequence, we caution against assuming
random-coil behavior for the fully disordered reference state.
Instead, we advocate unrestrained Monte-Carlo simulations of
large ensembles of conformers based on Ramachandran statistics
for loop regions. These raw ensembles can then be fitted to
experimental distance distributions and the resulting refined
ensembles can be analyzed in terms of the distributions of Rk
for segment lengths k. If these distributions are narrow and
scaling of the mean values is monotonous and smooth, we can
assume the chain to be in a fully disordered state. This need not be
the case in general, as we demonstrate in the following on the
example of the glycine-rich domain of hnRNP A1. This domain
has high composition similarity to the FUS NTD, but was here
studied in the context of the full length protein including the
folded RNA-recognition motifs.

Computation of Distance Distributions for
Ensemble Fitting
Choice of DEER Data Processing Approach
Accuracy of DEER distance distributions is limited by
experimental and computational aspects (Jeschke, 2012). From
an experimental point of view, excitation bandwidth limitations
cause partial suppression of contributions below about 18 Å.
Since the assumptions of weak coupling of the two spins and
of negligible exchange coupling break down below about 15 Å,
few efforts have been made to overcome this excitation2http://www.github.com/gjeschke/MMMx.
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bandwidth limitation. At long distances, the shape or even width
of the distribution become uncertain, as this information is
encoded in the decay of the dipolar oscillations and can thus
be recovered only up to distances where several dipolar oscillation
periods are still within the maximum observation time tmax. The

accessible tmax depends on electron spin decoherence time and
can vary strongly between proteins. For soluble proteins
measured with high-power Q-band DEER, shape information
is typically reliable up to 50 to 80 Å, depending on whether the
solvent and protein can be deuterated. The reliable distance range

FIGURE 4 | Distance distributions computed by different approaches from primary DEER data for 19 pairs of MTS-labelled sites. The approaches are DeerNet in
Spinach 2.5.5446 (orange), multi-Gaussian fit with the number of Gaussians determined by the Bayesian information criterion (BIC) in DD (red), single Gaussian fit
including background in LongDistances (green), Tikhonov regularization with regularization parameter α determined by the Akaike information criterion (AIC) in DeerLab
0.8b (blue), and Tikhonov regularization with fixed α � 5 in DeerLab 0.8b (gray/black). Pale areas denote uncertainty bands (50% confidence interval for DeerLab,
95% confidence interval for DeerNet and DD).
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for a given sample also depends on the signal-to-noize ratio and
on the presence of instrumental or experimental artifacts in the
data, as conversion of the primary data to a distance distribution
is an ill-posed problem where a least-squares solution is strongly
affected by slight deviations of the data from the forward model
(Jeschke et al., 2002; Chiang et al., 2005). During the past two
decades, several approaches were suggested for tackling this
problem, such as Tikhonov regularization (Bowman et al.,
2004; Jeschke et al., 2004; Chiang et al., 2005), fitting by
multiple Gaussians, whose number is determined by a
statistical criterion (Stein et al., 2015), and training an
ensemble of neural networks with large sets of forward-
modelled data that cover the expected men values, widths, and
shapes of DEER signals (Worswick et al., 2018). All recent
implementations provide, both, the most probable distance
distribution according to the computational approach and
confidence intervals. We note, however, that estimates of
confidence intervals for ill-posed problems may not cover model
bias, which for regularization approaches includes bias arising from
the choice of the regularization parameter. The latter aspect has been
studied recently (Edwards and Stoll, 2018) and different criteria have
been proposed for the choice of the regularization parameter. With
such a large variety of approaches existing, it is of interest whether
ensemble modeling is robust with respect to the choice of the data
processing approach. The problem is further complicated by the
necessity to separate the dipolar evolution function from
intermolecular background (Jeschke et al., 2006). Analysis of the
DEER data for FUS NTD sections above has revealed that
different fit approaches may lead to different distance distributions
even for data sets of rather high quality.

In our approach, we first generate a raw ensemble of
conformers with restraints that specify only the mean and
standard deviation of a single Gaussian per site pair (Jeschke,
2016). These parameters are more robust than the shape of the
distribution (Jeschke et al., 2004; Jeschke, 2012). In a second step,

we reweight and contract the raw ensemble by varying conformer
populations and discarding conformers with less than 1% of the
population of the most populated conformer (Jeschke, 2021). In
this ensemble fitting step, we use full distance distributions rather
than only mean distance and width. However, even if the
distribution used in the second step is the same Gaussian used
in the first step, ensemble reweighting can improve the fit quality
with the same or with an even smaller number of conformers.
Thus, the question arises which approach should be used for
generating distance distributions for the use as restraints in
ensemble reweighting, which depends on the selected fit
criterion. Here, we consider maximization of overlap of
experimental and predicted distance distributions (Jeschke,
2021), defined by

od � ∑min{Ppred ,PDDR}, (1)

where Ppred is the forward-modelled distance distribution for the
reweighted ensemble and PDDR is the distance distribution
obtained from experimental data, both given as vectors with
non-negative elements whose sum is unity.

In particular, we maximize the geometric mean o �
(∏M

m�1 om)1/M of the overlaps om for all M restraints, which
strongly penalizes large overlap deficiency 1- om of individual
restraints. Even if the ensemble of conformers is consistent
with the primary time-domain data, large overlap deficiency
can arise if conversion to the distance distribution uses a
poorly suited approach. In principle, the problem could be
solved by directly fitting to the primary data (Hilger et al.,
2007). However, this makes fitting computationally expensive
and would preclude global optimization of populations
(Jeschke, 2021) for large sets of conformers. An alternative
ensemble reweighting approach based on the maximum
entropy principle (Köfinger et al., 2019) could be used as
well in this second step.

TABLE 2 | Single-Gaussian restraint sets (mean distance 〈r〉 and standard deviation σr) for hnRNP A1 obtained with three different program packages (DeerAnalysis, DA;
DeerLab, DL; LongDistances, LD).

Site1 Site2 〈r〉DA [Å] σDA [Å] 〈r〉DL [Å] σDL [Å] 〈r〉LD [Å] σLD [Å] 〈r〉DL/〈r〉DA 〈r〉LD/〈r〉DA

52 231 37.5 18.1 36.7 19.5 36.9 19.4 0.979 0.984
144 231 49.7 15.4 52.7 14.9 51.8 17.2 1.060 1.042
182 231 33.3 14.8 31.7 14.8 31.7 14.8 0.952 0.952
52 271 28.1 19.7 29.4 19.9 29.5 19.9 1.046 1.050
144 271 45.7 18.6 44.7 21.1 45.2 20.8 0.978 0.989
182 271 30.5 18.8 33.2 17.1 33.4 17.2 1.088 1.095
52 316 37.5 18.2 36.3 21.2 34.2 23.6 0.968 0.912
144 316 44.1 11.7 45.6 16.9 57.3 38.5 1.034 0.873
182 316 34.8 15.7 33.8 15.6 34.0 15.6 0.971 0.977
32 231 51.2 15.5 50.7 15.8 50.9 17.1 0.990 0.994
52 197 35.6 13.8 34.9 14.2 34.4 14.5 0.980 0.966
182 190 22.5 6.2 22.0 6.3 22.2 6.1 0.978 0.987
182 197 27.4 9.5 27.9 9.2 28.1 9.1 1.018 1.026
182 223 31.4 14.2 31.0 14.5 31.1 14.2 0.987 0.990
182 252 36.6 12.7 29.9 15.1 27.6 16.5 0.817 0.754
182 297 34.1 15.8 34.2 16.1 34.5 15.9 1.003 1.012
231 271 20.1 15.3 24.5 14.1 24.7 13.9 1.219 1.229
231 316 27.1 16.5 28.5 14.1 26.5 15.4 1.052 0.978
271 316 22.6 15.8 24.9 14.6 25.3 14.5 1.102 1.120
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In order to assess current approaches for conversion of dipolar
signals to distance distributions in this context, we have analyzed
19 DEER data sets obtained on dispersed hnRNP A1. Given that
there is no prior structural information available for a priori
screening of suitable labeling in the LCD, we primarily mutated
available Ser residues with approximately uniform sequence
separations to Cys. The labeling sites in the folded domains of
hnRNPA1 were selected to be spatially well separated and solvent
accessible. Note that label site selection in folded domains
typically requires case-by-case considerations with general
guidance provided by rotamer modeling (Polyhach and
Jeschke, 2010). Specifically, for the generation of distribution
restraints labeling sites in folded domains with low local
backbone flexibility can provide more precise distance
information (Jeschke, 2016), but may be less tolerant toward
site-directed mutagenesis and successive spin labeling. The
selected sites 52 and 144 are located in partially flexible loops
of the RRMs of hnRNP A1, which provides a good trade-off. The
dataset consists of 16 restraints between RRM-LCD sites, and
three between LCD-LCD sites.

The data were analyzed by fitting with a single Gaussian
distribution, multiple Gaussian distributions, whose number is
determined by a statistical criterion (Stein et al., 2015), the neural
network approach DeerNet (Worswick et al., 2018), and
Tikhonov regularization (Bowman et al., 2004; Jeschke et al.,
2004; Chiang et al., 2005) with the regularization parameter either
determined by a statistical criterion (Edwards and Stoll, 2018) or
fixed at a value that is judged from appearance of the distributions
(Figure 4). Multi-Gaussian fitting was performed in DD (Stein
et al., 2015) using either the Akaike or Bayesian information
criterion for determining the optimal number of Gaussian
components. Analysis in terms of a single Gaussian
distribution was performed with three different software
packages, DeerAnalysis (Jeschke et al., 2006) version 2019,
DeerLab (Fabregas Ibáñez et al., 2020) version 0.8b, and
LongDistances3. The latter two programs simultaneously fit
the distance distribution and background, whereas in
DeerAnalysis we first performed background separation and
then fitted the dipolar evolution function. Figure 4 shows the
results obtained with LongDistances. The mean distances and
standard deviations obtained with all three approaches are listed
in Table 2. For most data sets, agreement between the results of

all three approaches is rather good, with the exceptions of site
pairs 144–316 and 182–252. In these two cases, the single-
Gaussian model is too simplistic for separating the pair
contribution from background with sufficient certainty. As an
example for fit quality of the primary data, the results obtained
with Tikhonov AIC fitting are shown in Supplementary
Figure S2.

Turning to different distribution models, for site pair 144–316
with a very broad distance distribution extending to rather long
distances, all approaches run into difficulties, although agreement
between Tikhonov regularization, DeerNet and multi-Gaussian
fitting is reasonable. Splitting of a broad distribution into many
moderately broadened peaks, such as encountered for site pair
52–316 when using the Akaike information criterion for
determining the regularization parameter for Tikhonov
regularization, may be detrimental to fitting with the overlap
criterion as it substantially reduces overlap (Supplementary
Figure S3 left). For this reason, we have resorted to Tikhonov
regularization with a fixed regularization parameter α � 5
(Supplementary Figure S3, middle), which is not expected to
oversmooth distributions for the case at hand. In contrast, a single
narrow Gaussian component, as it is sometimes found with the
multi-Gaussian parametrized model, is less detrimental, since it
contributes only a small fraction of the distribution
(Supplementary Figure S3, right).

For most of the site pairs, agreement of the distance
distributions is good between all approaches. This applies, in
particular, to comparatively narrow distributions, which do not
extend beyond 60 Å. For data sets where the approaches disagree
more strongly, we also find broader uncertainty bands with the
individual approaches. Note, however, that not all distributions
agree within their specified uncertainties. Differences between the
distance distributions obtained with different approaches indicate
limited quality of the data sets, mainly because of mediocre signal-
to-noize ratio or a maximum observation time that is insufficient
for high confidence in background separation. We note that these
features are not a sign of poor experimentation. Depending on
width of the distribution and maximum distance, obtaining
higher-quality data may be unrealistic.

Ensemble Fitting to Distance Distributions With
Moderate Shape Uncertainty
The question then arises, whether distance distributions of such
site pairs can still be used in ensemble fitting. The answer is not
necessarily negative, since the overlapmetric is less affected by the

TABLE 3 | Geometric mean overlap o, number of conformers, radius of gyration Rg, and ensemble width Γ in ensembles of hnRNP A1 LCD (188–320) by using distance
distributions computed with different approaches (see also Figure 4) in ensemble fitting from the same raw ensemble.

Analysis approach Mean overlap o Number of conformers Rg [Å] Γ [Å]

DeerNet 0.836 57 24.0 46.6
Multi-Gaussian (AIC) 0.880 52 23.3 47.6
Multi-Gaussian (BIC) 0.882 56 23.4 47.6
Single Gaussian (LongDistances) 0.863 49 23.7 48.2
Single Gaussian (DeerLab) 0.883 52 23.7 47.4
Tikhonov (α by AIC criterion) 0.846 50 23.8 48.4
Tikhonov (α � 5) 0.876 50 23.7 48.2

3http://www.biochemistry.ucla.edu/Faculty/Hubbell/.
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differences than the appearance of the distributions. Therefore,
we have studied this question in detail. To that end, we have
performed ensemble fitting from the same raw ensemble for all
individual sets of distance distributions displayed in Figure 4, as
well as for the Gaussian distribution obtained by DeerLab
(parameters listed in Table 2). As a result, we have obtained

refined ensembles with a reduced number of conformers and with
populations assigned to these conformers.

The overview of results in Table 3 demonstrates that fit quality
and size of the population-fitted ensembles vary only moderately
between the different restraint sets, despite the apparent
differences in the fitted distance distributions (i.e., the

FIGURE 5 | Ensemble fitting of the LCD (residues 188–320) of hnRNP A1 with jack-knife resampling. A raw ensemble of 331 conformers was generated based on
Gaussian restraints. Conformer populations were fitted by maximizing geometric mean overlap between simulated (green) and experimental (black) distance
distributions. Conformers with less than 1% of the population of the most populated conformer were discarded, resulting in a refined ensemble with 60 conformers. The
procedure was repeated with all possible sets of 18 out of the 19 restraints, giving slightly different sizes of the raw and refined ensembles. The unused restraint was
predicted from the “leave-one-out” ensemble (red). All conformers found in individual ensembles during jack-knifing were combined with the 60 conformers in the initial
ensemble and used as the basis set for the final ensemble fit (blue lines).
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resolution of spikes and peaks) obtained with the different
approaches (see Figure 4). As an example for fit quality,
results are shown in Figure 5 for the case of Tikhonov
regularization with fixed regularization parameter α � 5, with

the experimental distributions as black lines with gray uncertainty
bands and the prediction from the fitted ensemble as green lines.
We note that in some cases, features of the distribution shape are
fitted that cannot be reproduced by a Gaussian, most notably for

FIGURE 6 | Ensemble analysis for the LCD of hnRNP A1. The left column shows root mean square CA-CA distances for all possible segments of the LCD (residues
188–320) as a function of segment sequence length (black dots), their mean values per segment sequence length (green line), and a random coil fit (red line). The right
column shows the deviation of the RMS CA-CA distances from the mean value for this segment sequence length (green line in the left column). Red hues correspond to
segments more extended than the average and blue hues to segments more compact than the average.
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site pairs 32–231, 182–223, and 182–252. Thus, reweighting of
conformers after generation of the raw ensemble can partially
recover underfitting of structural information in the input single
Gaussian model. Still, geometric mean overlap o is maximum for
the ensemble fit to the single Gaussian distributions obtained in
DeerLab.

We have also compared the ensembles obtained with
restraints sets from the six data analysis approaches. Such
comparison is complicated by the fact that the sets of selected
conformers are distinct and the domain is only moderately
structured. Therefore, we have opted for ensemble analysis
approaches that can reveal weak structure. First, we considered
segment-wise RMS end-to-end distances (Jeschke, 2020) as
displayed for FUS in Figures 1B, 3. The corresponding plots
for hnRNP A1 LCD are shown in the left column of Figure 6.
Whereas the unrestrained ensemble (top) exhibits similar
behavior as the FUS NTD ensembles, for the restrained
ensemble model of hnRNP A1 (second from top), scaling of
segment end-to-end distances is less regular and the
distributions are broader. While the patterns obtained with
different data analysis approaches (Supplementary Figures
S4, S5, left column) are not identical, they do exhibit very
similar features. In particular, with all approaches the LCD of
hnRNP A1 exhibits scaling behavior that decidedly differs
from the one of the unrestrained ensemble. In the
restrained ensembles, segment-wise end-to-end distances do
not increase monotonously, but rather decline at segment
sequence lengths k > 100. Furthermore, segment
compactness varies considerably at the same sequence
length in the range 40 < k < 100. In order to analyze this
variation in more detail, we use a measure related to the
proximity matrix introduced in (Jeschke, 2021). The
proximity matrix is related to, but distinct from, the contact
matrix or map that can be obtained by NMR techniques, such
as paramagnetic relaxation enhancement (Salmon et al., 2010;
Clore, 2013). Unlike the contact map, which reveals close
approach of residues with large sequence distance, the
proximity matrix quantifies the deviation of the RMS CA-
CA distance of residue pairs from the one predicted for that
segment length k from the random-coil scaling law b·kν, where
parameters b and ν are fitted to all segments of the chain. This
deviation is normalized to the predicted RMS CA-CA distance.
Thus, the proximity matrix also reveals compaction of chain
segments that does not lead to contact. For the case at hand, we
consider a more intuitively interpretable matrix ΔL, whose
elements are the absolute deviation of the RMS CA-CA
distance of residue pairs (i,j) from the mean RMS CA-CA
distance for all segments of the same length k (green line in the
right column in Figure 6). The matrix elements ΔLij for residue
pairs (i,j) are then defined as

ΔLij �
����
〈R2

ij〉
√

− 1
nk

∑
m−l�k

�����
〈R2

lm〉
√

(2)

where nk is the number of residue pairs (l,m) with k � j–i � m–l
and 〈/〉 denotes the ensemble average. This matrix is visualized
in Figure 6 (right column) with blue color encoding segments

shorter than average and red color encoding those longer than
average. The color scale is the same for all ensembles.

In the restrained ensembles (second row from top), we find a
pattern of locally shortened and lengthened segments that is
broadly replicated with all distance analysis approaches (right
column in Supplementary Figures S4, S5), although details
differ. This pattern strongly differs from the unrestrained
reference state (top row), which exhibits behavior that is very
similar to the one of the reference state for FUS NTD.

Likewise, radii of gyration of the LCD are very similar
(minimum 23.3 Å for multi-Gaussian distributions, maximum
24.0 Å for DeerNet) as are ensemble widths

Γ �

��������������∑N−1
i�1 ∑N

j�i+1pipjD
2
ij∑N−1

i�1 ∑N
j�i+1pipj

√√
(3)

where indices i and j run over conformers in the ensemble, the pi
and pj are conformer populations, and theDij are RMS coordinate
deviations between conformers upon optimal superposition. We
find that Γ varies between 46.6 Å and 48.4 Å (Table 3). In
conclusion, ensemble fitting to distance distributions by
maximization of overlap is rather robust with respect to
moderate variation in distribution shape.

Validation of the Restraint Set by Jack-Knife
Resampling
For atomic-resolution structures, it is relatively well understood
what constitutes a good or at least a sufficient restraint set. The
same cannot be said for ensemble modeling of weakly structured
proteins. On the one hand, the problem appears hopelessly
underdetermined. Backbone conformation of each individual
conformer with nres residues is determined by 2(nres-1) torsion
angles, which would suggest 262 free parameters per conformer
for the glycine-rich domain of hnRNP A1 (188–320), whereas we
have obtained only 19 distance distribution restraints. On the
other hand, the unstructured reference state is characterized by
only one (radius of gyration Rg or RMS end-to-end distance R) or
at most two (b, ν) parameters. As we do not know beforehand,
how strongly a particular protein or domain is structured, we
need to estimate the number of required restraints during
modeling. Moreover, the restraint set might not be internally
consistent. With labeling approaches, this may happen if a label
biases conformation. We have encountered such a case for the
FnIII-3,4 domains of integrin α6β4, were some spin-labelled
mutants had to be discarded, as they caused strong changes in
relative domain orientations as seen by changes in small-angle
scattering (SAXS) curves (Alonso-García et al., 2015). In a
computational study on amyloid-beta, it was found that
attachment of a spin label biased the conformer distribution of
this intrinsically disordered peptide to some extent (Sasmal et al.,
2017). It is not always possible to safely exclude such bias by
additional experiments. Hence, size and internal consistency of a
set of distance distribution restraints need to be validated
alongside modeling.
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Robustness of an ensemble can be estimated by resampling
approaches, such as bootstrapping or jack-knifing (Berman et al.,
2019). In jack-knifing, as many additional modeling runs are
performed as there are restraints. In each run, one of the restraints
is left out without replacement. It is tested, how strongly the
ensemble changes and how well the left out restraint is predicted.
Jack-knife resampling has been used before in the context of
distance distribution restraints for estimating uncertainty of a
high-resolution model of the dimer of Na+/H+ antiporter NhaA
(Hilger et al., 2007). Bootstrapping approaches often remove
more than one restraint and they replace left-out restraints by
some remaining restraints, effectively increasing the weight of
these doubly selected restraints.

Here, we implement jack-knife resampling in our ensemble
modeling pipeline. To that end, we have generated raw ensembles
of about 400 conformers each for all 19 restraint sets where one of
the restraints is left out. We have then performed ensemble fitting
with the same restraint left out and predicted the distance

distribution for this unused restraint. These 19 predictions
from 19 ensemble fitting runs are displayed as red lines in
Figure 5. In general, they agree quite well with the
experimental distributions, indicating that the set is, both,
internally consistent and sufficiently large. Interestingly, while
several restraints were measured as permutations of label
combinations of major reporter sites, a few sites appeared only
in a single restraint (folded: 32; LCD: 190, 197, 223, 252, and 297),
and might thus be more critical for overall ensemble convergence.
Indeed, the case of 182–252 is such a case of an ‘isolated’ restraint
for which the deletion appears to lead to a slightly broader
ensemble compared to the fit with all restraints. However, the
predicted restraint fulfilment upon deletion of a restraint was not
in general worse for isolated restraints than for restraints
involving multiply restrained sites. Therefore, at least in this
particular case of hnRNP A1 it appears that the coverage of
labeling sites in the LCD sequence was sufficient to avoid
modeling bias. However, it is clear that such consideration

FIGURE 7 | Ensemble model for the LCD of hnRNP A1. The two RRMs (PDB 2lyv, Barraud and Allain, 2013) are shown in gray, with the N terminus to the left in the
left panel and to the front in the right panel. RRM 1 is on the bottom and RRM 2 on the top. Residues in the LCD are rainbow color coded from blue (residue 188) to red
(320). Population of conformers is encoded by coil thickness, with the most populated conformer having a thickness of 0.25 Å. CA atoms of the N-terminus of RRM 1 are
shown as purple spheres with radius 1.5 Å and CA atoms of the C-terminus of RRM 2 are shown as maroon spheres with the same radius. Visualization by
ChimeraX (Goddard et al., 2018) via an MMMx script.
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must be made case-by-case, since the problem is strongly
dependent on geometry and extent of ordering of domains in
a given protein (Jeschke, 2016).

Returning to hnRNP A1, in a few cases, notably for site pairs
52–271, 52–316, 144–316, and 182–252, background separation
may have removed genuine contributions at long distances.
Except for pair 52–271, these distributions were flagged as
being less reliable by disagreement between results from
different data analyses approaches. In a few other cases, such
as 182–271 and 32–231, the leave-one-out predictions appear to
confirm distance distribution shapes that deviate from a single
Gaussian.

We have combined all 19 leave-one-restraint-out ensembles
and have renormalized populations to unity sum. From this
“super-ensemble”, we have computed segment-wize RMS end-
to-end distances and the segment length deviationmatrix (middle
row in Figure 6). Because of the large size of the super-ensemble,
these data are smoother. In general, they exhibit the same features
as the initial ensemble obtained with all restraints.
Unsurprisingly, the radius of gyration (23.7 Å) and width
Γ � 48.2 Å, are unchanged.

While jack-knife resampling provides smooth estimates for
segment-wise RMS end-to-end distances and the segment length
deviation matrix derived from them, it does not directly provide
an improved ensemble. However, during jack-knife resampling
the modeling pipeline generates a large number of conformers
that are consistent with at least nr-1 of nr restraints. During
ensemble refinement and reduction, the approach selects
conformers that best fit nr-1 of nr restraints. This provides a
much improved basis set of conformers for fitting with all
restraints. In our case, the 19 leave-one-restraint-out
ensembles contain 1,119 conformers. Together with the 60
conformers in the initial ensemble, we have a basis that better
samples conformational space and should thus allow for an
improved fit. This expectation is indeed borne out, as can be
seen by comparing the blue lines (fit with 1,179 pre-selected
conformers) with the green lines (initial fit with 331 conformers)
in Figure 5. In fact, the large raw ensemble may allow for some
overfitting, i.e., the final ensemble may reproduce some features
of the distance distributions that are uncertain, as can be seen by
comparison with Figure 4. Overfitting of distance distributions is
not easily quantified, as the distributions are solutions of an ill-
posed problem. In future work, we will address this problem by
considering fit quality of the primary data. In any case, the final
ensemble fitted with the improved basis set provides smoother
segment-wise RMS end-to-end distances and a smoother
segment length deviation matrix than the initial ensemble.
These characteristics are closer to the jack-knife mean
estimates (bottom row in Figure 6). Therefore, we consider
this ensemble with 129 conformers and mean overlap
o � 0.919 as a better representation of the structure of the
glycine-rich domain of hnRNP A1 than the initial fit. We note
that jack-knife resampling generally provides a large number of
conformers that are consistent with at least nr-1 of nr distance
distribution restraints. Since finding such conformers is
computationally more expensive than ensemble reweighting,
final computation of a “super-ensemble” is advantageous.

This final ensemble is visualized in Figure 7 together with an
ensemble with the same number of 129 conformers randomly
selected from an unrestrained raw ensemble with 2,146
conformers. For the unrestrained ensemble, we assumed
uniform populations of the conformers. The restrained
ensemble is much more compact. Residues 188–240 are
located on the side of the two RRMs away from the N
terminus, to a larger extent than in the unrestrained ensemble.
Beyond residue 240, in the restrained ensemble the chain tends to
backtrack toward the RRM, leaving the N-terminal side of the
RRMs, but not the opposite side exposed. This exposure is also
apparent in the unrestrained ensemble, where it is a purely
geometrical effect. However, it is more pronounced in the
restrained ensemble. Since the function of hnRNP A1 involves
RNA binding, biological interpretation of this result requires
further experiments including RNA binding, which are beyond
the scope of this work and will be reported elsewhere. We may
note here that, although a random-coil model obviously does not
fit the weakly structured LCD of hnRNP A1 very well (Figure 6),
it does predict scaling exponents ν ≈ 0.48, as they have earlier
been observed for foldable proteins (Hofmann et al., 2012). Yet,
the LCD is obviously not folded, as the distance distributions
shown in Figures 4, 5 can be fitted only with a broad distribution
of conformers.

DISCUSSION

Model for the Unstructured Reference State
and Detection of Weak Structure
For peptide chains of 100 or more residues, residue-specific
Ramachandran statistics for loop regions is nicely consistent
with Flory random coil scaling of segment RMS end-to-end
distances (Figure 1B). Unfortunately, this approximation is
not very good for short sections of 20–25 residues (Figure 3),
which appear to be stiffer than predicted by a self-avoiding
random walk of a freely jointed chain model, irrespective of
the solvent conditions and condensation state. Attempts to
extract random-coil parameters from DEER distance
distributions are further confounded by convolution of the
backbone end-to-end distance distribution with the rotamer
distribution of the spin label side chain. Both problems are
expected to lessen if the section length is increased. However,
such a strategy shifts the mean of the distribution from the most
favored range for DEER (25–40 Å) toward longer distances. This
in turn shifts contributions by the longest conformers to a range
where separation of the single-chain contribution from the
intermolecular background becomes uncertain.

Therefore, our approach for recognizing deviation from an
unstructured reference state is hybrid. First, we generate a large
raw ensemble of 1,000–5,000 conformers that is in broad
agreement with experimental restraints that are approximated
by single Gaussian distributions in this step. The raw ensemble is
based on residue-specific Ramachandran statistics for loop
regions that is biased only by the experimental restraints. No
residue-residue interaction potential is assumed. Second, we
refine and contract this raw ensemble by fitting populations of
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conformers and by discarding conformers with very low
population. In this step, we fit to full distance distributions
that can have any shape. Third, we analyze scaling of
segment-wise RMS end-to-end distances Rk with segment
sequence length k and distribution of the Rk for given k.
Broad distributions of the Rk and non-monotonic scaling of
the mean Rk with k reveal deviations from random-coil
behavior. These deviations can be heterogeneous along the
sequence. We can map them to residue pairs by computing a
segment length deviation matrix, whose elements are defined by
Eq. 2. Indeed, based on our analysis of the full length hnRNP A1
construct, which contains both a strongly and a weakly ordered
domain, we demonstrate that the segment analysis approach
cannot only globally, but also locally uncover LCD structural
deviations from random coil behavior.

This approach does not make any assumptions on the LCD
beyond Ramachandran statistics. Even that assumption can, to
some extent, be altered by the experimental restraints. With the
numbers of conformers indicated above, it appears to be possible
to fit experimental DEER distance distributions within their
uncertainty for unstructured and weakly structured domains of
100–150 residues length on a current desktop computer. For
longer domains or constructs, the number of required conformers
in the raw ensemble may need to be reassessed or larger
computational resources are required. It is also expected that
the more structured a domain is, the more conformers need to be
sampled in order to obtain a representative ensemble. In the limit
of highly structured domains, the approach is not expected to be
competitive with strategies that estimate variation from atomic-
resolution structure.

Robustness of Distance Distribution
Restraints
The mapping of dipolar signals to distance distributions is not
continuous in a mathematical sense of the term. Accordingly,
computation of distance distributions corresponds to solving an
ill-posed problem. The solution must be stabilized in some way,
for instance, by regularization (Bowman et al., 2004; Jeschke et al.,
2004; Chiang et al., 2005), by restricting it to a space of
parametrized distribution functions (Stein et al., 2015), or by
training a neural network for a restrained set of distance
distributions (Worswick et al., 2018). Especially for weakly
ordered or unstructured domains, fits by a single Gaussian
function appear to work surprisingly well, as demonstrated
here. In general, different analysis approaches provide
distributions that may differ beyond their own uncertainty
estimates (Figure 4). This indicates that model bias is a matter
of concern. We find that differences between results from
different approaches are minor if distributions are only
moderately broadened and well within the preferred distance
range of DEER. They can be large if the width is several tens of
Ångström or if background separation becomes uncertain.

Ensemble fitting by distance distribution restraints is stabilized
by the overlap criterion, as overlap of an ensemble-predicted
distribution with the various distributions computed from the
same experimental data varies much less than the shape of the

various experiment-derived distributions. This finding applies to
minor deviations between distance distributions computed by
different approaches, as they are seen in Figure 4. If there exist
major differences between distance distributions obtained by
different approaches, data is of poor quality and should not be
used for ensemble fitting. If in doubt, it may be prudent to
perform ensemble modeling with distance distribution restraint
sets derived by alternative approaches, as we have demonstrated
here for the glycine-rich domain of hnRNP A1. In any case, we
recommend to process experimental data sets by three different
approaches: Tikhonov regularization, multi-Gaussian fitting, and
neural network analysis. As seen in Figure 4, such comparison
can reveal restraint uncertainty better than merely computation
of uncertainty bands for a single data analysis approach.
Comparison of the three distributions also reveals whether
single-Gaussian restraints are a sensible choice for final
ensemble fitting, as appears to be the case for hnRNP A1
188–320. This question is important, as fitting of a single
Gaussian, on the one hand, is the most robust approach, but
on the other hand, runs the largest risk of model bias.

For hnRNP A1, we have found that 19 distance distribution
restraints suffice for stably characterizing substantial deviation of
a 133-residue segment from random-coil behavior. Depending on
how large such deviations are, the number of required distance
distribution restraints may vary. Jack-knife resampling provides a
general approach for testing whether a restraint set is sufficient
for a given problem. If it is not, further restraints need to be
added. For the case of hnRNP A1, we cannot exclude that less
than 19 restraints would have sufficed. Establishing this would
require a systematic analysis of how many and which restraints
can be left out without substantially changing the proximity
matrix. Such an analysis is computationally very expensive and
beyond the scope of the current study.

Resampling for Ensemble Model Validation
The number of distance distribution restraints nres that enter into an
ensemble model is expected to be in the range between 10 and 50.
With much less than 10 restraints, it is unlikely that structure can be
revealed except, perhaps, for very short peptides. Measuring much
more than 50 restraints appears to be unrealistic because of the effort
required in sample preparation. In this situation, jack-knife resampling
appears to be a viable approach for ensemble validation, as we have
demonstrated here for nres � 19 on hnRNP A1 188–320. Jack-knife
resampling requires nres + 1 modeling runs, one of them with all
restraints and nres runs where one of the restraints is left out. We have
shown that these modeling runs provide an improved basis set of
conformers that can be used as input for a final ensemble fit.
Regarding computational effort, such jack-knife resampling is
certainly feasible for domains with up to 150 residues and for up
to 50 restraints on current desktop computers. Further automation in
software packages is required to make jack-knife resampling
convenient. This will be pursued in further development of MMMx.

Choice of Labeling Sites
For characterizing the LCD of hnRNP A1, we relied on three
reference sites in the structured domain of the protein. Such a
choice is advantageous in cases where a structured domain
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exists and where the localization of the intrinsically disordered
domain with respect to the structured domain is of interest.
Could we have characterized weak order of the LCD on its
own, provided that it would have been the same as in the
presence of the RRM? To answer this question, we
performed a computational experiment that assumed the
final ensemble of our study as ground truth. In addition to
the three experimental intra-LCD restraints (231–271,
231–316, and 271–316) we simulated distance distributions
for 16 additional intra-LCD site pairs. These pairs were
selected from LCD sites that we had also labeled in our
experiments (190, 197, 223, 231, 252, 271, 297, and 316) by
limiting sequence distance to no more than 85 residues,
i.e., the maximum sequence separation within the LCD in
our experimental restraints (Supplementary Table S1). With
these restraints, we generated a raw ensemble of 1,290
conformers and then performed ensemble reweighting with
the EnsembleFit module of MMMx. The final ensemble fits
the 16 simulated and three experimental restraints with an
overlap deficiency of 0.047. As seen in Supplementary Figure
S6, site-resolved compaction of the LCD is reasonably well
reproduced with this set of restraints, with notable deviations
near the C terminus. In our original restraint set, residue 316
is localized with respect to the RRM by three restraints,
whereas in the simulated restraint set, due to our chosen
maximum cutoff segment length of 85 residues, it is not
localized with respect to any site upstream of residue 231.
This suggests that some site pairs with long sequence
separation must be included in the set in order to avoid
that structural features are missed.

CONCLUSION

Ensemble modeling and refinement with label-to-label
distance distributions measured by EPR pulsed dipolar
spectroscopy is a feasible approach for characterizing weak
structure in protein domains. Our approach involves
generation of a basis set of conformers that is consistent
with Ramachandran statistics for loop residues and with
restraints. This raw ensemble is refined and contracted by
fitting to distance distributions restraints. It is then analyzed
in terms of segment-wize RMS end-to-end distributions. For
estimating uncertainty and validating restraints, we
recommend computation of distance distributions from
primary data by several alternative approaches and jack-
knife resampling of the restraints in ensemble modeling.
The current implementation is viable up to about 150
residues and up to about 50 distance distribution restraints
on current desktop computers. Extension of these limits
appears to be feasible. Our approach could be extended to
integrative modeling that uses restraints from further
experimental techniques in ensemble refinement.
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