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Abstract: Continuous blood pressure (BP) measurement is crucial for long-term cardiovascular
monitoring, especially for prompt hypertension detection. However, most of the continuous BP
measurements rely on the pulse transit time (PTT) from multiple-channel physiological acquisition
systems that impede wearable applications. Recently, wearable and smart health electronics have
become significant for next-generation personalized healthcare progress. This study proposes an
intelligent single-channel bio-impedance system for personalized BP monitoring. Compared to the
PTT-based methods, the proposed sensing configuration greatly reduces the hardware complexity,
which is beneficial for wearable applications. Most of all, the proposed system can extract the
significant BP features hidden from the measured bio-impedance signals by an ultra-lightweight AI
algorithm, implemented to further establish a tailored BP model for personalized healthcare. In the
human trial, the proposed system demonstrates the BP accuracy in terms of the mean error (ME) and
the mean absolute error (MAE) within 1.7 ± 3.4 mmHg and 2.7 ± 2.6 mmHg, respectively, which
agrees with the criteria of the Association for the Advancement of Medical Instrumentation (AAMI).
In conclusion, this work presents a proof-of-concept for an AI-based single-channel bio-impedance
BP system. The new wearable smart system is expected to accelerate the artificial intelligence of
things (AIoT) technology for personalized BP healthcare in the future.

Keywords: artificial intelligence; bio-impedance measurement; continuous blood pressure measurement;
impedance plethysmography; intelligent system

1. Introduction

Blood pressure (BP) monitoring is an important physiological index for cardiovascular
health identification [1–3]. The cuff-based digital electronic sphygmomanometer is a non-
invasive gold standard to detect BP values. However, the device only provides one-shot
systolic BP (SBP) and diastolic BP (DBP) measurements that could inconvenience the users
when they are monitoring their health conditions in real-time, especially in hypertension
patients. Most of all, post-treatment hypertension patients usually need to modify the
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medicine dosage based on their recovery conditions. For the risk management of these
patients, the long-term continuous BP condition recording is important for extracting the
significant symptoms and providing an accurate treatment under a narrow therapeutic
window for medical doctors [4]. Among the existing clinical techniques for continuous BP
measurement, an arterial cannula is a common approach in clinical applications. However,
the measurement procedure is an invasive method that could induce potential risks and
complications to the patient [5]. To solve this clinical unmet need, the cuffless continuous
BP measurement technique is an efficient approach for long-term cardiovascular health-
care. Most of the technique relies on pulse transit time (PTT)-based methods for cuffless
continuous BP measurement, according to the Bramwell–Hill equation. The PTT refers to
the propagation time of the pressure pulse wave between the two measurement locations
by two physiological acquisition systems, such as double photoplethysmography (PPG)
devices [6], and a combination of PPG and electrocardiography (ECG) sensors [7]. However,
the multiple physiological devices could impede wearable applications.

Recently, artificial intelligence (AI) is rapidly evolving for clinical classification and pre-
diction tasks that are helpful for big data analyses for long-term physiological monitoring,
thus providing accurate therapy strategies that can be referenced by physicians [8–10]. For
the AI in the cuffless BP studies, some groups establish the deep learning model between
the physiological signals and arterial BP (ABP) waveforms from the existing databases. For
example, Khalid et al. [11] provided the single-channel PPG-based cuffless BP estimation
model that involved the two databases from the Queensland [12] and the multiparame-
ter intelligent monitoring in intensive care II (MIMIC-II) datasets [13] and satisfied the
Association for the Advancement of Medical Instrumentation (AAMI) standard criteria.
El-Hajj et al. [14] proposed recurrent neural networks (RNN) to establish the correlation
between the PPG and BP signals from the MIMIC-II datasets. Li et al. [15] provided a
long-short-term memory (LSTM)-based deep learning model using the ECG and PPG
signals from the MIMIC-II datasets for a real-time cuffless BP estimation.

Although the aforementioned dataset-based approaches presented the qualified BP
accuracy within the AAMI criteria, some limitations exist in practical applications. First, the
measurement devices with different specifications exist due to the differences in measured
signal morphology that may not be suitable for the developed AI-based BP model in previ-
ous studies. Second, the AI-based regression models were only adaptive for the patients in
the existing datasets, such as the MIMIC-II, restricting the users that are not included in the
datasets from conducting this proposed BP model. Third, personalized health behaviors
affect BP, including lifestyle habits, personal information, and the environment [16]. Nowa-
days, the individual AI-based BP model becomes important in the future implications of
BP management, with an eye towards personalized medicine [17,18]. Personalized BP
healthcare greatly impacts the development of precise therapy, thus providing better BP
control and treatment compliance [19,20]. In consumer health electronics, wearable and
smart functions in devices play an important role in personalized healthcare [21–23].

To this end, this study aims to develop a wearable intelligent bio-impedance system for
personalized continuous BP monitoring. The single-channel impedance plethysmography
(IPG) signal acquisition device was implemented to measure real-time bio-impedance
signals from the pulsation of the carotid artery. Moreover, the proposed system performs
personalized BP model computation by an AI-based algorithm to extract the BP features
hidden from the IPG waveforms, and to further achieve personalized BP healthcare. The
rest of this paper is organized as follows. Section 2 introduces the physiological correlations
between IPG signals and BP, as well as the proposed system design and the ethics statement.
In Section 3, the experiment results for the IPG signal measurement and the BP accuracy
of the proposed system are presented. The discussion and conclusion are provided in
Sections 4 and 5.
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2. Materials and Methods
2.1. Physiological Correlation between IPG and BP

IPG is a bio-impedance technique that is commonly applied in noninvasive physiologi-
cal measurements [24]. The IPG technique is based on the electric impedance measurement
that applies the alternating current into a local area of the body, and then measures the
voltage signal. In hemodynamic studies, an IPG-based measurement can extract arterial
impedance induced by a small variation in the blood volume [25,26], as shown in Figure 1a.
Based on the Bramwell–Hill equation, as in Equation (1), the BP has a strong correlation
with the cross-sectional area of the artery. The dP, ρ, D, A, and dA denote the BP change,
blood density, the distance between two physiological measurement locations of the artery,
the arterial cross-area, and the change in the arterial area, respectively:

dP = ρ

(
D

PTT

)2 dA
A

(1)
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correlation between arterial impedance and blood pressure.

Moreover, the small change in the arterial area can be viewed as the arterial impedance
variation [27,28], according to Ohm’s law, as in Equation (2), where Z, L, and σ are
the arterial impedance, the length of the measured arterial segment, and the arterial
conductivity, respectively:

Z =
L

σA
(2)

Thus, the arterial pressure can be estimated from the impedance measurement from
IPG signals, as shown in Figure 1b. Wang et al. [29,30] and Huynh et al. [31] utilized the IPG
technique to establish the BP estimation model between arterial impedance and pressure by
a time–domain analysis. However, the IPG signals in the time–frequency analysis have not
been extensively investigated. In this study, the time–frequency analysis-based continuous
wavelet transform (CWT) was performed to extract the BP features in the IPG signals. Then,
the AI-based regression model was used to establish the personalized model between the
IPG based-CWT features and the reference BP from the cuff-based sensor.

2.2. Wearable Intelligent BP System Design

The wearable intelligent bio-impedance system was implemented to validate the
feasibility of the AI-based IPG–BP methodology for personalized medicine. The proposed
system can be divided into two main parts, including an IPG sensing device and the AI-
based BP estimation, as shown in Figure 2. The IPG sensing device was installed on the
subject’s neck for the physiological acquisition from the carotid arterial pulsation, owing to
the palpable arterial pulsation and the low BP waveform distortion [30]. The measured IPG
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signals were transmitted into the proposed AI-based SSR-Net model to further compute
the BP information.
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2.2.1. IPG Sensing Device

The IPG sensing device consisted of four electrodes, an alternating current source,
and a front-end analog circuit. Two pairs of flexible electrodes made with a silver-plated
polyester textile with low surface resistivity (<0.05 Ω/inch2) were utilized as the electrical
function for the current excitation and the physiological sensing. Each rectangular electrode
with an area of 2 cm × 0.9 cm and a thickness of 0.03 cm was placed on the carotid artery
above the neck as the isometric distribution with a spacing of 0.5 cm.

An alternative current source was implemented by a combination of the Wien–Bridge
oscillator and an improved Howland current pump. The sinusoid waveforms, with a
frequency of 50 kHz, were produced by the Wen–Bridge oscillator. The voltage-controlled
current source (VCCS), improved by the Howland current pump, transforms the signals
from a sinusoid voltage to current waveforms with the amplitude and frequency of 0.14 mA
and 50 kHz, which follows the human safety guideline [32,33].

To extract the carotid pulse signals in response to the small arterial pulsation, the front-
end analog circuit was required to enlarge the small variation in the arterial impedance.
The instrumentation amplifier (AD8421, Analog Devices Inc., Norwood, MA, USA) was
used to provide an amplification gain of 1000 v/v and a high common-mode rejection ratio
of 110 dB at the input frequency of 50 kHz. The demodulator (AD8310, Analog Devices
Inc., Norwood, MA, USA) employs the 50 kHz carrier signal removal from the stage of the
instrumentation amplifier. The fourth-order Butterworth bandpass filter, with a narrow
bandwidth (0.3–5 Hz), was utilized to cover the typical heart rate ranges from 0.67 Hz to
3.33 Hz [34]. The analog IPG signals were sent into the analog-to-digital converter device
(myDAQ, National Instruments, Austin, TX, USA) for further signal processing.

2.2.2. The AI-Based BP Estimation

In this study, we utilized a deep learning architecture-based SSR-Net model for cuffless
continuous BP monitoring. The SSR-Net model is based on the convolutional neural
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network (CNN) architecture [35]. The SSR-Net model has the merit of a lightweight and
complementary two-stream structure [36] that is suitable for real-time monitoring and
discrete numerical predictions in BP applications. We also compared the SSR-Net and other
lightweight deep learning models, as shown in Table 1. Compared to the MobileNet-V2 and
the LSTM approaches for our database training, the SSR-Net provides an ultra-lightweight
model size of 213 KB and lower model parameters of 0.04 M, resulting in a CPU interface
time of 0.17 s. The experimental flowchart of this study is as follows: IPG signals and
cuff-based BP measurements, IPG signal pre-processing for BP feature extraction, dataset
arrangement for model training and testing, and a loss function design for the personalized
BP monitoring, as shown in Figure 3a.

Table 1. Comparison of different lightweight deep learning models.

Model SSR-Net MobileNet-V2 LSTM

Model size 213 KB 13,932 KB 8744 KB
Model parameters 0.04 M 3.50 M 215.99 M

Inference time on CPU 0.17 s 0.29 s 0.25 s
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• IPG Signals and Reference BP Acquisition:

To establish the personalized database for the wearable intelligent bio-impedance
BP system, the synchronous measurement for the IPG sensing device and the digital
electronic sphygmomanometer (HEM-1000, OMRON, Osaka, Japan) was conducted for
30 measurement trials in the manner shown in Figure 3b. Each trial consisted of SBP and
DBP from the cuff-based sensor and five consecutive IPG waveforms from the IPG sensing
device, each taking 1 min, due to the 30 s measurement period of the cuff-based BP and
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the resting of the arteries for 30 s. Thus, the overall acquisition procedure took 30 min for
30 measurement trials in our experiment.

• IPG Signal Pre-processing and BP Feature Extraction:

For each trial, the five consecutive IPG waveforms were segmented into individual
waveforms for further feature extraction. The individual IPG signal was converted into a
time–frequency analysis by CWT [37]. In this work, the Daubechies 8 (db8) wavelet was
used to transform the IPG signals. As shown in Figure 3c, the five pairs of references and
features in SBP and DBP were obtained in each measurement trial; thereby, the overall
physiological data, with 150 pairs of physiological data for each subject, were acquired.

• Dataset Arrangements for Model Training and Testing:

Overall, 150 pairs of the CWT-IPG based images, and the corresponding reference
SBP and DBP values, were categorized into the training and testing datasets. One hundred
and twenty pairs of all the datasets were selected for personalized BP model training, and
30 pairs were used to test the BP model accuracy.

• Loss Function Design for Personalized BP Monitoring:

In the process of AI training, the loss function is designed to allow the model to learn
the prediction error between the predicted BP by the IPG signal feature (BPIPG) and the
actual BP by the cuff-based device (BPcuff) to further obtain model convergence. In this
study, the BP estimation is categorized as a linear regression problem, and it utilizes the
mean absolute error (MAE) as the loss function. To obtain the converged personalized BP
model during the training stage, the penalty term, in terms of loss function, was modified
based on the reference BP distribution of each subject. The penalty term was designed
based on being below quartile 1 (Q1) and above quartile 3 (Q3) of the measured reference
BP, to accelerate the converge time of the personalized model. Figure 4a–c demonstrates all
subjects’ SBP and DBP values, and their quartiles, from the cuff-sensor that was measured
30 times. To evaluate the converge time for the proposed model, the penalty terms with
different weighting were implemented, according to Equations (3) and (4). The test results
show that the optimal design for the penalty term that was weighted three times in the
interval below Q1 and above Q3 obtained a lower epoch to reach the model convergence,
as shown in Figure 4d.

Loss = | (BP IPG− BPCuff)× α|, BPCuff < Q1 or BPCuff > Q3 (3)

Loss = | BPIPG− BPCuff|, Q1 < BPCuff < Q3 (4)

• Environment Details:

The Python-based software was used to design and implement deep neural networks.
The experiments were performed using Python 3.6.8 inside the Windows 10 Enterprise
computer with an Intel® Core™ i7-8700 4.6 GHz processor. Moreover, 64 GB of RAM and a
GeForce GTX 1660 Ti 6 GB GPU were equipped on the computer.

2.2.3. Ethics Statement

The human experiment was permitted by the Institutional Review Board of National
Yang Ming Chiao Tung University (NCTU-REC-109-012E). A total of six healthy subjects
(three males and three females) participated in the experiment, with an age of 24 ± 1 years,
a height of 165± 8 cm, and a weight of 66± 13 kg. The participants consented to participate
and provided their written informed approval. During the experiment, they were instructed
to remain in a sitting position for the physiological measurement.
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Figure 4. (a) Reference SBP and (b) DBP distribution for six participants. (c) Statistical BP results in
quartiles 1, 2, and 3 within six subjects. (d) Performance evaluation of model convergence for the
penalty terms with different weighting in the interval below quartile 1 and above quartile 3.

3. Results
3.1. IPG Signal Measurement and Feature Extraction

The IPG sensing device and digital electronic sphygmomanometer were synchronously
conducted for 30 min, as shown in Figure 5a. The consecutive IPG waveforms from the
carotid artery above the subject’s neck were measured by the proposed system. To align the
measurement procedure of the cuff-based BP device, the five IPG waveforms were selected
before and after the operating time of the cuff device, as shown in Figure 5b. In the stage of
the BP feature extraction, the IPG signals were divided into a single waveform to further
perform the time–frequency analysis by the CWT method, as shown in Figure 5c.

3.2. BP Accuracy Evaluation

The box plot analysis shows the measured SBP and DBP distributions from the cuff
device and the proposed IPG-based system, as shown in Figure 6a,b. The mean SBP
from the cuff device (HEM-1000, OMRON) and the IPG-based system were obtained
with 119.64 ± 4.32 mmHg (range: 110–130 mmHg) and 121.34 ± 3.61 mmHg (range:
112–129 mmHg); for the DBP, the mean was obtained with 70.13 ± 4.44 mmHg (range:
56–79 mmHg) and 71.69 ± 4.17 mmHg (range: 59–90 mmHg).
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To further assess the accuracy performance of the proposed IPG-based system, the
statistical results in terms of the mean error (ME) and the MAE, using Bland–Altman plots,
were performed as in the evaluation index, according to Equations (5) and (6):

ME =
1
n

n

∑
i=1

yi − xi (5)

MAE =
1
n

n

∑
i=1
|yi − xi| (6)

where xi is the digital electronic sphygmomanometer, yi is the predicted value of the
proposed IPG-based system, and n is the number of the testing dataset.
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The SBP accuracy in the testing results indicated that the ME was 1.69 ± 3.28 mmHg
(Figure 6c) and the MAE was 2.63 ± 2.58 mmHg (Figure 6e). The ME and MAE were
1.56 ± 3.32 mmHg and 2.66 ± 2.52 mmHg, respectively, for DBP, as shown in Figure 6d,f.
Thus, the BP performance of the proposed system satisfied with the standard criteria of the
AAMI by less than 5 ± 8 mmHg.

4. Discussion
4.1. Innovation of Proposed Intelligent Bio-Impedance System

Wearable and intelligent healthcare greatly impacts the development of therapy and
management in BP healthcare, especially in personalized medicine [22,38]. The main
contribution of this study is to provide a single-channel bio-impedance-based intelligent
system with sensing and prediction functions for personalized BP applications.

For the novelty of the sensor configuration design, the proposed single-channel IPG-BP
sensor is beneficial for the hardware complexity reduction and for wearable applications,
compared to the PTT-based approaches using a multi-channel physiological measurement
for BP estimation [31,39,40]. For the novelty of personalized BP healthcare, the proposed
intelligent BP system, using an ultra-lightweight AI algorithm, can establish the tailored BP
model from the measured signals from each subject. Compared to the AI-based cuffless BP
algorithm in existing datasets, such as the MIMIC [11,14,15], the proposed system provides
an adaptive BP regression model for each person based on individually measured signals.
Such an intelligent BP system design is suitable for personalized healthcare development.

4.2. BP Measurement Performance

To evaluate the measurement performance of the proposed wearable intelligent system
in BP monitoring applications, the digital electronic sphygmomanometer (as a reference de-
vice) was installed for synchronous measurement. The Bland–Altman plot was performed
to evaluate the difference in the BP measured by the proposed system and the reference BP
by the cuff-based device. Six healthy subjects (three males and three females) with a mean
age of 24 ± 1 participated in the human trial. The statistical results of the ME and MAE
were utilized as the evaluation metrics to assess the BP accuracy. Based on the statistical
results, the accuracy of SBP, in terms of the ME and MAE, was 1.69 ± 3.28 mmHg and
2.63 ± 2.58 mmHg, respectively. The DBP estimation error demonstrated that the ME and
MAE were 1.56 ± 3.32 mmHg and 2.66 ± 2.52 mmHg, respectively. The BP performance of
the proposed system was satisfied with specifications (less than 5 ± 8 mmHg) based on the
standard criteria of the AAMI.

4.3. Comparisons with Previous Cuffless BP Works

We compared the proposed IPG-based BP intelligent system with recent studies, as
shown in Table 2. Several works relied on multiple physiological parameters to establish
the BP model, such as the ECG and the pressure pulse waveform (PPW) [41], two PPG
sensors [6], and a combination of the PPG and phonocardiogram (PCG) [42]. Despite
the multiple physiological acquisition channels, the approach to providing satisfied BP
performance using multi-sensor implementation could increase the complexity of the
measurement procedure in practical applications. Recently, several groups attempted to
develop deep learning-based BP models using a one-channel physiological signal. For
example, Miao et al. [43] proposed deep learning architecture combined with a residual
network with LSTM to establish highly accurate BP modeling using the spatial-temporal
information of the one-channel ECG signal in the database collected from Fuwai Hospital,
Chinese Academy of Medical Sciences. Dal Pont et al. [14] presented an attention-based
RNN for cuffless BP measurements using single-channel PPG signals from the MIMIC-II
database. Compared to existing dataset-based approaches, we provided a deep learning-
based personalized BP model based on the measured signals from an actual single-channel
IPG device. The significance of our work is to develop a single-channel wearable sen-
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sor combined with an AI-based personalized BP model that is suitable for personalized
medicine development.

Table 2. Comparison of cuffless continuous BP measurement technologies.

Author Physiological
Signal

Deep
Learning

Model
Statistical

Results
BP Estimation Error

SBP DBP

Miao et al. [41] ECG, 2-PPW - ME ± SD 1.62 ± 7.76 1.49 ± 5.52
Tabei et al. [6] 2-PPG - MAE ± SD 2.07 ± 2.06 2.12 ± 1.85

Marzorati et al. [42] PPG, PCG - ME ± SD 1.47 ± 3.76 0.01 ± 7.55
Miao et al. [43] ECG Res-LSTM ME ± SD −0.22 ± 5.82 −0.75 ± 5.62

El-Hajj et al. [14] PPG Attention
based-RNN

ME ± SD −0.52 ± 4.22 −0.66 ± 2.07
MAE ± SD 2.58 ± 3.35 1.26 ± 1.63

Our work IPG SSR-Net ME ± SD 1.69 ± 3.28 1.56 ± 3.32
MAE ± SD 2.63 ± 2.58 2.66 ± 2.52

4.4. Limitations and Future Works

Although this work presented an intelligent bio-impedance system for personalized BP
monitoring, as well as validating its functional efficacy and BP accuracy, some limitations
require further improvement. First, the participants are young healthy people in our
experiment. More old-aged subjects and patients with cardiovascular disease will be
recruited to make the BP accuracy more reliable in the clinical aspect. Second, the IPG
sensing device and the AI-based model will be integrated into a hardware implementation
for practical applications. Third, the evaluation of the frequency of calibration will be
performed to qualify BP monitoring with changes in measurement conditions, such as an
atmospheric humidity-induced skin-electrode impedance change. Fourth, the ambulatory
BP measurement technique by the analog front-end and post-processing improvements
will be developed for practical applications and daily activities.

5. Conclusions

This study develops a proof-of-concept wearable intelligent system for personalized
BP healthcare. The proposed system integrates a one-channel IPG sensing device and an
AI-based regression model for cuffless continuous BP measurement. Compared to the
PTT-based BP device and the MIMIC series dataset-based BP estimation model, our system
provides a combined solution with the merits of wearable and intelligent properties in
continuous BP measurement. In the accuracy evaluation, the experimental results validated
the feasibility of the proposed system, resulting in qualified BP performance. Overall, our
work develops a novel BP system to present an insightful view towards next-generation
personalized BP healthcare.
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