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Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and 
environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), 
important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide 
polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses 
are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the 
pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for 
analysis, which include 8,842 individuals (age, 52.2 ± 8.9 years; body mass index, 24.6 ± 3.2 kg/m2). A total of 312,121 
autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set 
Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery 
phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p ＜ 5 
× 10-6), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p ＜ 1.38 × 10-7, Bonferroni-adjusted p ＜ 
0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth 
factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated 
receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related 
with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA 
repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.
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Introduction

Metabolic syndrome (MetS) is a complex disorder related 
to type 2 diabetes mellitus (T2DM) and cardiovascular 
diseases, and its prevalence is continuously increasing 
worldwide [1, 2]. Insulin resistance, obesity, and inflam-
mation are major factors leading to MetS; however, the effect 
of genetic and environmental factors cannot be ignored [3]. 
Sedentary lifestyle, decreased physical activity, high caloric 
intake, and westernized food habits are environmental 
factors leading to obesity and MetS [4, 5]. Parental and 

maternal obesity in early pregnancy is related to increased 
risk of childhood obesity, which could later lead to obesity in 
young adulthood [6, 7]. In addition, family history of obesity, 
insulin resistance, and T2DM can increase the risk of MetS, 
implying the importance of genetic contribution. Candidate 
gene studies in MetS identified genes involved in glucose and 
insulin signaling, such as insulin receptor substrate 1 (IRS1), 
peroxisome proliferator-activated receptor  (PPARG), 
insulin-like growth factor 1 (IGF1), and genes involved in 
lipid metabolism, such as adiponectin (ADIPOQ), apoli-
poprotein A5 (APOA5), and low-density lipoprotein re-
ceptor (LDLR) [3, 8-10]. Through genome-wide association 
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studies (GWASs), a larger number of candidate genes could 
be further analyzed, and important susceptibility loci were 
discovered, including fat mass and obesity associated 
protein (FTO) and the melanocortin 4 receptor gene (MC4R), 
which were associated with body mass index (BMI) [11, 12]. 
In another GWAS of MetS, the lipid locus at rs964184 was 
associated with high-density lipoprotein (HDL)−cholesterol 
and very low-density lipoprotein−cholesterol [13]. In a 
meta-analysis in Korea that used the GWAS results from the 
Korea Associated Resource (KARE) cohort, susceptibility 
loci in 12q24.11 and 12q24.13 were associated with HDL- 
cholesterol levels, and genetic factors associated with osteo-
porosis and metabolic traits, such as T2DM, dyslipidemia, 
and obesity, could also be identified [14-16].

GWASs have their strengths in screening susceptible 
genes associated with complex diseases [17, 18]. However, 
GWASs focus more on individual single-nucleotide poly-
morphisms (SNPs) that meet a stringent statistical signi-
ficance, rather than explaining the interaction of genes, and 
they can only explain a small portion of genetic heritability 
[19-21]. In addition, due to its small effect size, certain SNPs 
in a GWAS that have been identified to be associated with a 
disease might not show up in another study of the same 
disease. This can be seen in two published studies of T2DM 
and Crohn’s disease, which could not find most of the proven 
susceptibility loci through GWASs and succeeded in 
achieving moderate significance after replication studies or 
meta-analysis [22, 23]. To overcome this limitation, path-
way-based approaches have been introduced to improve the 
interpretability of the GWAS. 

Pathway-based analysis integrates GWAS data with genes 
in the selected biological pathways or gene sets from prede-
fined human databases [19, 24]. The strength of pathway 
analysis is its large effect size and higher power to detect 
genes that might have been missed through a GWAS 
[24-26]. Pathway analysis, such as Meta-analysis Gene-Set 
Enrichment of Variant Associations (MAGENTA), only 
requires the SNP p-values and chromosome positions, 
simplifying the analysis of GWASs [27]. MAGENTA 
analyzes the statistical power of GWASs through integration 
of variant association p-values into gene scores, correcting 
for confounding factors, such as gene size, SNP density, and 
linkage disequilibrium properties [27]. Through MAGENTA 
analysis, biological pathways associated with triglyceride, 
HDL-cholesterol, T2DM, and BMI have been identified 
[27-29]. Pathway analysis is a supplementary way to further 
analyze the results of GWASs. However, there are few 
studies that have used this approach to identify biological 
pathways associated with MetS in Asians. The aim of this 
study was to further elucidate the genomic data of the KARE 
cohort and to identify the biological pathways related with 

MetS through a pathway-based approach.

Methods
Subjects

The cohort data from the KARE were used for the analysis. 
The KARE project, initiated in 2007, is a large cohort study 
that recruited two population studies from the rural 
Anseong and urban Ansan cohorts. We analyzed the data of 
8,842 individuals (age, 52.2 ± 8.9 years; BMI, 24.6 ± 3.2 
kg/m2). Anthropometric measurements, including weight, 
height, and waist circumference, were measured in all 
subjects, and BMI was calculated (kg/m2). Systolic and 
diastolic blood pressures (BP) were examined in all subjects. 
Fasting plasma glucose and lipid profiles, including serum 
total cholesterol, HDL-cholesterol, and triglyceride levels, 
were measured after an overnight fast. Detailed information 
on the study protocol has been previously described by Cho 
et al. [16].

MetS was defined according to the modified Third Report 
of the National Cholesterol Education Program (NCEP- 
ATPIII) diagnostic criteria, which require the presence of 
three out of the five following factors: 1) abdominal obesity, 
defined through waist circumference, using the cut-off 
values for Asians (≥90 cm in men and ≥80 cm in women), 
2) triglycerides ≥ 150 mg/dL or being on lipid-lowering 
treatment, 3) low HDL-cholesterol (men ＜ 40 mg/dL, 
women ＜ 50 mg/dL) or being on lipid-lowering treatment, 
4) systolic/diastolic BP ≥ 130/85 mm Hg or being on 
anti-hypertensive treatment, and 5) fasting plasma glucose 
≥ 100 mg/dL or previous diagnosis of T2DM or anti-diabetic 
treatment [30, 31].

Genome-wide association dataset analyses

Genotyping was done using Affymetrix Genome-wide 
Human SNP Array 5.0 (Affymetrix Inc., Santa Clara, CA, 
USA). Samples with gender inconsistencies and low call 
rates (＜96%) were excluded. 

Quality control (QC) procedures were performed using 
PLINK version 1.07 [32]. Samples were excluded if there 
was a high missing call rate (＞5%), low minor allele 
frequency (＜0.05), or significant deviation from Hardy- 
Weinberg equilibrium (p ＜ 1 × 10-6). The total genotyping 
rate of the remaining individuals was 99.58%. A total of 
312,121 autosomal SNPs were obtained after QC, re-
presenting 8,842 individuals (4,183 males and 4,659 
females). An additive model was used for the analysis. 
Detailed information on the quality control procedure of the 
genotypes is described elsewhere by Cho et al. [16]. 
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Table 3. Top ten significant GSEA associated with metabolic syndrome at the 75th percentile cutoff

Database Biological pathway or gene set

75% Cutoff (top 25%)

Nominal GSEA
p-value

FDR
p-value

Expected 
genes

Observed 
genes

GO term Electron carrier activity ＜0.001 0.094 27 46
Reactome Signaling by PDGF ＜0.001 0.105  9 19
GO term MAPKKK cascade 0.001 0.414  6 13
GO term PDGF binding 0.002 0.385  2  6
PANTHER molecular function Nucleic acid binding 0.003 0.343 106 131
Ingenuity PPAR signaling 0.003 0.113  3  8
GO term Negative regulation of gene-specific 

transcription from RNA polymerase II promoter
0.003 0.684  7 14

PANTHER molecular function Non-motor microtubule-binding protein 0.004 0.594  9 17
GO term Protein secretion 0.004 0.655  3  7
GO term DNA repair 0.004 0.847 31 45

GSEA, gene set enrichment analysis; FDR, false discovery rate; GO, gene ontology; PDGF, platelet-derived growth factor; MAPKKK, 
mitogen-activated protein kinase kinase kinase; PANTHER, protein analysis through evolutionary relationships; PPAR, peroxisome 
proliferator-activated receptor.

Table 2. Significant SNPs associated with metabolic syndrome in the discovery phase of GWAS 

Chromosome SNP BP Nearby gene Minor allele
p-value

Unadjusted Bonferroni-adjusted

12 rs11066280 111302166 C12orf51 T 1.38E-07 0.043
12 rs2074356 111129784 C12orf51 T 4.25E-07 0.133
12 rs12229654 109898844 MYL2 G 3.00E-06 0.937

SNP, single-nucleotide polymorphism; GWAS, genome-wide association study; BP, base pair.

Table 1. Clinical and biochemical characteristics of subjects with
metabolic syndrome and controls

Characteristic MetS (+) 
(n = 3,253)

MetS (–) 
(n = 5,589)

Age (y) 54.3 ± 8.8 51.0 ± 8.7
BMI (kg/m2) 26.3 ± 3.0* 23.6 ± 2.9
Waist circumference (cm) 88.1 ± 7.3 79.4 ± 8.6
Systolic BP (mm Hg) 130.5 ± 18.8* 116.5 ± 16.4
Diastolic BP (mm Hg) 85.5 ± 11.3 77.2 ± 10.4
Triglyceride (mg/dL) 201.9 ± 119.3* 140.2 ± 89.4
HDL-cholesterol (mg/dL) 44.0 ± 9.7* 45.0 ± 10.3
FPG (mg/dL) 85.3 ± 30.5* 84.5 ± 24.8

Values are presented as mean ± standard deviation.
MetS, metabolic syndrome; BMI, body mass index; BP, blood 
pressure; HDL, high-density lipoprotein; FPG, fasting plasma 
glucose.
*p ＜ 0.05 vs. MetS (–) after controlling for age and sex.

Pathway-based analysis

Pathway analysis was conducted using MAGENTA 
(http://broadinstitute.org/mpg/magenta) to discover bio-

logical pathways or gene sets associated with MetS. Detailed 
information on this analysis is described by Segre et al. [27]. 
Briefly, the steps of MAGENTA analysis were as follows: 1) 
SNP association p-values and chromosome positions from 
the GWAS are used as input; 2) each gene located at a 
predetermined boundary is mapped to a single SNP; 3) based 
on the regional SNP p-values, gene scores are ranked, and the 
best SNP p-values are determined; 4) gene scores are 
corrected for confounding factors, such as gene size and 
linkage disequilibrium-related properties; and 5) gene set 
enrichment p-values are determined by analyzing the gene 
sets enriched with highly ranked gene scores and the 
selected biological pathway or gene sets [27]. False 
discovery rate (FDR) was also identified through multiple 
test correction. Additional information, including 95th and 
75th percentile cutoffs and the number of observed and 
expected genes within each pathway, were also calculated. 
Since 75th percentile cutoffs have greater power in 
interpreting complex diseases that are highly polygenic, this 
cutoff value was used for our interpretation [27, 29, 33].
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Results

A total of 8,842 subjects (4,183 men and 4,659 women) 
were involved in the study. Of them, 3,253 (36.8%) had 
MetS. Clinical characteristics of subjects with and without 
MetS are shown in Table 1. Individuals with MetS were older, 
with higher BMI, systolic BP, triglycerides, and fasting 
plasma glucose and lower HDL-cholesterol levels compared 
to subjects without MetS.

In the discovery set of the GWAS, three SNPs associated 
with MetS were identified, demonstrated in Table 2. SNPs 
from chromosome 12, including rs11066280, rs2074356, 
and rs12229654, had a p ＜ 5 × 10-6. From these SNPs, only 
rs11066280 satisfied the Bonferroni-corrected cutoff (un-
adjusted p ＜ 1.38 × 10-7, Bonferroni-adjusted p ＜ 0.05).

The top 10 significant biological pathways or gene sets 
associated with MetS at the 75th percentile cutoff are shown 
in Table 3. The pathways were as follows: electron carrier 
activity (gene ontology [GO] term), signaling by platelet- 
derived growth factor (PDGF) (Reactome), mitogen- 
activated protein kinase kinase kinase (MAPKKK) cascade 
(GO term), PDGF binding (GO term), nucleic acid binding 
(protein analysis through evolutionary relationships 
[PANTHER] molecular function), PPAR signaling (Ingen-
uity), negative regulation of gene-specific transcription from 
RNA polymerase II promoter (GO term), non-motor 
microtubule-binding protein (PANTHER molecular fun-
ction), protein secretion (GO term), and DNA repair (GO 
term). At the FDR level, although all pathways were above 
0.05, the pathway of electron carrier activity had an FDR 
value ＜ 0.1, and the pathways of signaling by PDGF and 
PPAR signaling showed an FDR ＜ 0.2.

Discussion

In this study, through pathway analysis of MetS, im-
portant pathways, including electron carrier activity, signal-
ing by PDGF, MAPKKK cascade, PDGF binding, nucleic acid 
binding, PPAR signaling, negative regulation of gene- 
specific transcription from RNA polymerase II promoter, 
non-motor microtubule binding protein, protein secretion, 
and DNA repair, were identified.

In the previous GWAS using KARE cohorts, rs11066280 
and rs2074356 in chromosome 12q24.13, near the chromo-
some 12 open reading frame, human C12orf51 (C12orf51), 
and rs12229654 in chromosome 12q24.11, near myosin, 
light chain 2 (MYL2) were identified to be associated with 
HDL-cholesterol, hypertension, T2DM, and dyslipidemia 
[14, 34]. Drinking behavior was also associated with 
rs11066280 (C12orf51) in Korean men and Han Chinese [34, 
35]. In other published GWASs on BMI, important variants 

on loci near/in FTO, MC4R, and transmembrane protein 18 
(TMEM18) were associated with BMI, the latter also having 
a strong association with BMI in children [36]. Genetic 
variants in zinc finger protein 259 (ZNF259), lipoprotein 
lipase (LPL), and APOA5 were also associated with MetS 
[37]. In the GWAS of European Americans and Finnish 
cohorts, APOC1 was related with dyslipidemia and central 
obesity, and the gene cluster region in SNP rs964184, 
near/in gene APOA1/C3/A4/A5, was associated with MetS 
[3, 38].

Through MAGENTA analysis, pathways related with 
electron carrier activity and PDGF signaling and binding, as 
well as PPAR signaling, were identified as some of the top 
ranking pathways associated with MetS. Electron carrier 
activity may be related with electron transport activity in the 
mitochondria. Abnormal regulation of mitochondrial func-
tion is associated with factors, such as reduced electron 
transport chain, which can lead to insulin resistance and 
MetS [39, 40]. In obese and diabetic patients, fewer and 
diminished mitochondrial electron transport enzymes, 
especially complex I, were observed in the skeletal muscle 
[41-43]. Defects in the electron transport chain can impair 
carbohydrate metabolism, affecting the tricarboxylic acid 
cycle and limiting ATP activity, which could result in lactic 
acidosis [44]. In addition, mitochondria respiratory chains 
are major sites of reactive oxygen species (ROS) production, 
and excess electrons can increase ROS, stimulating proin-
flammatory processes and mutagenesis, contributing to 
mitochondrial dysfunction [40, 45].

Pathways related to PDGF binding and signaling and the 
MAPKKK cascade were also associated with MetS in this 
study. The PDGF signaling pathway has been identified to be 
associated with BMI [29]. PDGF is an important activator of 
cell proliferation and migration, mediated by the mitogen- 
activated protein kinase (MAPK) family, and PDGF signaling 
regulates angiogenesis [46, 47]. In animal studies, PDGF- 
mediated pathways played a crucial role in healing myo-
cardial infarction, myocardial fibrosis, and defects in the 
pathway lead to prolongation of inflammation [48, 49]. In a 
human study, serum PDGF isoform b levels were lower in 
individuals with MetS, while increased PDGF expression 
with elevated urinary PDGF-BB was seen in patients with 
diabetic nephropathy [50, 51]. MAPK pathways are involved 
in adipogenesis and metabolic homeostasis, and defects in 
these pathways due to factors, such as oxidative stress, can 
lead to abnormal adipose regulation, insulin resistance, and 
obesity [52, 53]. In addition, increased MAPK signaling had 
a detrimental effect on -cell function and insulin 
homeostasis, which could contribute to the development of 
MetS [54]. The PPAR isotypes PPAR-, -, and - play an 
important role in lipid and glucose metabolism [55]. PPAR- 
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is expressed in tissues, including skeletal muscle and liver, 
regulating lipid metabolism and inflammatory processes, 
whereas PPAR- and PPAR- are involved in adipocyte 
differentiation [56]. Genetic variations in PPAR can affect 
glucose uptake, fasting glucose levels, and BMI [57-59]. In a 
GWAS of T2DM in a Finnish population, variants near 
PPAR- were associated with T2DM [60]. In a Korean study, 
polymorphisms in PPAR- were related with BMI and fasting 
glucose in non-diabetics [61].

Other pathways related with nucleic acids, such as RNA 
and DNA, as well as pathways of protein secretion were also 
associated with MetS. MicroRNAs regulate the action and 
secretion of insulin, as well as lipid metabolism, playing an 
important role in the pathogenesis of diabetes, obesity, and 
cancer [62-64]. Abnormal expression of microRNAs in 
pancreatic beta-cells affects beta-cell function and insulin 
secretion [65]. MicroRNA expression is also related to 
appetite control in the brain; neural signaling in the muscle, 
pancreas, and liver; and biological processes of lipid meta-
bolism, which are linked to obesity [65, 66]. In addition, 
microRNA-33 is an important regulator of lipid metabolism, 
regulating insulin signaling and fatty acid regulation, and 
may be a therapeutic target for treating MetS [67]. Mito-
chondrial dysfunction is an important cause, leading to 
diabetes [68]. DNA damage in mitochondria and vascular 
cells can have a detrimental effect on mitochondrial func-
tion, increasing ROS production and promoting athero-
sclerosis [68, 69]. Variations in mitochondrial DNA can also 
lead to MetS, hyperinsulinemia, and T2DM [70-72]. In 
addition, insulin also regulates DNA repair, and a chronic 
hyperglycemic state can damage DNA, contributing to 
genomic mutation, which can be associated with cancer 
[73]. Abnormal protein secretion can affect metabolic traits, 
proven through studies demonstrating increased secretion 
of fatty acid-binding protein 4 (FABP4), and frizzled-related 
protein 4 (SFRP4), associated with obesity, insulin re-
sistance, and abnormal insulin sensitivity [74-76]. Retinol- 
binding protein 4 (RBP4), expressed in adipocytes and liver, 
showed a positive correlation with MetS in a Chinese 
population, associated with insulin resistance and dysli-
pidemia [77, 78].

The exact association between the pathway of non-motor 
microtubule binding and MetS can not be explained. 
However, studies have shown non-motor microtubule 
binding sites to have an important role in mitosis and to be 
essential in the embryonic development of Drosophila [79]. 
More studies will be needed to elucidate the association 
between non-motor microtubule binding and MetS.

One of the strengths of this study is the usage of a 
pathway-based approach to further analyze the KARE GWAS 
datasets. Pathway-based approaches of MetS in Asians are 

relatively scarce. Therefore, this study might help further 
elucidate the pathophysiology of MetS. Although the 
pathways identified in our study did not show an FDR value 
＜ 0.05, important pathways related with BMI, lipid and 
glucose metabolism, including signaling by PDGF and PPAR 
signaling, had an FDR ＜ 0.2. Other pathway-based appro-
aches will be needed to further validate the identified 
pathways. 

Pathway-based analysis has its strengths in improving the 
interpretability of the GWAS. However, current pathway 
analysis tools are limited in finding a well-defined pathway, 
and their isolated characteristics make it hard to combine 
them with other analyses [80]. In addition, the limited 
knowledge base and imprecision of gene annotations 
restricts their usage and integration with other analysis 
methods [81]. Therefore, these limitations will need to be 
improved to generalize this approach and increase its 
applicability. 

In conclusion, through pathway analysis of MetS, 
significant biological pathways associated with lipid and 
glucose metabolism could be identified, and these results 
might contribute to the understanding of MetS.

Acknowledgments

This work was supported by grants from the Korea 
Centers for Disease Control and Prevention, Republic of 
Korea (4845-301, 4851-302, 4851-307) and the National 
Research Foundation of Korea (NRF) funded by the Ministry 
of Education (NRF-2013R1A1A2062702).

References

1. de Carvalho Vidigal F, Bressan J, Babio N, Salas-Salvadó J. 
Prevalence of metabolic syndrome in Brazilian adults: a sys-
tematic review. BMC Public Health 2013;13:1198.

2. Márquez-Sandoval F, Macedo-Ojeda G, Viramontes-Hörner 
D, Fernández Ballart JD, Salas Salvadó J,Vizmanos B. The 
prevalence of metabolic syndrome in Latin America: a system-
atic review. Public Health Nutr 2011;14:1702-1713.

3. Aguilera CM, Olza J, Gil A. Genetic susceptibility to obesity 
and metabolic syndrome in childhood. Nutr Hosp 2013;28 
Suppl 5:44-55.

4. Hoang KC, Le TV, Wong ND. The metabolic syndrome in East 
Asians. J Cardiometab Syndr 2007;2:276-282.

5. Nestel P, Lyu R, Low LP, Sheu WH, Nitiyanant W, Saito I, et al. 
Metabolic syndrome: recent prevalence in East and Southeast 
Asian populations. Asia Pac J Clin Nutr 2007;16:362-367.

6. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. 
Predicting obesity in young adulthood from childhood and pa-
rental obesity. N Engl J Med 1997;337:869-873.

7. Whitaker RC. Predicting preschooler obesity at birth: the role 
of maternal obesity in early pregnancy. Pediatrics 2004;114: 



200 www.genominfo.org

U Shim, et al. Pathway Analysis of Metabolic Syndrome

e29-e36.
8. Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR. 

Obesity associated with a mutation in a genetic regulator of 
adipocyte differentiation. N Engl J Med 1998;339:953-959.

9. Peters KE, Beilby J, Cadby G, Warrington NM, Bruce DG, 
Davis WA, et al. A comprehensive investigation of variants in 
genes encoding adiponectin (ADIPOQ) and its receptors 
(ADIPOR1/R2), and their association with serum adipo-
nectin, type 2 diabetes, insulin resistance and the metabolic 
syndrome. BMC Med Genet 2013;14:15.

10. Joy T, Lahiry P, Pollex RL, Hegele RA. Genetics of metabolic 
syndrome. Curr Diab Rep 2008;8:141-148.

11. Fall T, Ingelsson E. Genome-wide association studies of obe-
sity and metabolic syndrome. Mol Cell Endocrinol 2014;382: 
740-757.

12. Vimaleswaran KS, Tachmazidou I, Zhao JH, Hirschhorn JN, 
Dudbridge F, Loos RJ. Candidate genes for obesity-suscepti-
bility show enriched association within a large genome-wide 
association study for BMI. Hum Mol Genet 2012;21:4537-4542.

13. Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, 
Havulinna AS, et al. Genome-wide screen for metabolic syn-
drome susceptibility loci reveals strong lipid gene con-
tribution but no evidence for common genetic basis for clus-
tering of metabolic syndrome traits. Circ Cardiovasc Genet 
2012;5:242-249.

14. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. 
Large-scale genome-wide association studies in East Asians 
identify new genetic loci influencing metabolic traits. Nat 
Genet 2011;43:990-995.

15. Lee BY, Shin DH, Cho S, Seo KS, Kim H. Genome-wide analy-
sis of copy number variations reveals that aging processes in-
fluence body fat distribution in Korea Associated Resource 
(KARE) cohorts. Hum Genet 2012;131:1795-1804.

16. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A 
large-scale genome-wide association study of Asian pop-
ulations uncovers genetic factors influencing eight quantita-
tive traits. Nat Genet 2009;41:527-534.

17. Hirschhorn JN, Daly MJ. Genome-wide association studies for 
common diseases and complex traits. Nat Rev Genet 2005;6: 
95-108.

18. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, 
Altshuler D. Efficiency and power in genetic association 
studies. Nat Genet 2005;37:1217-1223.

19. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS re-
sults: a review of statistical methods and recommendations 
for their application. Am J Hum Genet 2010;86:6-22.

20. Teo YY. Common statistical issues in genome-wide associa-
tion studies: a review on power, data quality control, genotype 
calling and population structure. Curr Opin Lipidol 2008;19: 
133-143.

21. Stringer S, Wray NR, Kahn RS, Derks EM. Underestimated ef-
fect sizes in GWAS: fundamental limitations of single SNP 
analysis for dichotomous phenotypes. PLoS One 2011;6: 
e27964.

22. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et 
al. Meta-analysis of genome-wide association data and 
large-scale replication identifies additional susceptibility loci 

for type 2 diabetes. Nat Genet 2008;40:638-645.
23. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux 

JD, et al. Genome-wide association defines more than 30 dis-
tinct susceptibility loci for Crohn's disease. Nat Genet 2008;40: 
955-962.

24. Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis 
of genomic data: concepts, methods, and prospects for future 
development. Trends Genet 2012;28:323-332.

25. Wang K, Li M, Hakonarson H. Analysing biological pathways 
in genome-wide association studies. Nat Rev Genet 2010;11: 
843-854.

26. Shahbaba B, Shachaf CM, Yu Z. A pathway analysis method for 
genome-wide association studies. Stat Med 2012;31:988- 
1000.

27. Segrè AV; DIAGRAM Consortium; MAGIC investigators, 
Groop L, Mootha VK, Daly MJ, et al.  Common inherited varia-
tion in mitochondrial genes is not enriched for associations 
with type 2 diabetes or related glycemic traits. PLoS Genet 
2010;6:e1001058.

28. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV,  
Steinthorsdottir V, et al. Large-scale association analysis pro-
vides insights into the genetic architecture and pathophysiol-
ogy of type 2 diabetes. Nat Genet 2012;44:981-990.

29. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, 
Jackson AU, et al. Association analyses of 249,796 individuals 
reveal 18 new loci associated with body mass index. Nat Genet 
2010;42:937-948.

30. National Cholesterol Education Program (NCEP) Expert 
Panel on Detection, Evaluation, and Treatment of High Blood 
Cholesterol in Adults (Adult Treatment Panel III). Third 
Report of the National Cholesterol Education Program 
(NCEP) Expert Panel on Detection, Evaluation, and Treat-
ment of High Blood Cholesterol in Adults (Adult Treatment 
Panel III) final report. Circulation 2002;106:3143-3421.

31. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, 
Franklin BA, et al. Diagnosis and management of the metabol-
ic syndrome: an American Heart Association/National Heart, 
Lung, and Blood Institute Scientific Statement. Circulation 
2005;112:2735-2752.

32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, 
Bender D, et al. PLINK: a tool set for whole-genome associa-
tion and population-based linkage analyses. Am J Hum Genet 
2007;81:559-575.

33. Zhai G, Teumer A, Stolk L, Perry JR, Vandenput L, Coviello 
AD, et al. Eight common genetic variants associated with se-
rum DHEAS levels suggest a key role in ageing mechanisms. 
PLoS Genet 2011;7:e1002025.

34. Heo SG, Hwang JY, Uhmn S, Go MJ, Oh B, Lee JY, et al. 
Male-specific genetic effect on hypertension and metabolic 
disorders. Hum Genet 2014;133:311-319.

35. Baik I, Cho NH, Kim SH, Han BG, Shin C. Genome-wide asso-
ciation studies identify genetic loci related to alcohol con-
sumption in Korean men. Am J Clin Nutr 2011;93:809-816.

36. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy 
RM, Lindgren CM, et al. A common variant in the FTO gene is 
associated with body mass index and predisposes to child-
hood and adult obesity. Science 2007;316:889-894.



www.genominfo.org 201

Genomics & Informatics Vol. 12, No. 4, 2014

37. Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, 
Kullo IJ, et al. A bivariate genome-wide approach to metabolic 
syndrome: STAMPEED consortium. Diabetes 2011;60:1329- 
1339.

38. Avery CL, He Q, North KE, Ambite JL, Boerwinkle E, Fornage 
M, et al. A phenomics-based strategy identifies loci on APOC1, 
BRAP, and PLCG1 associated with metabolic syndrome phe-
notype domains. PLoS Genet 2011;7:e1002322.

39. Ren J, Pulakat L, Whaley-Connell A, Sowers JR. Mitochondrial 
biogenesis in the metabolic syndrome and cardiovascular 
disease. J Mol Med (Berl) 2010;88:993-1001.

40. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction 
in insulin resistance. Circ Res 2008;102:401-414.

41. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, 
et al. Coordinated reduction of genes of oxidative metabolism 
in humans with insulin resistance and diabetes: Potential role 
of PGC1 and NRF1. Proc Natl Acad Sci U S A 2003;100:8466- 
8471.

42. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, 
Kelley DE. Deficiency of subsarcolemmal mitochondria in 
obesity and type 2 diabetes. Diabetes 2005;54:8-14.

43. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mi-
tochondria in human skeletal muscle in type 2 diabetes. 
Diabetes 2002;51:2944-2950.

44. Adams PL, Turnbull DM. Disorders of the electron transport 
chain. J Inherit Metab Dis 1996;19:463-469.

45. Choksi KB, Boylston WH, Rabek JP, Widger WR, 
Papaconstantinou J. Oxidatively damaged proteins of heart 
mitochondrial electron transport complexes. Biochim Biophys 
Acta 2004;1688:95-101.

46. Harper L, Kashiwagi Y, Pusey CD, Hendry BM, Domin J. 
Platelet-derived growth factor reorganizes the actin cytoskele-
ton through 3-phosphoinositide-dependent and 3-phosphoi-
nositide-independent mechanisms in human mesangial cells. 
Nephron Physiol 2007;107:p45-p56.

47. Carmeliet P. Angiogenesis in health and disease. Nat Med 
2003;9:653-660.

48. Zymek P, Bujak M, Chatila K, Cieslak A, Thakker G, Entman 
ML, et al. The role of platelet-derived growth factor signaling 
in healing myocardial infarcts. J Am Coll Cardiol 2006;48:2315- 
2323.

49. Fan B, Ma L, Li Q, Wang L, Zhou J, Wu J. Role of 
PDGFs/PDGFRs signaling pathway in myocardial fibrosis of 
DOCA/salt hypertensive rats. Int J Clin Exp Pathol 2014;7: 
16-27.

50. Tisato V, Toffoli B, Monasta L, Bernardi S, Candido R, Zauli G, 
et al. Patients affected by metabolic syndrome show decreased 
levels of circulating platelet derived growth factor (PDGF)- 
BB. Clin Nutr 2013;32:259-264.

51. Bessa SS, Hussein TA, Morad MA, Amer AM. Urinary plate-
let-derived growth factor-BB as an early marker of nephrop-
athy in patients with type 2 diabetes: an Egyptian study. Ren 
Fail 2012;34:670-675.

52. Murdolo G, Bartolini D, Tortoioli C, Piroddi M, Iuliano L, Galli 
F. Lipokines and oxysterols: novel adipose-derived lipid hor-
mones linking adipose dysfunction and insulin resistance. Free 
Radic Biol Med 2013;65:811-820.

53. Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in 
adipocyte differentiation and obesity. Biochimie 2005;87:51- 
56.

54. Gehart H, Kumpf S, Ittner A, Ricci R. MAPK signalling in cel-
lular metabolism: stress or wellness? EMBO Rep 2010;11:834- 
840.

55. Azhar S. Peroxisome proliferator-activated receptors, meta-
bolic syndrome and cardiovascular disease. Future Cardiol 
2010;6:657-691.

56. Corzo C, Griffin PR. Targeting the peroxisome proliferator- 
activated receptor-gamma to counter the inflammatory milieu 
in obesity. Diabetes Metab J 2013;37:395-403.

57. Vänttinen M, Nuutila P, Kuulasmaa T, Pihlajamäki J, Hällsten 
K, Virtanen KA, et al. Single nucleotide polymorphisms in the 
peroxisome proliferator-activated receptor delta gene are as-
sociated with skeletal muscle glucose uptake. Diabetes 2005; 
54:3587-3591.

58. Hu C, Jia W, Fang Q, Zhang R, Wang C, Lu J, et al. Peroxisome 
proliferator-activated receptor (PPAR) delta genetic poly-
morphism and its association with insulin resistance index 
and fasting plasma glucose concentrations in Chinese 
subjects. Diabet Med 2006;23:1307-1312.

59. Aberle J, Hopfer I, Beil FU, Seedorf U. Association of perox-
isome proliferator-activated receptor delta +294T/C with 
body mass index and interaction with peroxisome pro-
liferator-activated receptor alpha L162V. Int J Obes (Lond) 
2006;30:1709-1713.

60. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren 
WL, et al. A genome-wide association study of type 2 diabetes 
in Finns detects multiple susceptibility variants. Science 
2007;316:1341-1345.

61. Shin HD, Park BL, Kim LH, Jung HS, Cho YM, Moon MK, et al. 
Genetic polymorphisms in peroxisome proliferator-activated 
receptor delta associated with obesity. Diabetes 2004;53:847- 
851.

62. Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. 
Biochim Biophys Acta 2008;1779:697-701.

63. Poy MN, Spranger M, Stoffel M. microRNAs and the regu-
lation of glucose and lipid metabolism. Diabetes Obes Metab 
2007;9 Suppl 2:67-73.

64. Ramírez CM, Goedeke L, Fernández-Hernando C. “Micro-
managing” metabolic syndrome. Cell Cycle 2011;10:3249- 
3252.

65. Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obe-
sity and the metabolic syndrome. Obes Rev 2010;11:354-361.

66. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. 
miR-122 regulation of lipid metabolism revealed by in vivo an-
tisense targeting. Cell Metab 2006;3:87-98.

67. Gharipour M, Sadeghi M. Pivotal role of microRNA-33 in met-
abolic syndrome: a systematic review. ARYA Atheroscler 
2013;9:372-376.

68. Wang PW, Lin TK, Weng SW, Liou CW. Mitochondrial DNA 
variants in the pathogenesis of type 2 diabetes - relevance of 
asian population studies. Rev Diabet Stud 2009;6:237-246.

69. Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, 
Griffin J, et al. DNA damage links mitochondrial dysfunction 
to atherosclerosis and the metabolic syndrome. Circ Res 



202 www.genominfo.org

U Shim, et al. Pathway Analysis of Metabolic Syndrome

2010;107:1021-1031.
70. Weng SW, Liou CW, Lin TK, Wei YH, Lee CF, Eng HL, et al. 

Association of mitochondrial deoxyribonucleic acid 16189 
variant (T->C transition) with metabolic syndrome in 
Chinese adults. J Clin Endocrinol Metab 2005;90:5037-5040.

71. Liou CW, Lin TK, Huei Weng H, Lee CF, Chen TL, Wei YH, et 
al. A common mitochondrial DNA variant and increased body 
mass index as associated factors for development of type 2 dia-
betes: additive effects of genetic and environmental factors. J 
Clin Endocrinol Metab 2007;92:235-239.

72. Poulton J, Brown MS, Cooper A, Marchington DR, Phillips DI. 
A common mitochondrial DNA variant is associated with in-
sulin resistance in adult life. Diabetologia 1998;41:54-58.

73. Blasiak J, Arabski M, Krupa R, Wozniak K, Zadrozny M, 
Kasznicki J, et al. DNA damage and repair in type 2 diabetes 
mellitus. Mutat Res 2004;554:297-304.

74. Cabré A, Lázaro I, Girona J, Manzanares JM, Marimón F, Plana 
N, et al. Fatty acid binding protein 4 is increased in metabolic 
syndrome and with thiazolidinedione treatment in diabetic 
patients. Atherosclerosis 2007;195:e150-e158.

75. Cabré A, Lázaro I, Girona J, Manzanares JM, Marimón F, Plana 
N, et al. Plasma fatty acid-binding protein 4 increases with re-
nal dysfunction in type 2 diabetic patients without micro-

albuminuria. Clin Chem 2008;54:181-187.
76. Mahdi T, Hänzelmann S, Salehi A, Muhammed SJ, Reinbothe 

TM, Tang Y, et al. Secreted frizzled-related protein 4 reduces 
insulin secretion and is overexpressed in type 2 diabetes. Cell 
Metab 2012;16:625-633.

77. Qi Q, Yu Z, Ye X, Zhao F, Huang P, Hu FB, et al. Elevated reti-
nol-binding protein 4 levels are associated with metabolic 
syndrome in Chinese people. J Clin Endocrinol Metab 2007;92: 
4827-4834.

78. Liu Y, Wang D, Li D, Sun R, Xia M. Associations of reti-
nol-binding protein 4 with oxidative stress, inflammatory 
markers, and metabolic syndrome in a middle-aged and eld-
erly Chinese population. Diabetol Metab Syndr 2014;6:25.

79. Zhang G, Beati H, Nilsson J, Wodarz A. The Drosophila micro-
tubule-associated protein mars stabilizes mitotic spindles by 
crosslinking microtubules through its N-terminal region. 
PLoS One 2013;8:e60596.

80. Kelder T, Conklin BR, Evelo CT, Pico AR. Finding the right 
questions: exploratory pathway analysis to enhance biological 
discovery in large datasets. PLoS Biol 2010;8:e1000472.

81. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: cur-
rent approaches and outstanding challenges. PLoS Comput Biol 
2012;8:e1002375.


