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It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early 
stage for the better diagnostic and treatment strategies. It was suggested that MDD 
might be involving in functional or structural alternations at the brain network level. 
However, at the onset of MDD, whether the whole brain white matter (WM) alterations 
at network level are already evident still remains unclear. In the present study, diffusion 
MRI scanning was adopt to depict the unique WM structural network topology across 
the entire brain at the early stage of MDD. Twenty-one first episode, short duration 
(<1  year) and drug-naïve depression patients, and 25 healthy control (HC) subjects 
were recruited. To construct the WM structural network, atlas-based brain regions 
were used for nodes, and the value of multiplying fiber number by the mean fractional 
anisotropy along the fiber bundles connected a pair of brain regions were used for 
edges. The structural network was analyzed by graph theoretic and network-based 
statistic methods. Pearson partial correlation analysis was also performed to evaluate 
their correlation with the clinical variables. Compared with HCs, the MDD patients had a 
significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented 
a significantly decreased subnetwork, which mainly involved in the frontal–subcortical 
and limbic regions. Our results suggested that the abnormal structural network of the 
orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might 
be a key pathology in early stage drug-naive depression. And the structural network 
analysis might be potential in early detection and diagnosis of MDD.

Keywords: major depressive disorder, short duration, structural network, graph theory, network-based statistical

inTrODUcTiOn

Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders worldwide, with 
complex manifestations including affected mood, cognitive deficits, and psychomotor disturbances 
(1). It has affected more than 350 million people globally (2) and has been ranked as the second 
leading cause of worldwide disability (3). Approximately 75% of MDD patients experience more 
than one clinically significant episode in their lifetimes (4, 5). Early studies suggested that recurrent 
episodes and prolonged duration may severely interfere with individual life quality, reduce the 
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effectiveness of antidepressant medication, and greatly increase 
the risk of suicide (6, 7). Earlier treatments could help to reduce 
the recurrence rate of depression (8). However, as a disease with 
high heterogeneity, the exact pathogenesis of MDD remains 
unclear, the precise biomarker for early diagnosis is still not 
available. Therefore, it is important to investigate the brain imag-
ing based biomarkers for potential early diagnosis, to improve 
the rate of success in treatment.

In recent years, functional and structural MRI analyses have 
been widely applied to non-invasively investigate the brain 
regions involved in the pathogenesis of depression (9). Most stud-
ies have consistently reported functional or structural alterations 
in various brain regions in MDD patients mainly involved in the 
fronto-limbic circuit, such as amygdala, hippocampus, cingulate 
cortex, and prefrontal cortex (10, 11). The volume reduction in 
striatum and thalamus was also found in MDD patients (12–14). 
Depression was considered to be implicated in the abnormality 
of limbic-cortical-striatial-pallidal-thalamic (LCSPT) network 
(15, 16) or limbic-cortico-striatal-thalamic-cortical (LCSTC) 
circuits (17). Besides, convergent evidence indicates the default 
mode network also plays an important role in the pathogenesis 
of depression (18–22).

Functional or structural abnormalities of these circuits or 
networks suggest that depression is a complex disorder that 
mainly involved in the brain network-level alternations, rather 
than the impairments of isolated regions. However, most 
published functional or structural MRI studies just provide a 
limited window into a whole systems level understanding of the 
abnormalities present in depression (23). The recent explosive 
growth of connectome approaches has made it possible to quan-
tify the topological structural organization of complex neural 
networks across the entire brain (24–26). Graph theoretic and 
network-based statistic (NBS) analyses were the two general 
methods used in the whole-brain network analysis. Recent stud-
ies have point out the importance of topological disturbances of 
whole-brain networks as the pathogenesis of MDD (27). Until 
now, only a few studies investigated the topology of the whole-
brain’s white matter (WM) structural network in MDD patients 
by diffusion MRI. In the graph theoretic analysis, although 
several structural network studies reported negative group dif-
ferences in the network measures between the whole MDD and 
healthy control (HC) groups (28, 29), there were some differ-
ences found in the part of the network measures (i.e., clustering 
coefficient, Cp; characteristic path length, Lp; normalized clus-
tering coefficient, γ; normalized characteristic path length, λ;  
small-worldness, σ; global efficiency, Eglobal; local efficiency, Elocal) 
in MDD subgroups, like the early adult-onset and geriatric 
depression patients (30, 31). Meanwhile, in the NBS analysis, 
although the above mentioned studies consistently show the 
structural network alternations among the frontal lobe, striatum 
and limbic system, there were still some differences in the range 
of structural network alternations among these studies. These 
varied findings may be related to certain confounding factors in 
the MDD patients, such as the number of episodes, age of onset, 
medication status, and durations (27).

This study aims to explore the unique structural network 
topology across the entire brain at the early stage of MDD and to 

elucidate their relationships with clinical severities. Therefore, 
we only recruited first episode, untreated and short duration 
MDD patients. We also combined both graph theoretic and 
network-based statistical analysis together to investigate the 
structural networks in MDD patients and healthy individuals. 
Besides, in order to better evaluate the WM structural network, 
we define the network edges as the multiplication of fiber num-
ber (FN) by the mean fractional anisotropy (FA) along the fiber 
bundles between a pair of cortical regions.

MaTerials anD MeThODs

subjects
This was a cross-sectional study and all protocols were approved 
by the ethics committee of Kunming Medical University, and all 
patients involved in the study provided written informed consent.

In this study, 23 first episode, short duration (<1  year, 
range  =  1–10  months) and drug-naive patients were recruited 
from the psychiatry department of the First Affiliated Hospital 
of Kunming Medical University. And two of the 23 patients were 
excluded due to obvious head motion. Ultimately, 21 patients  
(8 women and 13 men, age range 18–56 years; 100% right handed; 
education years range = 12–20) were recruited. Two experienced 
psychiatrists independently made the diagnosis of MDD accord-
ing to the diagnostic assessment using the Structured Clinical 
Interview for DSM-IV-Patient Edition (SCID-P). All of the MDD 
patients also had a score of 18 or greater (scores range: 18–34) 
on the 17-item Hamilton Depression Rating Scale (HDRS). 
Patients that had other comorbid Axis I and Axis II psychiatric 
disorders, such as schizophrenia, bipolar affective disorder, and 
personality disorders, were excluded from this study according 
to the SCID-I and SCID-II assessments. Although some MDD 
patients had anxiety symptom, they did not meet the diagnostic 
criteria for anxiety disorders. The MDD patients included in the 
study had never received antidepressive medications before the 
MRI examinations.

A total of 25 HC subjects matched for age, gender, and educa-
tion years were also recruited from Kunming. They were screened 
using a diagnostic interview, the Structured Clinical Interview 
for DSM-IV Nonpatient Edition (SCID-NP), to rule out current 
or past DSM-IV Axis I disorders. They were also interviewed 
to affirm that there was no history of psychiatric illness in their 
first-degree relatives. All subjects were right-handed and without 
severe or acute medical conditions physically based on clinical 
evaluations and medical records. All of the HC subjects involved 
in the study provided written informed consent.

Power analysis
On the basis of preliminary experiments and previous study, a 
difference mean of 0.32 with 0.37 SD for the clustering coefficient 
(Cp) between MDD patients and health control, which was most 
mentioned by previous studies, was hypothesized; And the sam-
ple size of patients in several previous researches was probably 
around 22 (30–32). So a sample size of 21 patients would have an 
80% power to detect such a difference as statistically significant 
at a level (α) of 0.05 in the present study.
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Magnetic resonance imaging acquisition
All participants were scanned on a Philips 3 T achieva TX scanner 
with an eight-channel head coil. A diffusion tensor image sequence 
was applied with the following parameters: TR  =  7,173  ms, 
TE = 78 ms, matrix = 115 × 115, FOV = 230 mm × 230 mm, 50 axial 
slices, b value = 1,000, directions = 32, slice thickness = 3 mm, 
acquisition time = 9 min 7 sec. A high-resolution 3D TFE sequence 
was acquired with the following parameters: TR  =  7.7  ms, 
TE = 3.6 ms, matrix = 228 × 228, FOV = 250 mm × 250 mm, 
230 axial slices, acquisition time  =  6  min 53  sec. In addi-
tion, axial T2-weighted MR images were acquired with the 
parameters: TR = 2,500 ms, TE = 80 ms, matrix = 332 × 225, 
FOV  =  250  mm  ×  220  mm, slice thickness  =  6  mm, 18 axial 
slices, acquisition time = 55 sec. The anatomical MR images were 
re-evaluated for any structural abnormalities and were reported 
as normal in all subjects.

structural Brain network construction
In this study, DTI data preprocessing and brain network were 
performed using the PANDA toolbox (33)1 which was an inte-
gration analysis toolbox comprising the Diffusion Toolkit (34), 
FMRIB Software Library (35), MRIcron (36), and Pipeline System 
for Octave and Matlab (PSOM) (37). And the whole process had 
been described in detail previously (38).

DTI Data Preprocessing
Briefly, the preprocessing procedure included skull-stripping, 
eddy-current, and head-motion correction, FA calculation and 
whole-brain deterministic DTI fiber tractography (39). First, the 
non-brain tissues of the images were deleted by employing the 
brain extraction tool (40). Second, the head motion and eddy cur-
rent distortions were corrected through registering the DW images 
to the b0 image with an affine transformation (41). After correc-
tion, six elements of the diffusion tensor were then estimated from 
which FA was calculated. Then, Whole-brain fiber tractography was 
subsequently reconstructed by seeding at every voxel in the brain 
and using fiber assignment by continuous tracking algorithm (42).  
This algorithm computes fiber trajectories starting from the deep 
WM regions and terminating at a voxel with a turning angle greater 
than 45° or reached a voxel with FA less than 0.15.

As the construction of the structural network requires the 
following basic elements: nodes and edges, we adopted the same 
procedures used in previous WM network studies to define 
network nodes and edges.

Network Node Definition
In this study, we parcellated the cerebral cortex into 90 cortical 
and subcortical regions (45 for each hemisphere, see Table S1 
in Supplementary Material), using the Automated Anatomical 
Labeling (AAL) template. And each region representing a node 
of the cortical network (26). For each participant, the parcelation 
process must be conducted in the native DTI space. To achieve 
this, the individual 3D T1-weighted images were coregistered 
to the b0 images in the DTI native space. The transformed 3D 
T1-weighted images were then nonlinearly transformed to the 

1 http://www.nitrc.org/projects/panda/.

ICBM152 T1 template in the Montreal Neurological Institute 
(MNI) space. Inverse transformations were used to warp the AAL 
atlas from the MNI space to the DTI native space (43).

Network Edge Definition
The brain structural network was constructed by combining the 
WM tractography with the individual parcelation map for each 
subject. To define the network edges, we computed the edge 
weight (wij) as the multiplication of FN by the mean FA along the 
fiber bundles between a pair of cortical regions, wij = FNij × FAij 
(44). To avoid the influence of spurious connections, all edges 
with FN of <3 were set to zero. Following the steps above, we 
constructed a symmetric weighted structural brain network 
(90 × 90) for each participant.

graph Theoretical analysis of structural 
Brain networks
To better characterize the brain structural network topology in 
the present study, we adopted graph theoretical analysis to provide 
quantitative metrics to describe any difference in brain structural 
network topology between MDD patients and HCs. Meanwhile, 
the whole-brain structural network topological organization can 
be systematically studied at both global and regional levels. For 
the comparison of global network properties across participants 
and groups, we used a sparsity (connection density) threshold 
(S), which retains S% of the top connections for each participant. 
This threshold ensured that the number of nodes and connections 
were matched across participants (28). To avoid the influence 
of biases caused by single threshold, we examined topological 
properties across a range of thresholds (5% <  Sparsity <  40%, 
in steps of 1%). Global network architecture was quantified in 
terms of small-world properties (small-worldness, σ; normalized 
characteristic path length, λ; normalized clustering coefficient, γ;  
characteristic path length, Lp; clustering coefficient, Cp) and 
efficiency (local efficiency, Elocal; global efficiency, Eglobal). And the 
behavior of each node was also described with nodal efficiency 
(Enodal). For these network measurements, we computed the area 
under the curve across the full range of sparsity thresholds for 
comparison between MDD and HCs groups. A univariate analy-
sis of covariance was then used to assess the group effects. Age 
was considered as a nuisance covariate and thus regressed out. To 
correct the false-positive error caused by multiple comparisons, 
an additional false discovery rate (FDR) correction was applied 
for these comparisons. The significance level was set at p < 0.05. 
All network properties analysis and statistical analysis were per-
formed using the GRETNA toolbox (45)2 and visualized by using 
the BrainNet Viewer toolbox (46).3

nBs analysis
To assess differences in the interregional connectivity matrix 
between the MDD and control groups, we used a recently 
developed NBS approach (47). The NBS was implemented in 
the present study as following steps below: First, a two-sample 

2 www.nitrc.org/projects/gretna.
3 www.nitrc.org/projects/bnv.
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FigUre 1 | Graph theoretical analysis showed the MDD patients had statistically significant lower small-worldness (FDR corrected, p < 0.05). σ, small-worldness; 
MDD, major depressive disorder; HCs, healthy controls.

TaBle 1 | Clinical data of MDD patients and control subjects.

MDD patients (n = 21) hcs (n = 25) p

Age (years) 37.5 ± 11.57 31.4 ± 10.96 0.091 > 0.05
Gender (female/male) 8/13 8/17 0.665 > 0.05
Hand (left/right) 0/21 0/25
Education years 14.71 ± 3.40 16.16 ± 3.91 0.193 > 0.05
HDRS scores 24.38 ± 4.08
Duration (months) 3.47 ± 2.60
HARS scores 24.47 ± 8.38

Data are expressed as mean ± SD.
Unpaired t-test for the continuous variables and Pearson chi-square test for the gender 
were performed using the Statistical Package for Social Sciences (SPSS) (version 17.0; 
IBM, Armonk, NY, USA).
MDD, major depressive disorder; HCs, healthy controls; HDRS, Hamilton Depression 
Rating Scale; HARS, Hamilton Anxiety Rating Scale.
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t-statistic was calculated for each pair of regions of the AAL 
template to test the null hypothesis of equality in the mean 
value of structural connectivity between groups. Second, the 
connections exceeding the set threshold of 2.1 were considered 
as suprathreshold connections. And then, topological clusters 
among the suprathreshold connections were identified. Finally, a 
family wise error corrected p value was ascribed to each network 
using non-parametric permutation testing (5,000 permutations). 
Subnetworks with a corrected level of p  <  0.05 were reported. 
All procedures mentioned above were performed using the NBS 
Toolbox (http://www.nitrc.org/projects/nbs). And the significant 
subnetworks were also visualized by using BrainNet viewer.

correlations between network Measures 
and clinical Variables
For the network measurement results, which significantly differ-
ent between the MDD and control groups (i.e., nodes, edges), a 
Pearson partial correlation analysis was performed to evaluated 
their association with the clinical variables (i.e., HDRS scores, ill-
ness duration) in the MDD group after controlling for the effects 
of age (p < 0.05). Statistical analyses were conducted using IBM 
SPSS Statistics (version 17.0; IBM, Armonk, NY, USA).

resUlTs

Demographics and clinical information
Clinical data of 21 right-handed MDD patients and 25 age- 
and gender-matched health controls (HCs) are presented in 
Table 1. The two groups did not differ in age (p = 0.091), gen-
der (p = 0.665) and number of years of education (p = 0.193). 
The mean HDRS score of the MDD patients was 24.38 ±  4.08 
(range = 18–34) and the mean duration was 3.47 ± 2.60 months 

(range  =  1–10  months). Besides, the mean HARS scores was 
24.47  ±  8.38. Data are expressed as mean  ±  SD. An unpaired 
t-test and Pearson chi-square test were performed, respectively, in 
the comparison of the continuous variables and gender.

alterations of global network Measures
Within the scope of the applied network sparsity, we observed 
that both MDD and HC groups exhibited small-world 
characteristics (MDD group: σ  =  3.82  ±  0.43  >  1; HC group: 
σ = 4.16 ± 0.48 > 1) (Figure 1). However, when compared with 
controls, MDD patients showed a significantly differences in the 
small-worldness parameters (FDR corrected, p = 0.029 < 0.05, 
t = −2.253). No significant difference was found in other global 
network measures including Cp, Lp, γ, λ, Eglob, and Eloc between 
the MDD patients and controls (see Figure S1 and Table S2 in 
Supplementary Material).
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alterations of regional network Measures
In regional network measures, there is no region showing differ-
ence survived after FDR correction between the MDD patients 
and HCs. But, at the uncorrected level, the MDD group showed a 
nodal efficiency reduction in the left orbital part of middle frontal 
gyrus (ORBmid.L, p = 0.029 < 0.05, uncorrected, t = −2.256) and 
thalamus (THA.L, p = 0.026 < 0.05, uncorrected, t = −2.295) (see 
Figure S2 in Supplementary Material).

Whole-brain Mapping of connectivity 
alterations
Compared with the HCs, the MDD patient group presented with 
a significantly decreased subnetwork, which consisted of seven 
edges and eight nodes, in the NBS analysis results (p < 0.05, NBS 
corrected, see Table S3 in Supplementary Material). The subnet-
work mainly encompassed bilateral orbitofrontal gyrus (the left 
orbital part of middle frontal gyrus, ORBmid.L; the left orbital 
part and medial orbital part of superior frontal gyrus, ORBsup.L 
and ORBsupmed.L; right rectus gyrus, REC.R; the right orbital 
part of inferior frontal gyrus, ORBinf.R), left thalamus (THA.L), 
hippocampus (HIP.L), and postcentral gyrus (PoCG.L). There 
was no increased subnetwork component in MDD patients com-
pared with HCs. The visualization of the connectivity alterations 
is shown in Figure 2.

correlations between network Measures 
and clinical Variables
No global or regional topological metrics was related to either 
disease severity or duration in the group of MDD patients. And 
no significant correlation between structural connections and 
illness duration were found in MDD patients. But the struc-
tural connections between left thalamus and postcentral gyrus 
(r = −0.479, p = 0.033 < 0.05) (see Figure S3A in Supplementary 
Material), as well as ORBmid.L and ORBsup.L (r  =  −0.504, 
p = 0.024 < 0.05) (see Figure S3B in Supplementary Material), 
demonstrated significantly negative correlations with HDRS 
scores in MDD patients. However, we noticed there were a few 
extreme values in the sample. To exclude the bias effect of these 
extreme values, we recalculated the correlation after deleting 
them. Then we found the connections between left thalamus and 
postcentral gyrus (r = −0.408, p = 0.085 > 0.05) (see Figure S4A 
in Supplementary Material), as well as ORBmid.L and ORBsup.L 
(r = −0.317, p = 0.2 > 0.05) (see Figure S4B in Supplementary 
Material), had no significant correlation with HDRS scores in 
MDD patients.

DiscUssiOn

In the present study, the structural network alternations of WM 
were investigated in a homogenous group of first episode, short 
duration and untreated MDD patients as well as matched HCs 
using graph theoretical and NBS analyses. First, we observed 
MDD patients had a significant decrease in the small-worldness 
(σ). Second, NBS analysis results demonstrated that, compared 
with the HCs, the MDD patients presented a significantly 
decreased subnetwork, which consisted of bilateral orbitofrontal 

cortex (OFC), left thalamus, hippocampus, and postcentral 
gyrus.

The first important finding of our study is that the small-
worldness (σ) reduced in first episode, short duration, and 
untreated MDD patients compared to the controls. In the human 
brain network, small-worldness (σ) is mainly determined by the 
ratio of γ and λ. A network would be considered as a small-world 
network, if it is greater than 1.0 (48, 49), with a higher value indi-
cating a more optimized balance between local specialization and 
global integration (50). In our study, both MDD patients and HCs 
showed small-world topological character, and the significant 
decrease of small-worldness (σ) might imply a less optimized bal-
ance in MDD group. Meanwhile, the reduction in σ was predomi-
nantly due to the reduction of γ and/or the increase of λ. However, 
in the present study, we did not find the significant reduction of 
γ and/or increase of λ after FDR corrected. Actually, it might 
be related to the statistical threshold (p < 0.05, FDR corrected) 
we employed. And there was still a slight reduction in γ values 
between the two groups, and the p value was much closed to 0.05 
after the FDR correction (p = 0.072). So the slight alternation in 
γ might be contributed to interpret the reduction of small-world-
ness (σ). Besides, γ reflects the degree of functional segregation. 
So the reduction of small-worldness (σ) may be mainly related 
to the disruption of functional segregation in MDD patients. 
Notably, there were still some inconsistent results found between 
our study and several previous studies. Most of functional and 
structural network studies found no significant difference in the 
global network measures (28, 29, 51–53). Besides, decreased Lp, 
γ, and λ, as well as increased Eglob and Elocal were found in an early 
adult-onset, first-episode, treatment-naive depression patients 
group (30). The other structural network studies found a reduced 
Eglob and an increased Lp in both geriatric depression group (31) 
and remitted geriatric depression group (54), and the Cp was also 
found reduced in geriatric depression group. The reasons for 
these differences might be attributable to heterogeneity of MDD 
patients, such as differences in medication status, age of onset, the 
number of episodes and duration (27). Because the patients are 
all with relatively short duration (<1 year), our results possibly 
reflect the very early abnormality of this stage. These inconsistent 
results together suggest the necessity of future studies in bigger 
or homogeneous samples.

The second major finding in the present study was a signifi-
cantly decreased subnetwork existed in MDD patients, including 
bilateral OFC, left thalamus, postcentral gyrus, and hippocampus. 
Although our finding was consistent with most previous structural 
network studies showing the decreased subnetworks in MDD 
patients, several previous studies still reported increased connec-
tions in first-episode, medication-naive MDD patients (30, 55). 
The inconsistent findings may be due to the sample heterogeneity 
and/or using of different network node and edge definitions, ill-
ness durations. Nevertheless, this finding further complemented 
our previous morphological study in first-episode and untreated 
MDD patients, which revealed the relationship between the 
left thalamic shape changes and the ipsilateral hippocampus, 
amygdala, and OFC (56). Our results together strongly support 
the abnormal connectivity roughly involved the LCSPT network 
(15) or LCSTC circuits (17) in early stage depressive patients. 
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FigUre 2 | The significantly decreased subnetwork components are represented. The subnetwork consists of eight nodes and seven edges, mainly involving the 
frontal–subcortical and limbic regions. ORBmid.L, the left orbital part of middle frontal gyrus; ORBsup.L, the left orbital part of superior frontal gyrus; ORBsupmed.L, 
the left medial orbital part of superior frontal gyrus; THA.L, left thalamus; HIP.L, left hippocampus; PoCG.L, left postcentral gyrus; REC.R, right rectus gyrus; 
ORBinf.R, the right orbital part of inferior frontal gyrus.
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According to previous studies, both of the two neural circuits 
play an important role in regulating mood and emotional affect 
(17, 57, 58). Dysfunction in LCSPT or LCSTC circuits has been 
implicated as playing a key role in MDD. Meanwhile, although 
inconsistent in the globus pallidus, the two circuits were both 
involved in limbic systems, striatum and thalamus, and frontal 
lobe. In the present study, the decreased subnetwork components 
were in accordance with the areas shared by the two circuits. 

But the range of structural network alternations in our study is 
smaller than these previous studies. The cause for this result may 
be related to the early stage of the disease.

Furthermore, the nodal efficiency reduction of left thalamus 
and OFC were found in the MDD group using the graph theo-
retical analysis in the present study. Most of previous structural 
network studies revealed that MDD patients had significant 
abnormalities in the thalamus and/or OFC (28–30, 59, 60). 
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These findings suggested that the thalamus and OFC might be 
the key nodes in subnetwork components. According to previ-
ous studies, the orbitofontal cortex (OFC) is comprised of the 
orbital part of the superior, middle, and inferior frontal gyrus, the 
medial orbital part of the superior frontal gyrus, rectus gyrus, and 
olfactory cortex (61) and may play a crucial role in the emotion-
processing and cognitive functions, such as social cognition 
and decision making which are notorious dysfunction in major 
depression (62–65). For the changes of the OFC, although robust 
pathological evidences are currently lacking, several studies had 
provided some insight into possible links between the changes of 
the OFC and depression. For example, a postmortem study found 
MDD patients had decrease in cortical thickness, neuronal size 
and density in the OFC (66). Some previous structural studies 
had revealed significant OFC volume decrease in patients with 
depression (67, 68). Meanwhile, several resting-state fMRI and 
PET studies also reported that MDD patients showed decreased 
ReHo and regional cerebral blood flow in the OFC (69–72). 
Besides, Chen et al. revealed that the connectome alterations in 
the OFC among MDD patients may result from abnormalities 
in brain regional volume, WM tract integrity, and functional 
connectivity between brain structures (60). Consequently, the 
structural network alternations of the OFC might be related to 
the cognitive and emotion dysregulation in MDD patients.

Except for the OFC, thalamus is also considered as an integral 
part of the emotional salience network, emotion modulation 
network, and cognitive/executive network (73), as well as a com-
plex sensory information node constituted by many nuclei (12). 
A recent meta-analysis of fMRI indicated that MDD patients 
exhibited abnormal activation in thalamus during the affective 
processing task (74). And several recent volumetric and advanced 
VBM studies observed a volume reduction of the thalamus in 
MDD patient, which may account for deficits in top-down 
regulation of negative affect (12, 67). Coincidentally, we also 
found MDD patients had the shape and volumetric changes in 
the thalamus at the early stage, which is negatively correlated with 
the severity of disease in our published study (56). Therefore, the 
abnormal variations of thalamus in our study may be implicated 
in pathological process of MDD. These structural and functional 
abnormalities of thalamus might be considered as potential 
markers of MDD. In addition, in the present study, as the WM 
structural network was constructed by weighted number and FA 
value of WM fibers, these alternations of thalamus might also 
attribute to the changes of WM FN or FA values in these regions. 
Coincidentally, Korgaonkar et al. observed that the connections 
between thalamus and other brain regions reduced in MDD 
patients when compared with nonpsychiatric subjects (28). They 
also found that MDD patients had a reduction in average FA value 
of the thalamic projection fibers in a TBSS-based DTI analysis 
(75). The result of these two studies from same team above were 
in accordance with our findings.

On the other hand, thalamus had been considered to play an 
important role in emotional and executive functions (67, 73), 
mainly due to its connections with OFC, anterior cingulate cortex 
(76), and the amygdala (77, 78). But a lot more researches showed 
that the thalamus and OFC both were parts of the reward circuit 
(79). Therefore, the structural connection alternations between 

the thalamus and OFC might help interpret the emotional and 
executive dysfunctions of depression.

Notably, the structural connection changes among the left 
thalamus, postcentral gyrus and hippocampus were also found 
in MDD group. According to the previous research, postcentral 
gyrus was thought to be the part of sensorimotor network (80) 
which was an important biomarker reflects the clinical psy-
chomotor symptoms of MDD, such as psychomotor agitation or 
retardation (81, 82). So, the structural connection alternations 
between the thalamus and postcentral gyrus might related to 
clinical psychomotor symptoms.

Hippocampal volume reduction in patients with MDD is 
one of the most replicated findings confirmed by several meta-
analysis of MRI morphological studies (83–85). Hippocampus 
plays a distinct role in the pathophysiology of MDD, mainly 
due to its sensitivity to stress (86). And stress, possibly acting 
via glucocorticoids, may negatively affect hippocampal volumes 
(87, 88). Despite the lack of robust evidence, the structural 
connection alternations of hippocampus may also result from 
the stress in depression. In addition, the hippocampus was also 
involved in cognitive functions and the regulations of emotion 
processes (89). For the cognitive deficit in MDD, it is suggested 
that hippocampus might play a critical role in memory deficit 
symptom of depressive patients (90). Persistent hypersecretion of 
glucocorticoids may contributes to hippocampal volume changes 
and cognitive dysfunctions in MDD patients, through neurotoxic 
effects on the hippocampus (91). What noteworthy is that the 
functional network disruptions in hippocampus was found to 
increase memory sensitivity to negative stimuli in MDD patient 
(92, 93). Therefore, the structural connectivity alternations of 
hippocampus may be related to the abnormal hypersecretion 
of glucocorticoids which lead to the cognitive and emotional 
dysfunctions in MDD patients.

Additionally, we only found the trends of negative structural 
connections between some regions with symptom severity in the 
MDD patients. These correlations disappeared after excluding a 
few extreme values in the sample. These results suggested that 
the contribution of alternations of structural connections on 
depression severity might further confirmation in the big sample 
in the future.

Several limitations of our study should be addressed. First, 
due to the relatively small sample size design, the results cannot 
be generalized to the general population. But through power 
analysis, the sample size in the present study met the minimum 
sample size of statistical requirements, so the statistical results 
were still reliable. The second limitation involves DTI technique 
in resolving crossing fibers and sharp angulations of tracts 
(94). This can lead to false-positive connections. Thus, high 
angular resolution diffusion imaging diffusion models should 
be favored, which are considered capable of resolving complex 
fiber crossings (95). Additionally, there are very few MDD 
patients without anxiety symptom, which is also the limitation 
in the present study. So next, the characteristics of MDD patients 
with or without comorbid anxiety disorders should be analyzed 
in a large sample. Finally, although we discussed the possible 
relationships among structural network changes, clinical psy-
chomotor symptoms and cognition, the evaluation of clinical 
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psychomotor symptoms and cognitive function was not carried 
out, and consequently, the exact relationships among structural 
network changes, clinical psychomotor symptoms and cogni-
tive functions remain speculative and were not addressed here. 
Future studies with a larger sample size of first episode, short 
duration, untreated MDD are necessary and the relationship 
between clinical factors and neuroimaging results need to be 
clarified in the further researches.

cOnclUsiOn

In total, our results suggested the abnormal structural network of 
the OFC and thalamus, involving the imbalance with the limbic 
system, as a key pathology in early stage drug-naive depression 
patients. Excluded the effect of chronic duration, medication, 
and multiple episode, these results might possibly reflect the trait 
characters of the disease at the very early stage.
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