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1  | INTRODUC TION

Over the last decades, anthropogenic activities such as uncon‐
trolled deforestation and increasing greenhouse gas emissions have 
resulted in a series of environmental imbalances that have caused 

significant changes in complex climate dynamics around the world. 
Examples of these changes include increases in the atmospheric CO2 
concentration [CO2] as well as the global average temperature (IPCC, 
2014). In addition to the changes already observed, several climate 
models predict an intensification of these factors in the ensuing 
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Abstract
Anthropogenic activities such as uncontrolled deforestation and increasing green‐
house gas emissions are responsible for triggering a series of environmental imbal‐
ances that affect the Earth's complex climate dynamics. As a consequence of these 
changes, several climate models forecast an intensification of extreme weather events 
over the upcoming decades, including heat waves and increasingly severe drought 
and flood episodes. The occurrence of such extreme weather will prompt profound 
changes in several plant communities, resulting in massive forest dieback events that 
can trigger a massive loss of biodiversity in several biomes worldwide. Despite the 
gravity of the situation, our knowledge regarding how extreme weather events can 
undermine the performance, survival, and distribution of forest species remains very 
fragmented. Therefore, the present review aimed to provide a broad and integrated 
perspective of the main biochemical, physiological, and morpho‐anatomical disorders 
that may compromise the performance and survival of forest species exposed to cli‐
mate change factors, particularly drought, flooding, and global warming. In addition, 
we also discuss the controversial effects of high CO2 concentrations in enhancing 
plant growth and reducing the deleterious effects of some extreme climatic events. 
We conclude with a discussion about the possible effects that the factors associated 
with the climate change might have on species distribution and forest composition.
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decades, which may result in a higher incidence of extreme weather 
events (Zhang et al., 2015). According to these models, drastic re‐
ductions in rainfall are expected for some regions, whereas greater 
rainfall volumes are expected for others, resulting in more frequent 
and intense drought and flood events, respectively (IPCC, 2014). In 
addition to the changes in pluviosity patterns, alterations in ther‐
mic regimes are also expected in several regions worldwide, which 
may increase the intensity and frequency of extreme temperature 
events, such as heat waves and late‐spring frost events (IPCC, 2014).

Temperature and water availability are two of the main deter‐
minants of the establishment, distribution, and survival of plant 
species around the world (Anderegg & Hillerislambers, 2016; Bond, 
Woodward, & Midgley, 2005; Lu et al., 2017; Osland et al., 2017; 
Trueba et al., 2017). Thus, if climate model predictions are con‐
firmed, the higher incidence, duration, and intensity of extreme 
weather can prompt profound changes in several plant communities, 
resulting in massive forest dieback, which can culminate in massive 
losses in biodiversity (Choat et al., 2012; Wiens, 2016). In fact, some 
studies report that climate change can trigger the replacement of 
several species from some biomes by those that are better adapted 
to extreme weather events. In tropical regions, for example, the oc‐
currence of extreme weather events can lead to the replacement of 
the Amazon forest by Savannah vegetation (Lapola, 2007). A similar 
scenario of changes in species composition is also expected for sev‐
eral other vegetation types, such as grasslands, temperate, boreal, 
and Mediterranean forests (Barros, Thuiller, & Münkemüller, 2018; 
Boulanger et al., 2017; Brusca et al., 2013; Lucas‐Borja, 2016; Zhang, 
Niinemets, Sheffield, & Lichstein, 2018). However, it is important to 
emphasize that despite the fact that these extreme weather events 
are expected to intensify in the upcoming decades, their deleterious 
effects are already being observed. Indeed, a growing body of evi‐
dence associates the increasing death of forest species with water 
(drought and flood) and heat stresses (Allen et al., 2010; Anderegg, 
Flint, et al., 2015; Anderegg, Hicke, et al., 2015; Anderegg, Kane, & 
Anderegg, 2012; Choat et al., 2012; Greenwood et al., 2017; Liang, 
Leuschner, Dulamsuren, Wagner, & Hauck, 2016; Park Williams et 
al., 2012; Will, Wilson, Zou, & Hennessey, 2013). Observations of 
these widespread mortality events associated with extreme weather 
conditions have been documented on plants from all functional 
types, from all biomes around the world (McDowell et al., 2008). 
These observations become even more alarming when we take into 
account the proportion of plant species that may become extinct as 
a result of the intensification of such stresses (Becklin et al., 2016; 
Urban, 2015; Wiens, 2016).

In addition to the massive loss of biodiversity, the increase in 
forest death events can also promote profound changes in global 
carbon and water cycles (Frank et al., 2015). Indeed, as forests cover 
significant portions of the Earth's surface, and because they con‐
tribute to a large portion of primary carbon sequestration and water 
cycling, even minor environmental changes can disturb the complex 
dynamics of the terrestrial biosphere (Yan, Zhong, & Shangguan, 
2017). Examples of such disturbances can be seen in recent studies 
that point to the widespread reduction in carbon sequestration in 

several regions of the globe, both in tropical and in temperate eco‐
systems (Doughty et al., 2015; Gatti et al., 2014; Greenwood et al., 
2017; Taylor et al., 2017).

The great disturbances promoted by factors associated with cli‐
mate change in plant communities reflect their impact on essentially 
all levels of plant organization. In fact, over the last years, numerous 
studies have demonstrated the diversity of strategies and defense 
mechanisms of plants exposed to extreme weather events, as well 
as the factors related to tree mortality under those conditions (Allen 
et al., 2010; Anderegg, Flint, et al., 2015; Anderegg, Hicke, et al., 
2015; Bennett, McDowell, Allen, & Anderson‐Teixeira, 2015; Choat 
et al., 2012; Liang et al., 2016; McDowell et al., 2015; Mitchell et al., 
2013; Park Williams et al., 2012; Rodríguez‐Calcerrada et al., 2017; 
Tognetti & Palombo, 2013). However, although our understanding of 
the mechanisms behind forest dieback has grown considerably, the 
knowledge about this topic still remains very fragmented. Therefore, 
the present review aimed to provide a broad and integrated perspec‐
tive of the main biochemical, physiological, and morpho‐anatomical 
disorders associated with exposure to the stress factors triggered by 
extreme climatic events (mainly drought, flooding, and global warm‐
ing), which may compromise the performance and, ultimately, the 
survival of tree species and forest ecosystems in a global scale. In ad‐
dition, we also discuss the controversial effects of high [CO2] in en‐
hancing plant growth and reducing the deleterious effects of some 
extreme climatic events. We conclude with a discussion about the 
possible effects that the factors associated with the climate change 
might have on species distribution and forest composition.

2  | MAIN DRIVERS OF FOREST DIEBACK 
UNDER A SCENARIO OF CLIMATE 
CHANGE AND THEIR IMPAC T ON KE Y 
BIOCHEMIC AL ,  PHYSIOLOGIC AL ,  AND 
MORPHO ‐ANATOMIC AL A SPEC TS

2.1 | Drought

One of the main factors commonly associated with forest dieback 
events under drought conditions is the carbon starvation (CS) due 
to the depletion of nonstructural carbohydrates (NSCs), as a result 
of a negative carbon balance (Flexas, Bota, Galmés, Medrano, &  
Ribas‐carbo, 2006; McDowell et al., 2008; Mitchell et al., 2013; 
O'Grady, Mitchell, Pinkard, & Tissue, 2013; Weber et al., 2018). This 
imbalance involves a complex network of interconnected factors, 
which include the reduction in carbon assimilation via impairment of 
photosynthesis rates, both due to diffusive (e.g., reduced stomatal 
and mesophyll conductance) and biochemical (inhibition of specific 
metabolic processes) limitations (Flexas et al., 2009), and the increase 
in metabolic costs to repair disrupted structures (e.g., membranes, 
proteins, and nucleic acids), and to produce defense molecules, cou‐
pled with the possible increase in respiration (R) and photorespira‐
tion rates (PR; Dias & Brüggemann, 2010; Maroco, Rodrigues, Lopes, 
& Chaves, 2002; PARRY, 2002; Tezara, Mitchell, Driscoll, & Lawlor, 
1999). However, although CS has been suggested as one of the main 
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triggers of tree mortality under drought conditions (McDowell et al., 
2008), this topic is still under intense debate due to some uncertain‐
ties. One of this uncertainties involves the fact that the vast ma‐
jority of studies on C dynamics under drought conditions use only 
small tree segments (e.g., roots and shoots), which make it difficult 
to address the role of carbon storage and remobilization in whole‐
tree dieback events (Hartmann et al., 2018; Kono et al., 2018). In 
addition, under severe stress conditions, plants also can use alter‐
native molecules (e.g., lipids and organic acids) to fulfill the respira‐
tory process (Araújo, Tohge, Ishizaki, Leaver, & Fernie, 2011; Pires 
et al., 2016; Weber et al., 2018), a strategy that is usually neglected 
in drought mortality studies. Thus, to better understand the impact 
that the fluctuations in the C metabolism may lead to the behavior 
of tree species under severe drought events, it is essential to deeply 
investigate the whole‐tree C dynamics and how the use of alterna‐
tive energetic molecules can postpone the collapse of the respira‐
tory metabolism (Hartmann et al., 2018). However, although the role 
of CS in triggering tree mortality remains controversial (Hartmann 
et al., 2018; Körner, 2015), the negative carbon balance induced 
by drought can have a profound impact on the dynamics of carbon 
flux on a global scale. In fact, some studies have associated drought 
events with a reduction in the primary productivity of several plant 
communities (Brzostek et al., 2014; Hilker et al., 2014; Yuan et al., 
2016; Zhao & Running, 2010).

In addition to perturbations in the carbon balance, impaired 
water transport has also been suggested as a major factor causing 
death in plants exposed to drought (Anderegg et al., 2016; Choat et 
al., 2012; Corlett, 2016; McDowell et al., 2008; O'Brien et al., 2017; 
Rodríguez‐Calcerrada et al., 2017; Tai, Mackay, Anderegg, Sperry, 
& Brooks, 2016). This occurs because despite the partial closure 
of stomata, decreased water availability can considerably increase 
the tension in xylem vessels, a process that may result in cavitation 
(Tyree & Sperry, 1989). As a consequence, cavitation can lead to ex‐
tensive hydraulic failure (HF), reducing a plant's ability to replenish 
the water lost through transpiration and resulting in extreme des‐
iccation and death (Mitchell et al., 2013; Rodríguez‐Calcerrada et 
al., 2017; Rowland et al., 2015) (Figure 1a). In fact, several studies 
have emphasized the HF as the main determinant of the drought‐
induced tree mortality across contrasting vegetation types (e.g., 
tropical, temperate, boreal, and Mediterranean forests), whereby 
species less vulnerable to cavitation tend to be more drought‐toler‐
ant (Anderegg, Anderegg, Kerr, & Trugman, 2019; Anderegg, Flint, 
et al., 2015; Choat et al., 2012; Greenwood et al., 2017; O'Brien et 
al., 2017). Vulnerability to cavitation, in turn, is directly related to 
a series of anatomical (pit membranes, diameter, and frequency of 
xylem vessels), morphological (wood density, root depth, sapwood 
to leaf area), and physiological (control of stomatal movement and 
phenological stage) factors, which vary widely between species and 

F I G U R E  1  Main physiological disorders induced by drought (DH), flooding (FL), and heat stress (HT) which may reduce plant performance 
and survival under a climate change scenario. Overall, tree dieback events are mainly related to impairments in water transport and/
or carbon balance. Reductions in water transport capacity are associated with hydraulic failure (as a consequence of xylem cavitation) 
and damages to the root system (reduced expression and activity of aquaporins as well as alterations in root morphology and growth). 
Conversely, negative carbon balance can be triggered by reductions in photosynthesis (A), as a result of diffusive (lower stomatal (gs) and 
mesophyll (gm) conductance) and biochemical (damages to membranes and enzymes) limitations, in addition to increases in respiration (R) 
and photorespiration (PR) rates
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functional groups (Greenwood et al., 2017; Jacobsen, Ewers, Pratt, 
Paddock, & Davis, 2005; Lens et al., 2011; Markesteijn, Poorter, Paz, 
Sack, & Bongers, 2011; McAdam & Brodribb, 2016; Santiago et al., 
2004; Scoffoni et al., 2017; Trueba et al., 2017). Despite this great 
variability in vulnerability to cavitation, recent studies have shown 
that most forest communities around the globe operate within a 
very narrow hydraulic safety margin, placing species from virtually 
all biomes at risk (Choat et al., 2012). However, although HF has 
been pointed as a major determinant of tree mortality (Anderegg, 
Flint, et al., 2015; Hartmann et al., 2018), the lack of key informa‐
tion regarding the stability of water transport under drought makes 
it difficult to predict the behavior of trees under such conditions. For 
example, until now there is no consensus about what is the lethal 
point in which xylem embolism develops into HF (Hartmann et al., 
2018), especially in angiosperms, and neither if some mechanisms 
of xylem repair, as the controversial refiling (Charrier et al., 2016; 
Sperry, 2013), can reestablish the water transport after extreme 
drought events. Thus, it is of pivotal importance to determine spe‐
cific thresholds of recovery and fatal embolism and to better un‐
derstand whether the mechanisms of xylem repair can mitigate the 
occurrence of such catastrophic events (Hartmann et al., 2018).

Another uncertainty regarding the role of HF in drought‐induced 
tree mortality is the fact that most of the studies that seek to inves‐
tigate the vulnerability to cavitation in trees are made in leaves and 
segments of branches (e.g., trunks and roots). Thus, little is known 
about in which scale other more basal organs are affected by ex‐
treme drought events (Mcculloh, Johnson, Meinzer, & Woodruff, 
2014). This is a matter of great relevance, especially when we take 
into account the hypothesis of hydraulic segmentation, which pos‐
tulates that more distal organs (leaves and small branches), which 
represent a lower carbon investment, tend to be more vulnerable to 
cavitation than more basal organs (trunk and roots) (Charrier et al., 
2016; Choat, Lahr, Melcher, Zwieniecki, & Michele, 2005; Tyree & 
Zimmermann, 2002). In this sense, to better understand the real im‐
pact of drought on water transport in different species, it is essential 
to better characterize the events of cavitation in different organs. 
This type of integrative approach has become possible thanks to 
the emergence of noninvasive methodologies such as the “optical 
vulnerability technique (OV)” and the “X‐ray computed microto‐
mography (micro‐CT),” which allow the in vivo monitoring of the 
emergence and propagation of embolism events in different organs 
of plants exposed to drought (Brodribb et al., 2016; Charrier et al., 
2016; Choat et al., 2016 ; Rodriguez‐Dominguez, Carins Murphy, 
Lucani, & Brodribb, 2018).

In addition to a higher tolerance against cavitation, the effi‐
cient control of water loss also represents a central component of 
the tree survival under drought. In fact, a recent study has shown 
that most of the species tend to close their stomata before the 
onset of the cavitation events (Martin‐StPaul, Delzon, & Cochard, 
2017). Nevertheless, even after the complete stomatal closure, 
the plants keep losing water to the atmosphere through their cu‐
ticle (Bueno et al., 2019). This residual transpiration (gmin) varies 
widely across species and functional groups (Schuster, Burghardt, 

& Riederer, 2017), and can directly affect the time to HF (Cochard, 
2019). However, although gmin has been recently pointed as a cen‐
tral component of the drought tolerance strategy (Cochard, 2019), 
several questions regarding this trait remain. For example, what 
are the main determinants of the variability of gmin across species? 
Is there a coordination between gmin and vulnerability to cavita‐
tion? To which extent do plants are able to adjust this trait through 
drought acclimation? The lack of consensus regarding the answers 
to these questions highlights an important gap in our understand‐
ing of the strategies of water conservation, both within and across 
tree species. Thus, in order to better predict the impact of drought 
on forest communities, it is essential to unravel the uncertainties 
about gmin and also to widespread the integration of this trait on 
climate change models.

Although tree mortality under drought conditions can be trig‐
gered by a combination of different effects (Adams et al., 2017; 
Hartmann et al., 2018; Kono et al., 2018), the impact of such effects 
can vary significantly depending on the phenological stage and 
size of the plant (Liu et al., 2019; Olson et al., 2018). As trees grow 
taller, the distance to move water from roots to leaves gets longer, 
which increases the resistance along the pathway (Ambrose, Sillett, 
& Dawson, 2009; Fajardo, McIntire, & Olson, 2019), resulting in an 
increase in the tension inside xylem vessels and in the risk of HF 
under drought conditions (Bennett et al., 2015; Fajardo et al., 2019). 
In fact, several studies already showed that taller trees, both within 
and across species, are more prone to drought‐induced cavitation, 
which greatly explain the reduction in growth, and the higher inci‐
dence of branch and whole dieback of taller individuals worldwide 
(Bennett et al., 2015; Fajardo et al., 2019; Lindenmayer & Laurance, 
2016). To keep the water transport and avoid the risks of HF, taller 
trees usually display a set of morpho‐physiological alterations on 
their hydraulic system, such as the reduction in leaf area to sapwood 
area (Ambrose et al., 2009; McDowell et al., 2002). Although these 
alterations can significantly compensate for the reduction in hydrau‐
lic efficiency, the reduced leaf area can potentially limit the global 
carbon assimilation of taller trees, possibly making them more prone 
to carbon starvation on extreme drought events (Liu et al., 2018). 
Conversely, other studies have shown that the set of adjustments 
in the hydraulic system to deal with the increased stature might in‐
crease the hydraulic safety margin and, consequently, the resilience 
of taller trees in a scenario of reduced precipitation (Ambrose et al., 
2009). In fact, a recent study showed that taller Amazonian forests 
are less sensitive to precipitation variation (Giardina et al., 2018), 
a result that contrast directly with other studies which show that 
larger trees suffer more during drought events in forests worldwide 
(Bennett et al., 2015; Olson et al., 2018). These contrasting results 
highlight the uncertainties about how species with different ages 
and heights will respond to the increase in drought intensity and 
duration. In order to shed light on this controversial topic, there is 
an urgent need to better understand how the differences in water 
uptake (e.g., root density and depth) and storage capacity (e.g., 
trunk capacitance) between small and taller plants can impact the 
stability of water transport of those trees under drought conditions 
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(Hartmann et al., 2018; Martinez‐Vilalta, Anderegg, Sapes, & Sala, 
2019).

The factors that drive forest dieback also appear to vary signifi‐
cantly according to the intensity and duration of the drought event. 
Plants exposed to moderate but prolonged drought may not reach 
the critical water potentials that induce HF but may experience a 
lethal reduction in carbohydrate levels due to the negative carbon 
balance (McDowell et al., 2008, 2011; Mitchell et al., 2013; O'Brien, 
Leuzinger, Philipson, Tay, & Hector, 2014). Nonetheless, brief peri‐
ods of severe drought can result in the inability to regulate water 
status and can induce death by HF (Anderegg et al., 2016; Choat et 
al., 2012; Delzon & Cochard, 2014; Mitchell et al., 2013; Rodríguez‐
Calcerrada et al., 2017; Rowland et al., 2015) (Figure 1a). Thus, the 
extent of damage caused by drought, as well as the time required 
to induce plant death under these conditions, can vary signifi‐
cantly according to the growth and water management strategies 
of a given species (e.g., isohydric or anisohydric species; Allen et al., 

2010; Mitchell et al., 2013; Reyer et al., 2013). It should be noted 
that under both of the above scenarios, the deleterious effects of 
drought and the possible occurrence of forest dieback can be inten‐
sified by the combined action of high temperatures (Allen, Breshears, 
& McDowell, 2015; Dai, 2012; Park Williams et al., 2012) (Figure 2). 
As an example, some mechanisms used to minimize water loss under 
drought conditions (e.g., reductions in gs) tend to decrease leaf cool‐
ing via transpiration, a process that can induce a series of cell injuries 
(discussed in the next sections), and increase respiratory and photo‐
respiratory activities, further disturbing the carbon balance (Flexas 
et al., 2006; Mitchell et al., 2013) (Figure 2). Conversely, for other 
species, the increased temperature may also enhance plant transpi‐
ration, thus increasing the vulnerability to cavitation under drought 
conditions (Park Williams et al., 2012; Will et al., 2013) (Figure 2).

In addition to intensity and duration, the frequency of drought 
events appears to be a predominant factor in forest dieback events, 
yet it is rarely taken into account in climate models. In fact, few 

F I G U R E  2   Global warming increases the vulnerability of tree species under drought conditions in different ways. For some species, high 
temperatures induce the reduction in stomatal conductance (gs), reducing leaf transpiration and increasing leaf temperature, which may lead 
to deeper reductions in photosynthesis (A) and increases in photorespiration (PR) and respiration (R) rates, further intensifying the negative 
carbon balance induced by drought. For other species, high temperatures increase the stomatal conductance and leaf transpiration, further 
increasing the tension in xylem vessels induced by drought, leading to higher vulnerability to cavitation and hydraulic failure
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studies to date have focused on the behavior of plants subjected 
to cyclical drought episodes, even though this is a more common 
situation than isolated events (Menezes‐Silva et al., 2017). Recent 
studies have also shown that after exposure to severe drought, years 
may be required for several plant communities to fully recover their 
physiological processes (e.g., growth rates), making them even more 
vulnerable to further drought episodes (Anderegg, Schwalm, et al., 
2015). Evidence of this reduced ability to fully recover after severe 
drought events can be observed in plants from contrasting vegeta‐
tion types, such as the temperate and continental forests (Gazol et 
al., 2018). Thus, an increase in the frequency of drought events can 
significantly impair the composition of several biomes around the 
world. Therefore, in addition to a better understanding of the factors 
associated with reduced performance under drought conditions, it is 
vital to increase our knowledge about how plants recover from these 
extreme climatic events.

Finally, another factor that can increase the vulnerability of 
forest ecosystems in a scenario of reduced precipitation is the in‐
crease in the frequency and intensity of fire events. In fact, due to 
the increase in litter production and reduction in biomass humidity 
(Collins, Bennett, Leonard, & Penman, 2019; Duursma et al., 2016), 
the effect of drought on vegetation can significantly increase the fire 
spread and intensity, even in those regions that would be unlike to 
be burned (e.g., mesic sites and poleward‐facing slopes; Collins et al., 
2019; Krawchuk et al., 2016; Leonard, Bennett, & Clarke, 2014). It is 
important to note that although plants may have a set of traits and 
strategies to allow them to survive fire episodes and/or recompose 
burned areas (Hoffmann et al., 2009; Pellegrini, Franco, & Hoffmann, 
2016; Schafer, Breslow, Hohmann, & Hoffmann, 2015), the increase 
in drought intensity can significantly reduce the resilience of tree 
species from fire‐prone habitats (Pratt, Jacobsen, Ramirez, & Helms, 
2014). Some studies already showed that the negative impact of 
drought on seed germination and seedling survival can drastically re‐
duce the postfire regeneration of subalpine species (Harvey, Donato, 
& Turner, 2016), which may lead to a shift toward more drought‐tol‐
erant species (Moser, Temperli, Schneiter, & Wohlgemuth, 2010). In 
addition to the negative impact on seedling recruitment, drought can 
also affect the regeneration of burned areas thought the increase in 
the vulnerability of resprouting plants (Pratt et al., 2014). In fact, al‐
though it was already shown that resprouting species often display a 
better water status in the months after the crown fire (probably due 
to reduced leaf area and thus higher root‐to‐shoot ratio; Clemente, 
Rego, & Correia, 2005; Ramirez, Pratt, Jacobsen, & Davis, 2012; 
Refsland & Fraterrigo, 2018; Schwilk, Brown, Lackey, & Willms, 
2016), they tend to be more vulnerable to drought than co‐occurring 
unburned plants (Ramirez et al., 2012; Saruwatari & Davis, 1989). 
An example of the higher vulnerability of resprouting plants is the 
well‐documented increase in mortality rates of shrub species from a 
chaparral community when intense drought occurred in the follow‐
ing year after a fire event (Pratt et al., 2014). This increase in post‐
fire mortality is commonly attributed to a reduction in cavitation 
resistance (Jacobsen, Tobin, Toschi, Percolla, & Pratt, 2016; Pratt et 
al., 2014) and probably is also linked to a depletion in carbohydrate 

reserves of the resprouting plants (McDowell et al., 2008). Thus, 
the increase in drought frequency, intensity, and duration has the 
potential to not only change the dynamics of fire regimes (Clarke, 
Knox, Bradstock, Munoz‐Robles, & Kumar, 2014; Littell, Peterson, 
Riley, Liu, & Luce, 2016), putting in risk fire‐sensitive species from re‐
gions which were unlike to be burned, but can also increase the vul‐
nerability from fire‐tolerant species, resulting in drastic changes in 
forest composition and loss of biodiversity (Henzler, Weise, Enright, 
Zander, & Tietjen, 2018).

2.2 | Flooding

Under flooding conditions, the reduction in oxygen availability can 
induce a number of physiological imbalances that strongly impact 
key aspects of the growth, development, and survival of flooded 
species (Guo, Huang, Xu, & Zhang, 2011; Li et al., 2015). The sus‐
ceptibility, extent of damage, and lifespan of flooded plants vary 
widely among species and depend on the ability to invoke a series of 
morpho‐anatomical (production of lenticels, adventitious roots, and 
aerenchyma), biochemical (increased fermentative metabolism), and 
physiological (increased ethylene production) adjustments (Bailey‐
Serres & Colmer, 2014; Herrera, 2013; Voesenek & Bailey‐Serres, 
2015). Common effects of exposure to flooding stress, especially for 
sensitive species, include inhibition of root and shoot growth, leaf 
necrosis, bark damage, increased ROS production, and several other 
metabolic disorders (Ferner, Rennenberg, & Kreuzwieser, 2012; 
Gupta & Igamberdiev, 2016; Kreuzwieser & Rennenberg, 2014; 
Liu, Cheng, Xiao, Guo, & Wang, 2014; Steffens & Rasmussen, 2016; 
Voesenek & Bailey‐Serres, 2015). Despite such general damage, 
evidence shows that the main factor related to the death of flooded 
plants involves carbon balance disruption, specifically changes in 
photosynthetic and respiratory processes (Li et al., 2015) (Figure 1b).

Reductions in A rates of flooded plants have been widely docu‐
mented (Kreuzwieser & Rennenberg, 2014; Li et al., 2015; Liu et al., 
2014; Martínez‐Alcántara et al., 2012), especially for sensitive spe‐
cies (Argus, Colmer, & Grierson, 2015), and appear to be primarily 
related to both stomatal and nonstomatal limitations (Kreuzwieser 
& Rennenberg, 2014). The latter include reduced concentrations 
of photosynthetic pigments (Ojeda, Schaffer, & Davies, 2004), de‐
creased Rubisco content and activity (Herrera, 2013), and accumula‐
tion of soluble sugar in leaves, which may induce negative feedback 
on photosynthesis (Ferner et al., 2012; Kreuzwieser & Rennenberg, 
2014). In contrast, stomatal limitations are largely associated with 
reductions in root hydraulic conductivity (Else, Coupland, Dutton, 
& Jackson, 2001; Else, Davies, Malone, & Jackson, 1995; Islam & 
Macdonald, 2004; Li et al., 2015; Zhang & Davies, 1986) (Figure 1b). 
The occurrence and extent of these hydraulic limitations appear to 
depend on the combination of damage, lower growth rates, and sub‐
erization of the root system, in association with lower expression and 
abundance of aquaporins (Islam & Macdonald, 2004; Kreuzwieser & 
Rennenberg, 2014; Li et al., 2015). As a result, decreased root hy‐
draulic conductivity can limit water and nutrient absorption and, 
paradoxically, induce shoot desiccation, which reduces leaf water 
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potential and, consequently, gs (Kreuzwieser & Rennenberg, 2014; 
Li et al., 2015). In addition to hydraulic components, the transport 
of signaling molecules from roots to leaves [e.g., abscisic acid (ABA)] 
and changes in the pH of phloem sap also appear to be related to 
reductions in gs in flooded plants (Herrera, 2013; Kreuzwieser & 
Rennenberg, 2014; Li et al., 2015).

Alterations in respiratory metabolism are equally important 
in species death under flooding conditions (Ferner et al., 2012; 
Kreuzwieser & Rennenberg, 2014; Martínez‐Alcántara et al., 2012). 
These changes are largely due to the switch from aerobic to fermen‐
tative metabolism induced by the low concentration of oxygen in 
flooded soils (Bailey‐Serres, Lee, & Brinton, 2012; Kreuzwieser et 
al., 2009; Kreuzwieser & Rennenberg, 2014; Loreti, Veen, & Perata, 
2016). As fermentation generates approximately 16 times less energy 
than oxidative phosphorylation, an energy deficit is expected under 
flooding conditions, particularly if photosynthesis is also reduced. 
This energy imbalance can be partially overcome through consump‐
tion of reserve materials (e.g., nonstructural carbohydrates and lip‐
ids) and/or decreases in the activity of energy‐intensive processes 
(e.g., nitrogen (N) assimilation and cell wall formation; Christianson, 
Llewellyn, Dennis, & Wilson, 2010; Kolb, Rawyler, & Braendle, 2002; 
Kreuzwieser et al., 2009; Le Provost et al., 2012; Loreti, Valeri, Novi, 
& Perata2018). However, depending on the flooding duration, re‐
serve consumption can lead to carbon deprivation, making the plant 
even more vulnerable to this and other stresses (e.g., high tempera‐
tures and pathogen attack). Moreover, decreased reserve levels may 
also limit and/or increase the time required for a plant to fully re‐
cover its physiological activities (Li et al., 2015; Loreti et al., 2016), 
placing species inhabiting regions that undergo recurrent flooding 
events at even greater risk (Angelov et al., 1996). Thus, the ability 
to maintain a positive carbon balance appears to be one of the main 
determinants of the survival of species in flooding situations (Li et al., 
2015; Loreti et al., 2018), even more so in a scenario that forecasts 
more frequent and intense flooding events (Lehmann, Coumou, & 
Frieler, 2015).

2.3 | Global warming and heat stress

Plant responses to high temperature, in addition to the damage 
triggered by this stress, vary widely among species and functional 
groups (Klockmann, Günter, & Fischer, 2017; Marias, Meinzer, & 
Still, 2017; O'Sullivan et al., 2013; Slot & Winter, 2017; Teskey et 
al., 2015; Wujeska‐Klause, Bossinger, & Tausz, 2015). Accordingly, 
the susceptibility of a plant to extremely high temperatures, a situ‐
ation commonly observed during heat waves, appears to depend on 
a series of characteristics and adjustments at morpho‐anatomical 
(crown architecture, leaf size, and shape), physiological (transpiration 
rate and maximum stomatal conductance), and molecular (produc‐
tion of heat shock proteins, low‐weight compounds, and activation 
of the antioxidative defense system) levels (Bita & Gerats, 2013; 
Galmés, Kapralov, Copolovici, Hermida‐Carrera, & Niinemets, 2015; 
Griffin & Prager, 2017; Obata et al., 2015; Scafaro et al., 2016; Slot 
& Winter, 2017; Teskey et al., 2015; Wujeska‐Klause et al., 2015; 

Zhang et al., 2005). Moreover, the vulnerability of a species to high 
temperatures also depends on its growth strategy. For example, in 
tropical forests, fast‐growing plants in high‐light environments tend 
to be more tolerant to high temperatures than slow‐growing spe‐
cies typical of shadier locations (Slot, Garcia, & Winter, 2016; Slot 
& Winter, 2017; Wright et al., 2004). Although there are many fac‐
tors that may influence species susceptibility to high temperature, 
it is important to note that most of the forest dieback events across 
several biomes appear to involve the association of this stress with 
drought (Adams et al., 2009; Allen et al., 2015, 2010; Park Williams 
et al., 2012; Will et al., 2013) (Figure 2). Similarly, high temperature 
combined with flooding can further compromise the performance 
of plant species through additional damages to the photosynthetic 
process, changes in root respiration, and also by compromising the 
synthesis of structural components (e.g., cell wall). However, it is im‐
portant to note that only a few studies have addressed the links be‐
tween these two stresses in great detail (Chen et al., 2017a, 2017b; 
Donovan, Stumpff, & McLeod, 1989; Lin, Lin, Syu, Tang, & Lo, 2016), 
and thus, our knowledge about this topic, especially on wood spe‐
cies, is rather fragmented.

Among the physiological processes that are affected by high tem‐
peratures, photosynthesis has received the most attention (Drake et 
al., 2016; Hüve, Bichele, Rasulov, & Niinemets, 2011; Slot & Winter, 
2017; Teskey et al., 2015; Urban et al., 2017). In general, an increase 
in temperature increases A rates up to an optimal point, above which 
the process begins to be inhibited and may even reach zero (Slot 
& Winter, 2017). This reduction in the photosynthetic process has 
commonly been attributed to disruption of the photosynthetic elec‐
tron transport chain in association with increased fluidity of thyla‐
koid membranes and/or damage to photosystem II (Griffin & Prager, 
2017; Hüve et al., 2011; Sharkey, 2005; Slot & Winter, 2017; Yamori, 
Hikosaka, & Way, 2014) (Figure 1c). In addition to structural damage, 
exposure to high temperatures may also result in inactivation of the 
enzyme Rubisco activase, which may lead to reduced availability of 
active Rubisco and thereby in a reduction in CO2‐fixation capacity 
(Sage, Way, & Kubien, 2008; Salvucci, 2004; Scafaro et al., 2016).

Similar to the responses observed for photosynthesis, an in‐
crease in temperature also enhances R rates to an optimal point, 
above which cell damage hinders respiration (Griffin & Prager, 2017; 
O'Sullivan et al., 2013). The optimal temperature and thermal limit 
of respiration are significantly higher than those of photosynthe‐
sis (O'Sullivan et al., 2013; Teskey et al., 2015). Due to the differ‐
ent thermal sensitivities of these two metabolic processes, higher 
temperatures tend to increase the R/A ratio, resulting in a signifi‐
cant reduction in daily carbon fixation (Stangler, Hamann, Kahle, & 
Spiecker, 2017; Zhao, Hartmann, Trumbore, Ziegler, & Zhang, 2013). 
In addition to reducing the amount of CO2 fixed, exposure to high 
temperatures may also lead to a decrease in carbohydrate reserves 
(e.g., starch) in response to enhanced maintenance respiration (as‐
sociated with protein turnover and membrane repair; Hüve et al., 
2011) (Figure 1c). Carbon balance may also be negatively affected 
by changes in Rubisco specificity and by reductions in CO2 solubil‐
ity relative to O2, a process that may increase PR rates (Carmo‐Silva 
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et al., 2012; Carmo‐Silva, Scales, Madgwick, & Parry, 2015; Galmés 
et al., 2015). Thus, even small increases in temperature can cause 
significant reductions in the net productivity of several plant com‐
munities, making these plants even more vulnerable to the effects of 
the stress factors discussed above (Adams et al., 2009; Liang et al., 
2016; McDowell & Allen, 2015; Park Williams et al., 2012). Overall, it 
is clear that the increase in global mean temperature, combined with 
other stressors, will have a devastating effect on the productivity 
and composition of various plant communities and, as a result, may 
lead to profound changes in the global carbon cycle.

An indirect effect of global warming that may also impact the 
performance and survival of tree species, especially under drought 
conditions, is the increase in the vapor pressure deficit (VPD) be‐
tween leaf and atmosphere (Slot & Winter, 2017; Will et al., 2013). In 
fact, the increased evapotranspiration demand induced by high VPD 
can impact plant physiological processes in different ways (Figure 2). 
For some species, high VPD may enhance water loss and increase 
the vulnerability to cavitation (Adams et al., 2009; Park Williams et 
al., 2012), while for others, this factor can trigger reductions in gs, 
limiting CO2 diffusion for photosynthesis and leaf cooling through 
transpiration, which may impact carbon balance (due to cell damages 
and increased R and PR rates; Bauweraerts et al., 2013; Duursma 
et al., 2014; Flexas et al., 2006; McDowell et al., 2008; Teskey et 
al., 2015) (Figure 2). These contrasting responses also show that the 
dynamics of stomatal movements can be extremely variable under 
high temperature, with some studies reporting increases (Freeden 
& Sage, 1999; Mott & Peak, 2010; Schulze, Lange, Evenari, Kappen, 
& Buschbom, 1974; Urban et al., 2017), decreases (Slot & Winter, 
2017), or no changes (Cerasoli et al., 2014; Sage & Sharkey, 1987; 
Teskey, Bongarten, Cregg, Dougherty, & Hennessey, 1987; Vargas 
& Cordero, 2013;) in gs under those conditions. This wide range of 
responses is attributed not only to the different sensitivities of spe‐
cies to VPD, but also to water potential, and internal CO2 concentra‐
tion, combined with other factors (e.g., wind and water availability; 
Addington, Mitchell, Oren, & Donovan, 2004; Ocheltree, Nippert, 
& Prasad, 2014; Schymanski, Or, & Zwieniecki, 2013; Teskey et al., 
2015; Yan et al., 2017). However, despite this great variability of re‐
sponses, it should be noted that high VPD, as a result of increased 
temperature, has been suggested as a primary driver of tree mor‐
tality in different regions worldwide (Anderegg et al., 2012; Park 
Williams et al., 2012; Will et al., 2013) (Figure 2).

The uncertainties regarding the alterations of the water‐saving 
strategies of plants exposed to high temperature go beyond the sto‐
matal movements. In fact, the dynamic of gmin rates in a scenario 
of increased temperature also represents an important gap in our 
knowledge. For most species, especially the nondesert ones, gmin 
rates tend to show small variations at temperatures from 15 to 35°C, 
while temperatures above 35° induce a drastic increase in cuticle per‐
meability and, consequently, in water loss (Schreiber, 2001; Schuster 
et al., 2017). This abrupt increase in gmin rates under a certain tem‐
perature threshold, also known as transition temperature (Schuster 
et al., 2016), can have a catastrophic effect on plants exposed to 
heat waves, especially under drought conditions, since the increase 

in water loss can significantly increase the tension in xylem vessels, 
which can result in a reduction in the time to HF (Cochard, 2019). 
However, despite the great impact that the increase in atmospheric 
temperature can have on gmin rates (Bueno et al., 2019; Schuster et 
al., 2016) and, thus, on plant survival (Cochard, 2019), key questions 
regarding this topic remain. For example, we currently do not have 
enough information to answer to which extent plants acclimated to 
high temperatures can alter the physicochemical properties of their 
cuticle in order to increase the transition temperature. This kind of 
information is essential to improve the prediction about the impact 
that the increase in atmospheric temperature, especially in associa‐
tion with drought, will have on the composition of forest ecosystems 
worldwide (Cochard, 2019).

The effects of global warming are expressed not only through 
the increase in the occurrence of extremely high temperatures (e.g., 
heat waves), but also with more subtle changes, as the increase in 
winter temperatures. In fact, in the last century, an expressive in‐
crease in mean winter temperatures was observed in some regions 
(e.g., northern Europe; Mikkonen et al., 2015). However, although 
the occurrence of extremely low temperatures is expected to de‐
crease in the decades to come (IPCC, 2014), paradoxically, the global 
warming will probably increase the vulnerability of plant species 
to frost‐induced injury, especially those from temperate regions 
(Augspurger, 2013; Príncipe et al., 2017). The process of cold accli‐
mation is triggered by the reduction in temperatures and photope‐
riod and involves a marvelous set of biochemical adjustments (e.g., 
accumulation of soluble sugars, hydrophilic proteins, antioxidants, 
and chaperones) that confers cryoprotection to the cells (Basler & 
Körner, 2012). In early spring, as the temperature rises, the resis‐
tance to frost injury decreases progressively, reaching a minimum 
when new leaves emerge, making the plants extremely vulnerable 
to a “late‐spring” frost event (Lenz, Hoch, Vitasse, & Körner, 2013; 
Vitasse, Lenz, Hoch, & Körner, 2014; Vitasse, Schneider, Rixen, 
Christen, & Rebetez, 2018). Some studies already showed that these 
frost damages are related to a previous warm period, which induces 
precocious spring phenology (Vitasse et al., 2018). In this way, the 
phenological changes induced by the combination of warmer springs 
and large temperature fluctuations, predicted for the decades to 
come (IPCC, 2014), may significantly increase the vulnerability to 
frost in several tree species (Augspurger, 2013; Julio Camarero, 
Gazol, Sancho‐Benages, & Sangüesa‐Barreda, 2015). The occur‐
rence of frost‐induced mortality events, especially those related to 
late‐spring frost, is considerably growing in some regions and is ex‐
pected to be more frequent as the atmospheric temperature keeps 
changing (Augspurger, 2013). Moreover, it is important to note that 
these events of frost mortality are observed not only in temperate 
regions, but also in tropical forests. In a recent study, it was shown 
that a widespread mortality event in a tropical dry forest from 
Mexico was related to an unusual combination of duration, inten‐
sity, and timing of a frost event (Bojórquez, Álvarez‐Yépiz, Búrquez, 
& Martínez‐Yrízar, 2019). Similarly, dieback events related to frost 
injury were also reported for species from the Mediterranean re‐
gion (Jalili et al., 2010; Matusick, Ruthrof, Brouwers, & Hardy, 2014). 
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These examples illustrate well the impact of global warming on the 
vegetation, since its effects, especially the large temperature fluctu‐
ations, can significantly increase the vulnerability of forest species 
in virtually all biomes.

3  | THE CONTROVERSIAL ROLE OF 
C ARBON DIOXIDE: A POTENTIAL FRIEND 
OR A CERTAIN ENEMY?

The growing increase in the atmospheric [CO2] is one of the main 
effects of anthropic activities. In fact, from the industrial revolu‐
tion to the present, [CO2] has increased from approximately 280 to 

400 ppm. If the current greenhouse gas emission pattern is main‐
tained, [CO2] is expected to reach levels of 750–1,300 ppm by the 
end of this century (IPCC, 2014). This significant rise in [CO2] may 
place a large number of species at risk because the weather ex‐
tremes previously discussed are directly related to the increase in 
the concentration of this gaseous molecule (Becklin, Walker, Way, 
& Ward, 2017; Warren, Jensen, Medlyn, Norby, & Tissue, 2015). 
However, although CO2 is considered one of the main villains of 
climate change, its real effect on the performance and survival 
of forest species remains extremely controversial (Ellsworth et 
al., 2017; Friedlingstein et al., 2014; Schimel, Stephens, & Fisher, 
2015; Sitch et al., 2015). For example, in addition to the central 
role of CO2 in driving climate change, several studies have shown 

F I G U R E  3   The controversial role of CO2. High [CO2] can stimulate plant growth through the increase in CO2/O2 ratio inside the 
chloroplasts, which enhance photosynthesis (A) and reduce photorespiration (PR), besides contributing to the increase in water use efficiency 
(WUE), as a result of reduced stomatal conductance (gs), thus minimizing the deleterious effect of some abiotic stresses. On the other 
hand, the fertilizer effect of high [CO2] is not always observed or only transitory, as a result of the downregulation of A, which is related 
to carbohydrate accumulation, repression of photosynthetic genes, and lower availability of nitrogen (N) and phosphorus (P). Moreover, 
some morphological and morpho‐anatomical changes induced by high [CO2] may also enhance the vulnerability of tree species to abiotic 
stresses, as a result of increased transpiration, reduced water uptake, increased vulnerability to cavitation, and higher respiration (R) and 
photorespiration (PR) rates. High [CO2] can also compromise the interactions between plants and their pollinators, through phenology 
changes
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that higher [CO2] can enhance the performance and productivity 
of forest species (Drake et al., 2011; Lewis, Lloyd, Sitch, Mitchard, 
& Laurance, 2009; Norby et al., 2005; Norby, Wullschleger, 
Gunderson, Johnson, & Ceulemans, 1999; Yang, Donohue, 
Mcvicar, Roderick, & Beck, 2016), as well as mitigate the deleteri‐
ous effects of some abiotic stresses (Oliveira, Silva, & Carvalho, 
2016; Rodrigues et al., 2016; Roy et al., 2016; Swann, Hoffman, 
Koven, & Randerson, 2016).

One of the most significant effects of the increase in [CO2] is the 
enhancement of the photosynthetic process, especially in C3 plants 
(Ainsworth & Long, 2005; Bader, Siegwolf, & Körner, 2010; Drake 
& Leadley, 1991; Faralli, Grove, Hare, Kettlewell, & Fiorani, 2017; 
Idso & Kimbal, 1997; Rey & Jarvis, 1998; Streit, Siegwolf, Hagedorn, 
Schaub, & Buchmann, 2014; Tissue, Thomas, & Strain, 1997; Yang 
et al., 2016). This fertilizer effect of CO2 has been attributed to an 
increase in the carboxylase activity and a reduction in the oxygen‐
ase activity of Rubisco due to the greater relative proportion of CO2 
to O2 within chloroplasts (Ainsworth & Rogers, 2007; Rodrigues 
et al., 2016). As a result, increased [CO2] tends to significantly re‐
duce photorespiratory metabolism (Drake, Gonzàlez‐Meler, & Long, 
1997), which helps to explain the increase in growth rates observed 
in certain species. This increased [CO2] at Rubisco carboxylation 
sites also allows higher rates of A to be achieved at lower gs, result‐
ing in reduced consumption of water per molecule of carbon fixed 
and therefore higher water use efficiency (WUE; Faralli et al., 2017; 
Franks, 2013; van der Sleen et al., 2014; Streit et al., 2014) (Figure 3). 
Together, the reduction in photorespiratory activity and the increase 
in WUE, induced by higher [CO2], have the potential to minimize the 
deleterious effects of certain abiotic stresses. In fact, some studies 
have demonstrated the mitigating effect of high [CO2] on plants ex‐
posed to drought and high temperatures (Drake et al., 2011; Oliveira 
et al., 2016; Rodrigues et al., 2016; Roy et al., 2016; Swann et al., 
2016; Yang et al., 2016; Yu, Yang, Jespersen, & Huang, 2014). In view 
of this increase in performance and productivity promoted by high 
[CO2], even in the presence of abiotic stresses, should we really be 
concerned about the dynamics of the distribution and survival of 
forest species under a climate change scenario? The answer to this 
question is extremely complex because the beneficial effects of 
high [CO2] found in some studies (Drake et al., 2011; Idso & Kimbal, 
1997; Oliveira et al., 2016; Pérez‐Jiménez, Hernández‐Munuera, 
Piñero, López‐Ortega, & del Amor, 2018; Radoglou & Jarvis, 1990; 
Rodrigues et al., 2016; Roy et al., 2016; Swann et al., 2016; Yu et al., 
2014) are in direct contrast to the results of several other reports 
(Calvo et al., 2017; Clark, Clark, & Oberbauer, 2010; Faralli et al., 
2017; Feeley, Joseph Wright, Nur Supardi, Kassim, & Davies, 2007; 
Voelker et al., 2017).

Although high [CO2] has the potential to increase growth rates, 
this effect is not always observed (Duursma et al., 2016; Feeley et al., 
2007; Klein et al., 2016; van der Sleen et al., 2014) or, in many cases, 
is only transient (Grulke, Riechers, Oechel, Hjelm, & Jaeger, 1990; 
Warren et al., 2015) (Figure 3). Indeed, downregulation of photosyn‐
thesis is a common response of C3 plants exposed to high [CO2] lev‐
els, and it has been attributed to the inability of sink organs to utilize 

the excess photoassimilate produced (Drake et al., 1997; Makino & 
Mae, 1999; Rey & Jarvis, 1998). In turn, higher carbohydrate content 
in source organs may induce repression of several photosynthesis‐
related genes, canceling the fertilizer effect of high [CO2] (Cheng, 
Moore, & Seemann, 1998; Nie, Hendrix, Webber, Kimball, & Long, 
1995). Another factor commonly associated with the downregu‐
lation of photosynthesis is N availability, as N deficiency may limit 
the translocation capacity of source organs, as well as the growth 
and activity of sink organs (Ruiz‐Vera, Souza, Long, & Ort, 2017; 
Sharwood, Crous, Whitney, Ellsworth, & Ghannoum, 2017). In ad‐
dition to N, some studies have demonstrated that P availability is 
another determining factor for the mitigating effect of high [CO2] 
under abiotic stress conditions, particularly drought (Jin, Lauricella, 
Armstrong, Sale, & Tang, 2015) (Figure 3). Nonetheless, P deficiency 
may offset the beneficial effects of exposure to high [CO2] and limit 
the productivity of forest species, even under conditions where in‐
creases in A are observed (Ellsworth et al., 2017).

Another point that is frequently debated is the potential of 
high [CO2] to mitigate the deleterious effects of certain abiotic 
stresses. Some studies have shown that the beneficial effects of 
high [CO2] can be offset by an increase in canopy leaf area (Becklin 
et al., 2017; McCarthy, Oren, Finzi, & Johnsen, 2006; Warren, 
Norby, Wullschleger, & Oren, 2011), reductions in root depth 
(Duursma et al., 2011), and alterations in xylem anatomical proper‐
ties (e.g., increase in vessel diameter; Ceulemans, Jach, Velde, Lin, 
& Stevens, 2002). Such morpho‐anatomical changes induced by 
high [CO2] may result in increased transpiration demand and lower 
capacity to absorb and transport water due to reduced hydraulic 
conductivity of roots (Warren et al., 2011) and leaves (Domec et 
al., 2009) and higher vulnerability to cavitation in different organs 
(Domec, Schäfer, Oren, Kim, & McCarthy, 2010), exacerbating the 
susceptibility of plants to drought events. The same scenario of 
uncertainties about the mitigating effect of high [CO2] is also ob‐
served for plants exposed to high temperatures, particularly when 
this stress is associated with drought (Becklin et al., 2017; Duan 
et al., 2014). Under these conditions, increased leaf area and re‐
ductions in transpiration rates can significantly reduce latent heat 
loss, which may increase leaf temperature and subsequently gen‐
erate a series of disturbances that may enhance vulnerability to 
heat stress (e.g., increase in R and PR rates; Voelker et al., 2017) 
(Figure 3).

Finally, another matter of concern regarding plant behavior 
under a scenario of increased [CO2] is altered regulation of specific 
processes related to development, particularly phenology (Becklin 
et al., 2017). Several studies have shown that changes in flow‐
ering time appear to be a common response of plants exposed to 
high [CO2] (Jagadish et al., 2016; Springer, Orozco, Kelly, & Ward, 
2008; Springer & Ward, 2007) (Figure 3). Such changes can have 
a devastating impact on the composition of several plant commu‐
nities because changes in flowering time may, for instance, induce 
mismatches between plants and their respective pollinators and 
thereby compromise the reproduction and distribution of several 
species (Becklin et al., 2016; Polce et al., 2014; Springer & Ward, 
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2007). These results are even more worrying when we also consider 
the increase in global average temperature, another factor that has 
been directly associated with phenological changes in many species 
(Bock et al., 2014; Legave, Guédon, Malagi, Yaacoubi, & Bonhomme, 
2015; Mulder, Iles, & Rockwell, 2017). Thus, it is clear that the effect 
of high [CO2] on the performance, survival, and distribution of spe‐
cies worldwide represents one of the greatest uncertainties related 
to climate change because its effects are extremely variable and also 
depend on a range of other factors.

4  | IMPAC T OF CLIMATE CHANGE ON 
SPECIES DISTRIBUTION AND FOREST 
COMPOSITION

As discussed above, the interaction between multiple climatic fac‐
tors can trigger tree mortality due to the disruption of central physi‐
ological processes. Despite the uncertainties regarding the intensity, 
frequency, and duration of those extreme weather events for the 

decades to come (IPCC, 2014), even in more conservative scenario 
several tree species probably will be exposed to climatic conditions 
that differ significantly from their physiological limits (Becklin et al., 
2016). Moreover, depending on the speed at which these stressors 
reach particular regions, the species inhabiting these regions may 
not have time to adapt to the new climatic conditions. Thus, if cli‐
mate model predictions are confirmed, profound changes in the 
composition of several biomes can be expected (Wiens, 2016; Zhang 
et al., 2017). In fact, some studies on plant dynamics indicate that 
climate changes predicted for the end of this century could result in 
the replacement of current biomes by those that are more adapted 
(Jiang et al., 2013; Park Williams et al., 2012), including the replace‐
ment of the Amazon forest by savannah vegetation (Lapola, 2007), 
leading to huge losses of biodiversity (Figure 4).

In addition to the prediction from climatic models, changes in 
forest composition can be already seen in several regions around 
the globe. For example, a recent study had shown that the increase 
in drought intensity had led to a shift in species composition in 
forests of the eastern United States toward species that are more 

F I G U R E  4  Climate change can induce profound transformations in forest ecosystems worldwide (a). The increase in frequency, intensity, 
and duration of extreme weather events can trigger massive tree mortality, affect species recruitment (due to alterations in germination, 
establishment, and early seedling survival), and reduce fertility and/or change the phenology of several species (b), resulting in deep changes 
in species distribution and forest composition (c). This massive loss of biodiversity can reduce the resilience of several forest ecosystems, 
making them even more sensitive to the effects of climate change (d). Even when the extreme weather does not induce tree mortality, 
the reduction in carbon assimilation and the increase in carbon release, due to reduced performance, can transform the forest ecosystem 
from carbon sinks to carbon sources, further increasing the atmospheric [CO2] (e), and thus the rate of climate change itself (e). This further 
increase in [CO2] can have contrasting effects, depending on the environmental context in which tree species are inserted. For several 
regions, the increase in [CO2] can enhance the deleterious effect of drought and high temperature (see also Figure 3), which may place 
species in a condition that exceeds their physiological limits, resulting in even more mortality events (d). Contradictorily, for other regions, 
the changes in temperature and precipitation patterns can lead to more favorable conditions to some species, which may result in an 
increase in performance and biodiversity on those regions (f)
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drought‐tolerant, but with lower growth rates (Zhang et al., 2018). 
Besides the losses in biodiversity, the resulting increase in mor‐
tality rates and reduction in forest biomass accumulation might 
also transform the global forest ecosystems from carbon sinks to 
carbon sources (Brienen et al., 2015; Cavaleri et al., 2017; Hisano, 
Searle, & Chen, 2018) (Figure 4c). This situation was already ob‐
served in forest ecosystems which are crucial to the regulation of 
carbon dynamics worldwide, like the Amazon forest (Brienen et al., 
2015). Thus, it is clear that even small changes in forest composi‐
tion can have a feedback effect which might increase the concen‐
tration of atmospheric CO2, and thus the rate of climate change 
itself (Phillips et al., 2009).

Alterations in forest composition can also result from shifts in 
the geographic distribution along climatic gradients (Hisano et al., 
2018). In fact, several pieces of evidence support the latitudinal and 
altitudinal shifts induced by alteration in climatic conditions (Bellard, 
Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012; Colwell et al., 
2008; Hisano et al., 2018). As an example, expressive increments in 
atmospheric temperature, along with reductions in water availability, 
are attributed to the upward movement of trees from the lower el‐
evation range boundaries and also to elevational range contractions 
in a forest from southeastern Arizona (Brusca et al., 2013). Similarly, 
an extreme drought event in the early 2000s leads to rapid vege‐
tation redistribution in the southern California mountains (Fellows 
& Goulden, 2000). It is important to note that those shifts in plant 
distribution are highly species‐dependent since their environmen‐
tal requirements and capacity to adapt are highly variable (Butler 
et al., 2017). Thus, in a given forest community, species that display 
a set of morpho‐physiological traits that confer higher tolerance to 
a given environmental will tend to increase their dominance, while 
more sensitive species tend to decay (Hisano et al., 2018; Moradi 
et al., 2012). This observation highlights the central role of biodi‐
versity in minimizing the deleterious effects of climate change on 
forest communities (Hisano et al., 2018), since a more biodiverse 
system tends to be more resilient (Chapin et al., 2000; Grossiord, 
2019; Sakschewski et al., 2016). This link between biodiversity and 
forest safety can be clearly observed in a recent study in which the 
diversity in hydraulic traits of trees was a central factor in mediating 
ecosystem resilience to drought (Anderegg et al., 2018).

Another concern regarding the changes in forest composition 
is related to tree recruitment since drastic changes in weather con‐
ditions can directly affect germination, establishment, and early 
seedling survival (Clark et al., 2016). In fact, some studies already 
showed a reduction in species richness due to reductions in seed‐
ling emergence and increased mortality following events of drought 
(Lucas‐Borja, 2016), especially when in association with high tem‐
peratures (Lloret & Pen, 2004; Lloret, Peñuelas, Prieto, Llorens, & 
Estiarte, 2009). This disruption in seedling recruitment might be fur‐
ther intensified by the direct effect of environmental variations on 
plant reproduction, both due to reductions in fecundity (Saavedra, 
Inouye, Price, & Harte, 2003; Su et al., 2013) and/or for mismatches 
between plants and their pollinators (as discussed above for high 
[CO2]) (Figure 4d,e).

Finally, it is important to highlight that, for some forest com‐
munities, the changes in climatic conditions can have a positive ef‐
fect on plant biodiversity (Bellard et al., 2012; Hisano et al., 2018) 
(Figure 4f). For example, the increase in atmospheric temperature, 
in association with higher [CO2], can have a positive effect for many 
species (Rodrigues et al., 2016; Roy et al., 2016). Similarly, the in‐
crease in precipitation, predicted for some regions (IPCC, 2014), can 
also have a positive effect on threatened species, resulting in an in‐
crease in biomass production on those forest communities (Bellard 
et al., 2012). However, these results should be analyzed with care, 
since this controversial beneficial effect of climate change has been 
observed only on a small fraction of the vast literature that covers 
the impact of extreme weather events on plant function and com‐
position. All these uncertainties add new layers of complexity to the 
already puzzling task of predicting the impact of climate change on 
the composition of forest communities worldwide.

5  | CONCLUSIONS AND PERSPEC TIVES

As discussed in the previous sections, there are multiple ways by 
which factors associated with climate change can increase the vul‐
nerability of, as well as place at risk of extinction, numerous forest 
species distributed in the most diverse biomes around the world. 
Given this alarming scenario of potential changes in the composition 
of several plant communities, it is essential that more studies seek to 
elucidate the factors associated with climate change that may lead 
to plant mortality. Furthermore, more important than characteriz‐
ing the factors related to plant vulnerability to a particular stress 
is determining how the interaction between multiple stressors can 
influence the survival of such species. In situations of exposure to 
multiple stressors, it is also of paramount importance to better char‐
acterize the real role of CO2, as well as the influence of variation in 
nutrient availability, in the mitigation or intensification of the delete‐
rious effects of other stressors. In this sense, free‐air CO2 enrich‐
ment (FACE) and open‐top chamber (OTC) studies that simulate the 
concomitant occurrence of other stresses, such as drought and high 
temperature, are key to better characterizing the impact of climate 
change on plant behavior (Becklin et al., 2017). In addition, the use 
of integrative approaches from genomics, metabolomics, and pro‐
teomics, as well as those techniques used to monitor physiological 
changes in different organs (e.g., OV and micro‐CT methods), is of 
pivotal importance to trace a broader picture of the main limitations 
to plant performance under extreme weather events. The results 
obtained from such studies may provide valuable information for the 
optimization of models to monitor and predict the impact of climate 
change on the survival and distribution of plant species and public 
policies on forest management and reforestation.
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