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1  | INTRODUC TION

Over the last decades, anthropogenic activities such as uncon‐
trolled deforestation and increasing greenhouse gas emissions have 
resulted in a series of environmental imbalances that have caused 

significant changes in complex climate dynamics around the world. 
Examples of these changes include increases in the atmospheric CO2 
concentration [CO2] as well as the global average temperature (IPCC, 
2014). In addition to the changes already observed, several climate 
models predict an intensification of these factors in the ensuing 
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Abstract
Anthropogenic	activities	 such	as	uncontrolled	deforestation	and	 increasing	green‐
house gas emissions are responsible for triggering a series of environmental imbal‐
ances	that	affect	the	Earth's	complex	climate	dynamics.	As	a	consequence	of	these	
changes, several climate models forecast an intensification of extreme weather events 
over the upcoming decades, including heat waves and increasingly severe drought 
and flood episodes. The occurrence of such extreme weather will prompt profound 
changes in several plant communities, resulting in massive forest dieback events that 
can trigger a massive loss of biodiversity in several biomes worldwide. Despite the 
gravity of the situation, our knowledge regarding how extreme weather events can 
undermine the performance, survival, and distribution of forest species remains very 
fragmented. Therefore, the present review aimed to provide a broad and integrated 
perspective of the main biochemical, physiological, and morpho‐anatomical disorders 
that may compromise the performance and survival of forest species exposed to cli‐
mate change factors, particularly drought, flooding, and global warming. In addition, 
we also discuss the controversial effects of high CO2 concentrations in enhancing 
plant growth and reducing the deleterious effects of some extreme climatic events. 
We conclude with a discussion about the possible effects that the factors associated 
with the climate change might have on species distribution and forest composition.
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decades, which may result in a higher incidence of extreme weather 
events	 (Zhang	et	al.,	2015).	According	to	these	models,	drastic	 re‐
ductions in rainfall are expected for some regions, whereas greater 
rainfall	volumes	are	expected	for	others,	resulting	in	more	frequent	
and intense drought and flood events, respectively (IPCC, 2014). In 
addition to the changes in pluviosity patterns, alterations in ther‐
mic regimes are also expected in several regions worldwide, which 
may	 increase	 the	 intensity	and	frequency	of	extreme	temperature	
events, such as heat waves and late‐spring frost events (IPCC, 2014).

Temperature and water availability are two of the main deter‐
minants of the establishment, distribution, and survival of plant 
species	around	the	world	(Anderegg	&	Hillerislambers,	2016;	Bond,	
Woodward,	&	Midgley,	 2005;	 Lu	 et	 al.,	 2017;	Osland	 et	 al.,	 2017;	
Trueba et al., 2017). Thus, if climate model predictions are con‐
firmed, the higher incidence, duration, and intensity of extreme 
weather can prompt profound changes in several plant communities, 
resulting in massive forest dieback, which can culminate in massive 
losses in biodiversity (Choat et al., 2012; Wiens, 2016). In fact, some 
studies report that climate change can trigger the replacement of 
several species from some biomes by those that are better adapted 
to extreme weather events. In tropical regions, for example, the oc‐
currence of extreme weather events can lead to the replacement of 
the	Amazon	forest	by	Savannah	vegetation	(Lapola,	2007).	A	similar	
scenario of changes in species composition is also expected for sev‐
eral other vegetation types, such as grasslands, temperate, boreal, 
and Mediterranean forests (Barros, Thuiller, & Münkemüller, 2018; 
Boulanger	et	al.,	2017;	Brusca	et	al.,	2013;	Lucas‐Borja,	2016;	Zhang,	
Niinemets,	Sheffield,	&	Lichstein,	2018).	However,	it	is	important	to	
emphasize that despite the fact that these extreme weather events 
are expected to intensify in the upcoming decades, their deleterious 
effects are already being observed. Indeed, a growing body of evi‐
dence associates the increasing death of forest species with water 
(drought	and	flood)	and	heat	stresses	(Allen	et	al.,	2010;	Anderegg,	
Flint,	et	al.,	2015;	Anderegg,	Hicke,	et	al.,	2015;	Anderegg,	Kane,	&	
Anderegg,	2012;	Choat	et	al.,	2012;	Greenwood	et	al.,	2017;	Liang,	
Leuschner,	Dulamsuren,	Wagner,	&	Hauck,	2016;	Park	Williams	et	
al.,	 2012;	Will,	Wilson,	Zou,	&	Hennessey,	2013).	Observations	of	
these widespread mortality events associated with extreme weather 
conditions have been documented on plants from all functional 
types, from all biomes around the world (McDowell et al., 2008). 
These observations become even more alarming when we take into 
account the proportion of plant species that may become extinct as 
a result of the intensification of such stresses (Becklin et al., 2016; 
Urban, 2015; Wiens, 2016).

In addition to the massive loss of biodiversity, the increase in 
forest death events can also promote profound changes in global 
carbon and water cycles (Frank et al., 2015). Indeed, as forests cover 
significant portions of the Earth's surface, and because they con‐
tribute	to	a	large	portion	of	primary	carbon	sequestration	and	water	
cycling, even minor environmental changes can disturb the complex 
dynamics of the terrestrial biosphere (Yan, Zhong, & Shangguan, 
2017). Examples of such disturbances can be seen in recent studies 
that	point	 to	 the	widespread	 reduction	 in	carbon	sequestration	 in	

several regions of the globe, both in tropical and in temperate eco‐
systems (Doughty et al., 2015; Gatti et al., 2014; Greenwood et al., 
2017; Taylor et al., 2017).

The great disturbances promoted by factors associated with cli‐
mate change in plant communities reflect their impact on essentially 
all levels of plant organization. In fact, over the last years, numerous 
studies have demonstrated the diversity of strategies and defense 
mechanisms of plants exposed to extreme weather events, as well 
as	the	factors	related	to	tree	mortality	under	those	conditions	(Allen	
et	 al.,	 2010;	Anderegg,	 Flint,	 et	 al.,	 2015;	Anderegg,	Hicke,	 et	 al.,	
2015;	Bennett,	McDowell,	Allen,	&	Anderson‐Teixeira,	2015;	Choat	
et	al.,	2012;	Liang	et	al.,	2016;	McDowell	et	al.,	2015;	Mitchell	et	al.,	
2013; Park Williams et al., 2012; Rodríguez‐Calcerrada et al., 2017; 
Tognetti	&	Palombo,	2013).	However,	although	our	understanding	of	
the mechanisms behind forest dieback has grown considerably, the 
knowledge about this topic still remains very fragmented. Therefore, 
the present review aimed to provide a broad and integrated perspec‐
tive of the main biochemical, physiological, and morpho‐anatomical 
disorders associated with exposure to the stress factors triggered by 
extreme climatic events (mainly drought, flooding, and global warm‐
ing), which may compromise the performance and, ultimately, the 
survival of tree species and forest ecosystems in a global scale. In ad‐
dition, we also discuss the controversial effects of high [CO2] in en‐
hancing plant growth and reducing the deleterious effects of some 
extreme climatic events. We conclude with a discussion about the 
possible effects that the factors associated with the climate change 
might have on species distribution and forest composition.

2  | MAIN DRIVERS OF FOREST DIEBACK 
UNDER A SCENARIO OF CLIMATE 
CHANGE AND THEIR IMPAC T ON KE Y 
BIOCHEMIC AL ,  PHYSIOLOGIC AL ,  AND 
MORPHO ‐ANATOMIC AL A SPEC TS

2.1 | Drought

One of the main factors commonly associated with forest dieback 
events under drought conditions is the carbon starvation (CS) due 
to the depletion of nonstructural carbohydrates (NSCs), as a result 
of a negative carbon balance (Flexas, Bota, Galmés, Medrano, &  
Ribas‐carbo, 2006; McDowell et al., 2008; Mitchell et al., 2013; 
O'Grady, Mitchell, Pinkard, & Tissue, 2013; Weber et al., 2018). This 
imbalance involves a complex network of interconnected factors, 
which include the reduction in carbon assimilation via impairment of 
photosynthesis rates, both due to diffusive (e.g., reduced stomatal 
and mesophyll conductance) and biochemical (inhibition of specific 
metabolic processes) limitations (Flexas et al., 2009), and the increase 
in metabolic costs to repair disrupted structures (e.g., membranes, 
proteins, and nucleic acids), and to produce defense molecules, cou‐
pled with the possible increase in respiration (R) and photorespira‐
tion rates (PR;	Dias	&	Brüggemann,	2010;	Maroco,	Rodrigues,	Lopes,	
&	Chaves,	2002;	PARRY,	2002;	Tezara,	Mitchell,	Driscoll,	&	Lawlor,	
1999).	However,	although	CS	has	been	suggested	as	one	of	the	main	
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triggers of tree mortality under drought conditions (McDowell et al., 
2008), this topic is still under intense debate due to some uncertain‐
ties. One of this uncertainties involves the fact that the vast ma‐
jority	of	studies	on	C	dynamics	under	drought	conditions	use	only	
small tree segments (e.g., roots and shoots), which make it difficult 
to address the role of carbon storage and remobilization in whole‐
tree	 dieback	 events	 (Hartmann	et	 al.,	 2018;	Kono	et	 al.,	 2018).	 In	
addition, under severe stress conditions, plants also can use alter‐
native molecules (e.g., lipids and organic acids) to fulfill the respira‐
tory	process	 (Araújo,	Tohge,	 Ishizaki,	Leaver,	&	Fernie,	2011;	Pires	
et al., 2016; Weber et al., 2018), a strategy that is usually neglected 
in drought mortality studies. Thus, to better understand the impact 
that the fluctuations in the C metabolism may lead to the behavior 
of tree species under severe drought events, it is essential to deeply 
investigate the whole‐tree C dynamics and how the use of alterna‐
tive energetic molecules can postpone the collapse of the respira‐
tory	metabolism	(Hartmann	et	al.,	2018).	However,	although	the	role	
of	CS	 in	 triggering	tree	mortality	 remains	controversial	 (Hartmann	
et	 al.,	 2018;	 Körner,	 2015),	 the	 negative	 carbon	 balance	 induced	
by drought can have a profound impact on the dynamics of carbon 
flux on a global scale. In fact, some studies have associated drought 
events with a reduction in the primary productivity of several plant 
communities	 (Brzostek	et	al.,	2014;	Hilker	et	al.,	2014;	Yuan	et	al.,	
2016; Zhao & Running, 2010).

In addition to perturbations in the carbon balance, impaired 
water	transport	has	also	been	suggested	as	a	major	factor	causing	
death	in	plants	exposed	to	drought	(Anderegg	et	al.,	2016;	Choat	et	
al., 2012; Corlett, 2016; McDowell et al., 2008; O'Brien et al., 2017; 
Rodríguez‐Calcerrada	 et	 al.,	 2017;	 Tai,	Mackay,	 Anderegg,	 Sperry,	
& Brooks, 2016). This occurs because despite the partial closure 
of stomata, decreased water availability can considerably increase 
the tension in xylem vessels, a process that may result in cavitation 
(Tyree	&	Sperry,	1989).	As	a	consequence,	cavitation	can	lead	to	ex‐
tensive	hydraulic	failure	(HF),	reducing	a	plant's	ability	to	replenish	
the water lost through transpiration and resulting in extreme des‐
iccation and death (Mitchell et al., 2013; Rodríguez‐Calcerrada et 
al., 2017; Rowland et al., 2015) (Figure 1a). In fact, several studies 
have	emphasized	 the	HF	as	 the	main	determinant	of	 the	drought‐
induced tree mortality across contrasting vegetation types (e.g., 
tropical, temperate, boreal, and Mediterranean forests), whereby 
species less vulnerable to cavitation tend to be more drought‐toler‐
ant	 (Anderegg,	Anderegg,	Kerr,	&	Trugman,	2019;	Anderegg,	Flint,	
et al., 2015; Choat et al., 2012; Greenwood et al., 2017; O'Brien et 
al., 2017). Vulnerability to cavitation, in turn, is directly related to 
a	series	of	anatomical	 (pit	membranes,	diameter,	and	frequency	of	
xylem vessels), morphological (wood density, root depth, sapwood 
to leaf area), and physiological (control of stomatal movement and 
phenological stage) factors, which vary widely between species and 

F I G U R E  1  Main	physiological	disorders	induced	by	drought	(DH),	flooding	(FL),	and	heat	stress	(HT)	which	may	reduce	plant	performance	
and survival under a climate change scenario. Overall, tree dieback events are mainly related to impairments in water transport and/
or	carbon	balance.	Reductions	in	water	transport	capacity	are	associated	with	hydraulic	failure	(as	a	consequence	of	xylem	cavitation)	
and	damages	to	the	root	system	(reduced	expression	and	activity	of	aquaporins	as	well	as	alterations	in	root	morphology	and	growth).	
Conversely, negative carbon balance can be triggered by reductions in photosynthesis (A), as a result of diffusive (lower stomatal (gs) and 
mesophyll (gm) conductance) and biochemical (damages to membranes and enzymes) limitations, in addition to increases in respiration (R) 
and photorespiration (PR) rates
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functional groups (Greenwood et al., 2017; Jacobsen, Ewers, Pratt, 
Paddock,	&	Davis,	2005;	Lens	et	al.,	2011;	Markesteijn,	Poorter,	Paz,	
Sack,	&	Bongers,	2011;	McAdam	&	Brodribb,	2016;	Santiago	et	al.,	
2004; Scoffoni et al., 2017; Trueba et al., 2017). Despite this great 
variability in vulnerability to cavitation, recent studies have shown 
that most forest communities around the globe operate within a 
very narrow hydraulic safety margin, placing species from virtually 
all	 biomes	 at	 risk	 (Choat	 et	 al.,	 2012).	 However,	 although	HF	 has	
been	pointed	as	a	major	determinant	of	 tree	mortality	 (Anderegg,	
Flint,	et	al.,	2015;	Hartmann	et	al.,	2018),	 the	 lack	of	key	 informa‐
tion regarding the stability of water transport under drought makes 
it difficult to predict the behavior of trees under such conditions. For 
example, until now there is no consensus about what is the lethal 
point	 in	which	xylem	embolism	develops	 into	HF	(Hartmann	et	al.,	
2018), especially in angiosperms, and neither if some mechanisms 
of xylem repair, as the controversial refiling (Charrier et al., 2016; 
Sperry, 2013), can reestablish the water transport after extreme 
drought events. Thus, it is of pivotal importance to determine spe‐
cific thresholds of recovery and fatal embolism and to better un‐
derstand whether the mechanisms of xylem repair can mitigate the 
occurrence	of	such	catastrophic	events	(Hartmann	et	al.,	2018).

Another	uncertainty	regarding	the	role	of	HF	in	drought‐induced	
tree mortality is the fact that most of the studies that seek to inves‐
tigate the vulnerability to cavitation in trees are made in leaves and 
segments of branches (e.g., trunks and roots). Thus, little is known 
about in which scale other more basal organs are affected by ex‐
treme drought events (Mcculloh, Johnson, Meinzer, & Woodruff, 
2014). This is a matter of great relevance, especially when we take 
into account the hypothesis of hydraulic segmentation, which pos‐
tulates that more distal organs (leaves and small branches), which 
represent a lower carbon investment, tend to be more vulnerable to 
cavitation than more basal organs (trunk and roots) (Charrier et al., 
2016;	Choat,	Lahr,	Melcher,	Zwieniecki,	&	Michele,	2005;	Tyree	&	
Zimmermann, 2002). In this sense, to better understand the real im‐
pact of drought on water transport in different species, it is essential 
to better characterize the events of cavitation in different organs. 
This type of integrative approach has become possible thanks to 
the emergence of noninvasive methodologies such as the “optical 
vulnerability	 technique	 (OV)”	 and	 the	 “X‐ray	 computed	 microto‐
mography	 (micro‐CT),”	 which	 allow	 the	 in	 vivo	 monitoring	 of	 the	
emergence and propagation of embolism events in different organs 
of plants exposed to drought (Brodribb et al., 2016; Charrier et al., 
2016; Choat et al., 2016 ; Rodriguez‐Dominguez, Carins Murphy, 
Lucani,	&	Brodribb,	2018).

In addition to a higher tolerance against cavitation, the effi‐
cient control of water loss also represents a central component of 
the tree survival under drought. In fact, a recent study has shown 
that most of the species tend to close their stomata before the 
onset of the cavitation events (Martin‐StPaul, Delzon, & Cochard, 
2017). Nevertheless, even after the complete stomatal closure, 
the plants keep losing water to the atmosphere through their cu‐
ticle (Bueno et al., 2019). This residual transpiration (gmin) varies 
widely across species and functional groups (Schuster, Burghardt, 

&	Riederer,	2017),	and	can	directly	affect	the	time	to	HF	(Cochard,	
2019).	However,	although	gmin has been recently pointed as a cen‐
tral component of the drought tolerance strategy (Cochard, 2019), 
several	 questions	 regarding	 this	 trait	 remain.	 For	 example,	what	
are the main determinants of the variability of gmin across species? 
Is there a coordination between gmin and vulnerability to cavita‐
tion?	To	which	extent	do	plants	are	able	to	adjust	this	trait	through	
drought acclimation? The lack of consensus regarding the answers 
to	these	questions	highlights	an	important	gap	in	our	understand‐
ing of the strategies of water conservation, both within and across 
tree species. Thus, in order to better predict the impact of drought 
on forest communities, it is essential to unravel the uncertainties 
about gmin and also to widespread the integration of this trait on 
climate change models.

Although	 tree	mortality	 under	 drought	 conditions	 can	 be	 trig‐
gered	 by	 a	 combination	 of	 different	 effects	 (Adams	 et	 al.,	 2017;	
Hartmann	et	al.,	2018;	Kono	et	al.,	2018),	the	impact	of	such	effects	
can vary significantly depending on the phenological stage and 
size	of	the	plant	(Liu	et	al.,	2019;	Olson	et	al.,	2018).	As	trees	grow	
taller, the distance to move water from roots to leaves gets longer, 
which	increases	the	resistance	along	the	pathway	(Ambrose,	Sillett,	
&	Dawson,	2009;	Fajardo,	McIntire,	&	Olson,	2019),	resulting	in	an	
increase	 in	 the	 tension	 inside	 xylem	vessels	 and	 in	 the	 risk	 of	HF	
under	drought	conditions	(Bennett	et	al.,	2015;	Fajardo	et	al.,	2019).	
In fact, several studies already showed that taller trees, both within 
and across species, are more prone to drought‐induced cavitation, 
which greatly explain the reduction in growth, and the higher inci‐
dence of branch and whole dieback of taller individuals worldwide 
(Bennett	et	al.,	2015;	Fajardo	et	al.,	2019;	Lindenmayer	&	Laurance,	
2016).	To	keep	the	water	transport	and	avoid	the	risks	of	HF,	taller	
trees usually display a set of morpho‐physiological alterations on 
their hydraulic system, such as the reduction in leaf area to sapwood 
area	(Ambrose	et	al.,	2009;	McDowell	et	al.,	2002).	Although	these	
alterations can significantly compensate for the reduction in hydrau‐
lic efficiency, the reduced leaf area can potentially limit the global 
carbon assimilation of taller trees, possibly making them more prone 
to	carbon	starvation	on	extreme	drought	events	 (Liu	et	al.,	2018).	
Conversely,	other	 studies	have	shown	 that	 the	set	of	adjustments	
in the hydraulic system to deal with the increased stature might in‐
crease	the	hydraulic	safety	margin	and,	consequently,	the	resilience	
of	taller	trees	in	a	scenario	of	reduced	precipitation	(Ambrose	et	al.,	
2009).	In	fact,	a	recent	study	showed	that	taller	Amazonian	forests	
are less sensitive to precipitation variation (Giardina et al., 2018), 
a result that contrast directly with other studies which show that 
larger trees suffer more during drought events in forests worldwide 
(Bennett et al., 2015; Olson et al., 2018). These contrasting results 
highlight the uncertainties about how species with different ages 
and heights will respond to the increase in drought intensity and 
duration. In order to shed light on this controversial topic, there is 
an urgent need to better understand how the differences in water 
uptake (e.g., root density and depth) and storage capacity (e.g., 
trunk capacitance) between small and taller plants can impact the 
stability of water transport of those trees under drought conditions 
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(Hartmann	et	 al.,	 2018;	Martinez‐Vilalta,	Anderegg,	Sapes,	&	Sala,	
2019).

The factors that drive forest dieback also appear to vary signifi‐
cantly according to the intensity and duration of the drought event. 
Plants exposed to moderate but prolonged drought may not reach 
the	 critical	water	 potentials	 that	 induce	HF	but	may	 experience	 a	
lethal reduction in carbohydrate levels due to the negative carbon 
balance (McDowell et al., 2008, 2011; Mitchell et al., 2013; O'Brien, 
Leuzinger,	Philipson,	Tay,	&	Hector,	2014).	Nonetheless,	brief	peri‐
ods of severe drought can result in the inability to regulate water 
status	and	can	induce	death	by	HF	(Anderegg	et	al.,	2016;	Choat	et	
al., 2012; Delzon & Cochard, 2014; Mitchell et al., 2013; Rodríguez‐
Calcerrada et al., 2017; Rowland et al., 2015) (Figure 1a). Thus, the 
extent	of	damage	caused	by	drought,	as	well	as	 the	 time	required	
to induce plant death under these conditions, can vary signifi‐
cantly according to the growth and water management strategies 
of	a	given	species	(e.g.,	isohydric	or	anisohydric	species;	Allen	et	al.,	

2010; Mitchell et al., 2013; Reyer et al., 2013). It should be noted 
that under both of the above scenarios, the deleterious effects of 
drought and the possible occurrence of forest dieback can be inten‐
sified	by	the	combined	action	of	high	temperatures	(Allen,	Breshears,	
& McDowell, 2015; Dai, 2012; Park Williams et al., 2012) (Figure 2). 
As	an	example,	some	mechanisms	used	to	minimize	water	loss	under	
drought conditions (e.g., reductions in gs) tend to decrease leaf cool‐
ing	via	transpiration,	a	process	that	can	induce	a	series	of	cell	injuries	
(discussed in the next sections), and increase respiratory and photo‐
respiratory activities, further disturbing the carbon balance (Flexas 
et al., 2006; Mitchell et al., 2013) (Figure 2). Conversely, for other 
species, the increased temperature may also enhance plant transpi‐
ration, thus increasing the vulnerability to cavitation under drought 
conditions (Park Williams et al., 2012; Will et al., 2013) (Figure 2).

In	addition	to	 intensity	and	duration,	the	frequency	of	drought	
events appears to be a predominant factor in forest dieback events, 
yet it is rarely taken into account in climate models. In fact, few 

F I G U R E  2   Global warming increases the vulnerability of tree species under drought conditions in different ways. For some species, high 
temperatures induce the reduction in stomatal conductance (gs), reducing leaf transpiration and increasing leaf temperature, which may lead 
to deeper reductions in photosynthesis (A) and increases in photorespiration (PR) and respiration (R) rates, further intensifying the negative 
carbon balance induced by drought. For other species, high temperatures increase the stomatal conductance and leaf transpiration, further 
increasing the tension in xylem vessels induced by drought, leading to higher vulnerability to cavitation and hydraulic failure
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studies	 to	 date	 have	 focused	 on	 the	 behavior	 of	 plants	 subjected	
to cyclical drought episodes, even though this is a more common 
situation than isolated events (Menezes‐Silva et al., 2017). Recent 
studies have also shown that after exposure to severe drought, years 
may	be	required	for	several	plant	communities	to	fully	recover	their	
physiological processes (e.g., growth rates), making them even more 
vulnerable	to	further	drought	episodes	(Anderegg,	Schwalm,	et	al.,	
2015). Evidence of this reduced ability to fully recover after severe 
drought events can be observed in plants from contrasting vegeta‐
tion types, such as the temperate and continental forests (Gazol et 
al.,	2018).	Thus,	an	increase	in	the	frequency	of	drought	events	can	
significantly impair the composition of several biomes around the 
world. Therefore, in addition to a better understanding of the factors 
associated with reduced performance under drought conditions, it is 
vital to increase our knowledge about how plants recover from these 
extreme climatic events.

Finally, another factor that can increase the vulnerability of 
forest ecosystems in a scenario of reduced precipitation is the in‐
crease	in	the	frequency	and	intensity	of	fire	events.	In	fact,	due	to	
the increase in litter production and reduction in biomass humidity 
(Collins,	Bennett,	Leonard,	&	Penman,	2019;	Duursma	et	al.,	2016),	
the effect of drought on vegetation can significantly increase the fire 
spread and intensity, even in those regions that would be unlike to 
be burned (e.g., mesic sites and poleward‐facing slopes; Collins et al., 
2019;	Krawchuk	et	al.,	2016;	Leonard,	Bennett,	&	Clarke,	2014).	It	is	
important to note that although plants may have a set of traits and 
strategies to allow them to survive fire episodes and/or recompose 
burned	areas	(Hoffmann	et	al.,	2009;	Pellegrini,	Franco,	&	Hoffmann,	
2016;	Schafer,	Breslow,	Hohmann,	&	Hoffmann,	2015),	the	increase	
in drought intensity can significantly reduce the resilience of tree 
species	from	fire‐prone	habitats	(Pratt,	Jacobsen,	Ramirez,	&	Helms,	
2014). Some studies already showed that the negative impact of 
drought on seed germination and seedling survival can drastically re‐
duce	the	postfire	regeneration	of	subalpine	species	(Harvey,	Donato,	
& Turner, 2016), which may lead to a shift toward more drought‐tol‐
erant species (Moser, Temperli, Schneiter, & Wohlgemuth, 2010). In 
addition to the negative impact on seedling recruitment, drought can 
also affect the regeneration of burned areas thought the increase in 
the vulnerability of resprouting plants (Pratt et al., 2014). In fact, al‐
though it was already shown that resprouting species often display a 
better water status in the months after the crown fire (probably due 
to reduced leaf area and thus higher root‐to‐shoot ratio; Clemente, 
Rego, & Correia, 2005; Ramirez, Pratt, Jacobsen, & Davis, 2012; 
Refsland	 &	 Fraterrigo,	 2018;	 Schwilk,	 Brown,	 Lackey,	 &	 Willms,	
2016), they tend to be more vulnerable to drought than co‐occurring 
unburned plants (Ramirez et al., 2012; Saruwatari & Davis, 1989). 
An	example	of	the	higher	vulnerability	of	resprouting	plants	 is	the	
well‐documented increase in mortality rates of shrub species from a 
chaparral community when intense drought occurred in the follow‐
ing year after a fire event (Pratt et al., 2014). This increase in post‐
fire mortality is commonly attributed to a reduction in cavitation 
resistance (Jacobsen, Tobin, Toschi, Percolla, & Pratt, 2016; Pratt et 
al., 2014) and probably is also linked to a depletion in carbohydrate 

reserves of the resprouting plants (McDowell et al., 2008). Thus, 
the	 increase	 in	drought	 frequency,	 intensity,	 and	duration	has	 the	
potential to not only change the dynamics of fire regimes (Clarke, 
Knox,	Bradstock,	Munoz‐Robles,	&	Kumar,	 2014;	 Littell,	 Peterson,	
Riley,	Liu,	&	Luce,	2016),	putting	in	risk	fire‐sensitive	species	from	re‐
gions which were unlike to be burned, but can also increase the vul‐
nerability from fire‐tolerant species, resulting in drastic changes in 
forest	composition	and	loss	of	biodiversity	(Henzler,	Weise,	Enright,	
Zander,	&	Tietjen,	2018).

2.2 | Flooding

Under flooding conditions, the reduction in oxygen availability can 
induce a number of physiological imbalances that strongly impact 
key aspects of the growth, development, and survival of flooded 
species	 (Guo,	Huang,	Xu,	&	Zhang,	2011;	Li	et	al.,	2015).	The	sus‐
ceptibility, extent of damage, and lifespan of flooded plants vary 
widely among species and depend on the ability to invoke a series of 
morpho‐anatomical (production of lenticels, adventitious roots, and 
aerenchyma), biochemical (increased fermentative metabolism), and 
physiological	 (increased	 ethylene	production)	 adjustments	 (Bailey‐
Serres	&	Colmer,	 2014;	Herrera,	 2013;	Voesenek	&	Bailey‐Serres,	
2015). Common effects of exposure to flooding stress, especially for 
sensitive species, include inhibition of root and shoot growth, leaf 
necrosis, bark damage, increased ROS production, and several other 
metabolic	 disorders	 (Ferner,	 Rennenberg,	 &	 Kreuzwieser,	 2012;	
Gupta	 &	 Igamberdiev,	 2016;	 Kreuzwieser	 &	 Rennenberg,	 2014;	
Liu,	Cheng,	Xiao,	Guo,	&	Wang,	2014;	Steffens	&	Rasmussen,	2016;	
Voesenek & Bailey‐Serres, 2015). Despite such general damage, 
evidence shows that the main factor related to the death of flooded 
plants involves carbon balance disruption, specifically changes in 
photosynthetic	and	respiratory	processes	(Li	et	al.,	2015)	(Figure	1b).

Reductions in A rates of flooded plants have been widely docu‐
mented	(Kreuzwieser	&	Rennenberg,	2014;	Li	et	al.,	2015;	Liu	et	al.,	
2014;	Martínez‐Alcántara	et	al.,	2012),	especially	for	sensitive	spe‐
cies	 (Argus,	Colmer,	&	Grierson,	2015),	and	appear	to	be	primarily	
related	to	both	stomatal	and	nonstomatal	 limitations	 (Kreuzwieser	
& Rennenberg, 2014). The latter include reduced concentrations 
of	photosynthetic	pigments	 (Ojeda,	Schaffer,	&	Davies,	2004),	de‐
creased	Rubisco	content	and	activity	(Herrera,	2013),	and	accumula‐
tion of soluble sugar in leaves, which may induce negative feedback 
on	photosynthesis	(Ferner	et	al.,	2012;	Kreuzwieser	&	Rennenberg,	
2014). In contrast, stomatal limitations are largely associated with 
reductions in root hydraulic conductivity (Else, Coupland, Dutton, 
& Jackson, 2001; Else, Davies, Malone, & Jackson, 1995; Islam & 
Macdonald,	2004;	Li	et	al.,	2015;	Zhang	&	Davies,	1986)	(Figure	1b).	
The occurrence and extent of these hydraulic limitations appear to 
depend on the combination of damage, lower growth rates, and sub‐
erization of the root system, in association with lower expression and 
abundance	of	aquaporins	(Islam	&	Macdonald,	2004;	Kreuzwieser	&	
Rennenberg,	2014;	Li	et	al.,	2015).	As	a	 result,	decreased	root	hy‐
draulic conductivity can limit water and nutrient absorption and, 
paradoxically, induce shoot desiccation, which reduces leaf water 
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potential	and,	consequently,	gs	 (Kreuzwieser	&	Rennenberg,	2014;	
Li	et	al.,	2015).	 In	addition	to	hydraulic	components,	 the	transport	
of	signaling	molecules	from	roots	to	leaves	[e.g.,	abscisic	acid	(ABA)]	
and	changes	 in	the	pH	of	phloem	sap	also	appear	to	be	related	to	
reductions in gs	 in	 flooded	 plants	 (Herrera,	 2013;	 Kreuzwieser	 &	
Rennenberg,	2014;	Li	et	al.,	2015).

Alterations	 in	 respiratory	 metabolism	 are	 equally	 important	
in species death under flooding conditions (Ferner et al., 2012; 
Kreuzwieser	&	Rennenberg,	2014;	Martínez‐Alcántara	et	al.,	2012).	
These changes are largely due to the switch from aerobic to fermen‐
tative metabolism induced by the low concentration of oxygen in 
flooded	 soils	 (Bailey‐Serres,	 Lee,	&	Brinton,	 2012;	Kreuzwieser	 et	
al.,	2009;	Kreuzwieser	&	Rennenberg,	2014;	Loreti,	Veen,	&	Perata,	
2016).	As	fermentation	generates	approximately	16	times	less	energy	
than oxidative phosphorylation, an energy deficit is expected under 
flooding conditions, particularly if photosynthesis is also reduced. 
This energy imbalance can be partially overcome through consump‐
tion of reserve materials (e.g., nonstructural carbohydrates and lip‐
ids) and/or decreases in the activity of energy‐intensive processes 
(e.g., nitrogen (N) assimilation and cell wall formation; Christianson, 
Llewellyn,	Dennis,	&	Wilson,	2010;	Kolb,	Rawyler,	&	Braendle,	2002;	
Kreuzwieser	et	al.,	2009;	Le	Provost	et	al.,	2012;	Loreti,	Valeri,	Novi,	
&	 Perata2018).	However,	 depending	 on	 the	 flooding	 duration,	 re‐
serve consumption can lead to carbon deprivation, making the plant 
even more vulnerable to this and other stresses (e.g., high tempera‐
tures and pathogen attack). Moreover, decreased reserve levels may 
also	 limit	and/or	 increase	 the	 time	required	 for	a	plant	 to	 fully	 re‐
cover	its	physiological	activities	(Li	et	al.,	2015;	Loreti	et	al.,	2016),	
placing species inhabiting regions that undergo recurrent flooding 
events	at	even	greater	 risk	 (Angelov	et	al.,	1996).	Thus,	 the	ability	
to maintain a positive carbon balance appears to be one of the main 
determinants	of	the	survival	of	species	in	flooding	situations	(Li	et	al.,	
2015;	Loreti	et	al.,	2018),	even	more	so	in	a	scenario	that	forecasts	
more	 frequent	 and	 intense	 flooding	events	 (Lehmann,	Coumou,	&	
Frieler, 2015).

2.3 | Global warming and heat stress

Plant responses to high temperature, in addition to the damage 
triggered by this stress, vary widely among species and functional 
groups	 (Klockmann,	 Günter,	 &	 Fischer,	 2017;	 Marias,	 Meinzer,	 &	
Still, 2017; O'Sullivan et al., 2013; Slot & Winter, 2017; Teskey et 
al.,	 2015;	Wujeska‐Klause,	Bossinger,	&	Tausz,	2015).	Accordingly,	
the susceptibility of a plant to extremely high temperatures, a situ‐
ation commonly observed during heat waves, appears to depend on 
a	 series	 of	 characteristics	 and	 adjustments	 at	 morpho‐anatomical	
(crown architecture, leaf size, and shape), physiological (transpiration 
rate and maximum stomatal conductance), and molecular (produc‐
tion of heat shock proteins, low‐weight compounds, and activation 
of the antioxidative defense system) levels (Bita & Gerats, 2013; 
Galmés,	Kapralov,	Copolovici,	Hermida‐Carrera,	&	Niinemets,	2015;	
Griffin & Prager, 2017; Obata et al., 2015; Scafaro et al., 2016; Slot 
&	Winter,	 2017;	 Teskey	 et	 al.,	 2015;	Wujeska‐Klause	 et	 al.,	 2015;	

Zhang et al., 2005). Moreover, the vulnerability of a species to high 
temperatures also depends on its growth strategy. For example, in 
tropical forests, fast‐growing plants in high‐light environments tend 
to be more tolerant to high temperatures than slow‐growing spe‐
cies typical of shadier locations (Slot, Garcia, & Winter, 2016; Slot 
&	Winter,	2017;	Wright	et	al.,	2004).	Although	there	are	many	fac‐
tors that may influence species susceptibility to high temperature, 
it is important to note that most of the forest dieback events across 
several biomes appear to involve the association of this stress with 
drought	(Adams	et	al.,	2009;	Allen	et	al.,	2015,	2010;	Park	Williams	
et al., 2012; Will et al., 2013) (Figure 2). Similarly, high temperature 
combined with flooding can further compromise the performance 
of plant species through additional damages to the photosynthetic 
process, changes in root respiration, and also by compromising the 
synthesis	of	structural	components	(e.g.,	cell	wall).	However,	it	is	im‐
portant to note that only a few studies have addressed the links be‐
tween these two stresses in great detail (Chen et al., 2017a, 2017b; 
Donovan,	Stumpff,	&	McLeod,	1989;	Lin,	Lin,	Syu,	Tang,	&	Lo,	2016),	
and thus, our knowledge about this topic, especially on wood spe‐
cies, is rather fragmented.

Among	the	physiological	processes	that	are	affected	by	high	tem‐
peratures, photosynthesis has received the most attention (Drake et 
al.,	2016;	Hüve,	Bichele,	Rasulov,	&	Niinemets,	2011;	Slot	&	Winter,	
2017; Teskey et al., 2015; Urban et al., 2017). In general, an increase 
in temperature increases A rates up to an optimal point, above which 
the process begins to be inhibited and may even reach zero (Slot 
& Winter, 2017). This reduction in the photosynthetic process has 
commonly been attributed to disruption of the photosynthetic elec‐
tron transport chain in association with increased fluidity of thyla‐
koid membranes and/or damage to photosystem II (Griffin & Prager, 
2017;	Hüve	et	al.,	2011;	Sharkey,	2005;	Slot	&	Winter,	2017;	Yamori,	
Hikosaka,	&	Way,	2014)	(Figure	1c).	In	addition	to	structural	damage,	
exposure to high temperatures may also result in inactivation of the 
enzyme Rubisco activase, which may lead to reduced availability of 
active Rubisco and thereby in a reduction in CO2‐fixation capacity 
(Sage,	Way,	&	Kubien,	2008;	Salvucci,	2004;	Scafaro	et	al.,	2016).

Similar to the responses observed for photosynthesis, an in‐
crease in temperature also enhances R rates to an optimal point, 
above which cell damage hinders respiration (Griffin & Prager, 2017; 
O'Sullivan et al., 2013). The optimal temperature and thermal limit 
of respiration are significantly higher than those of photosynthe‐
sis (O'Sullivan et al., 2013; Teskey et al., 2015). Due to the differ‐
ent thermal sensitivities of these two metabolic processes, higher 
temperatures tend to increase the R/A ratio, resulting in a signifi‐
cant	reduction	in	daily	carbon	fixation	(Stangler,	Hamann,	Kahle,	&	
Spiecker,	2017;	Zhao,	Hartmann,	Trumbore,	Ziegler,	&	Zhang,	2013).	
In addition to reducing the amount of CO2 fixed, exposure to high 
temperatures may also lead to a decrease in carbohydrate reserves 
(e.g., starch) in response to enhanced maintenance respiration (as‐
sociated	with	 protein	 turnover	 and	membrane	 repair;	Hüve	 et	 al.,	
2011) (Figure 1c). Carbon balance may also be negatively affected 
by changes in Rubisco specificity and by reductions in CO2 solubil‐
ity relative to O2, a process that may increase PR rates (Carmo‐Silva 
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et al., 2012; Carmo‐Silva, Scales, Madgwick, & Parry, 2015; Galmés 
et al., 2015). Thus, even small increases in temperature can cause 
significant reductions in the net productivity of several plant com‐
munities, making these plants even more vulnerable to the effects of 
the	stress	factors	discussed	above	(Adams	et	al.,	2009;	Liang	et	al.,	
2016;	McDowell	&	Allen,	2015;	Park	Williams	et	al.,	2012).	Overall,	it	
is clear that the increase in global mean temperature, combined with 
other stressors, will have a devastating effect on the productivity 
and composition of various plant communities and, as a result, may 
lead to profound changes in the global carbon cycle.

An	 indirect	 effect	of	 global	warming	 that	may	 also	 impact	 the	
performance and survival of tree species, especially under drought 
conditions, is the increase in the vapor pressure deficit (VPD) be‐
tween leaf and atmosphere (Slot & Winter, 2017; Will et al., 2013). In 
fact, the increased evapotranspiration demand induced by high VPD 
can impact plant physiological processes in different ways (Figure 2). 
For some species, high VPD may enhance water loss and increase 
the	vulnerability	to	cavitation	(Adams	et	al.,	2009;	Park	Williams	et	
al., 2012), while for others, this factor can trigger reductions in gs, 
limiting CO2 diffusion for photosynthesis and leaf cooling through 
transpiration, which may impact carbon balance (due to cell damages 
and increased R and PR rates; Bauweraerts et al., 2013; Duursma 
et al., 2014; Flexas et al., 2006; McDowell et al., 2008; Teskey et 
al., 2015) (Figure 2). These contrasting responses also show that the 
dynamics of stomatal movements can be extremely variable under 
high temperature, with some studies reporting increases (Freeden 
&	Sage,	1999;	Mott	&	Peak,	2010;	Schulze,	Lange,	Evenari,	Kappen,	
& Buschbom, 1974; Urban et al., 2017), decreases (Slot & Winter, 
2017), or no changes (Cerasoli et al., 2014; Sage & Sharkey, 1987; 
Teskey,	Bongarten,	Cregg,	Dougherty,	&	Hennessey,	1987;	Vargas	
& Cordero, 2013;) in gs under those conditions. This wide range of 
responses is attributed not only to the different sensitivities of spe‐
cies to VPD, but also to water potential, and internal CO2 concentra‐
tion, combined with other factors (e.g., wind and water availability; 
Addington,	Mitchell,	Oren,	&	Donovan,	2004;	Ocheltree,	Nippert,	
& Prasad, 2014; Schymanski, Or, & Zwieniecki, 2013; Teskey et al., 
2015;	Yan	et	al.,	2017).	However,	despite	this	great	variability	of	re‐
sponses, it should be noted that high VPD, as a result of increased 
temperature, has been suggested as a primary driver of tree mor‐
tality	 in	 different	 regions	worldwide	 (Anderegg	 et	 al.,	 2012;	 Park	
Williams et al., 2012; Will et al., 2013) (Figure 2).

The uncertainties regarding the alterations of the water‐saving 
strategies of plants exposed to high temperature go beyond the sto‐
matal movements. In fact, the dynamic of gmin rates in a scenario 
of increased temperature also represents an important gap in our 
knowledge. For most species, especially the nondesert ones, gmin 
rates tend to show small variations at temperatures from 15 to 35°C, 
while temperatures above 35° induce a drastic increase in cuticle per‐
meability	and,	consequently,	in	water	loss	(Schreiber,	2001;	Schuster	
et al., 2017). This abrupt increase in gmin rates under a certain tem‐
perature threshold, also known as transition temperature (Schuster 
et al., 2016), can have a catastrophic effect on plants exposed to 
heat waves, especially under drought conditions, since the increase 

in water loss can significantly increase the tension in xylem vessels, 
which	can	result	 in	a	reduction	 in	the	time	to	HF	 (Cochard,	2019).	
However,	despite	the	great	impact	that	the	increase	in	atmospheric	
temperature can have on gmin rates (Bueno et al., 2019; Schuster et 
al.,	2016)	and,	thus,	on	plant	survival	(Cochard,	2019),	key	questions	
regarding this topic remain. For example, we currently do not have 
enough information to answer to which extent plants acclimated to 
high temperatures can alter the physicochemical properties of their 
cuticle in order to increase the transition temperature. This kind of 
information is essential to improve the prediction about the impact 
that the increase in atmospheric temperature, especially in associa‐
tion with drought, will have on the composition of forest ecosystems 
worldwide (Cochard, 2019).

The effects of global warming are expressed not only through 
the increase in the occurrence of extremely high temperatures (e.g., 
heat waves), but also with more subtle changes, as the increase in 
winter temperatures. In fact, in the last century, an expressive in‐
crease in mean winter temperatures was observed in some regions 
(e.g.,	 northern	Europe;	Mikkonen	et	 al.,	 2015).	However,	 although	
the occurrence of extremely low temperatures is expected to de‐
crease in the decades to come (IPCC, 2014), paradoxically, the global 
warming will probably increase the vulnerability of plant species 
to	 frost‐induced	 injury,	 especially	 those	 from	 temperate	 regions	
(Augspurger,	2013;	Príncipe	et	al.,	2017).	The	process	of	cold	accli‐
mation is triggered by the reduction in temperatures and photope‐
riod	and	involves	a	marvelous	set	of	biochemical	adjustments	(e.g.,	
accumulation of soluble sugars, hydrophilic proteins, antioxidants, 
and chaperones) that confers cryoprotection to the cells (Basler & 
Körner,	 2012).	 In	 early	 spring,	 as	 the	 temperature	 rises,	 the	 resis‐
tance	 to	 frost	 injury	 decreases	 progressively,	 reaching	 a	minimum	
when new leaves emerge, making the plants extremely vulnerable 
to	a	“late‐spring”	frost	event	(Lenz,	Hoch,	Vitasse,	&	Körner,	2013;	
Vitasse,	 Lenz,	 Hoch,	 &	 Körner,	 2014;	 Vitasse,	 Schneider,	 Rixen,	
Christen, & Rebetez, 2018). Some studies already showed that these 
frost damages are related to a previous warm period, which induces 
precocious spring phenology (Vitasse et al., 2018). In this way, the 
phenological changes induced by the combination of warmer springs 
and large temperature fluctuations, predicted for the decades to 
come (IPCC, 2014), may significantly increase the vulnerability to 
frost	 in	 several	 tree	 species	 (Augspurger,	 2013;	 Julio	 Camarero,	
Gazol, Sancho‐Benages, & Sangüesa‐Barreda, 2015). The occur‐
rence of frost‐induced mortality events, especially those related to 
late‐spring frost, is considerably growing in some regions and is ex‐
pected	to	be	more	frequent	as	the	atmospheric	temperature	keeps	
changing	(Augspurger,	2013).	Moreover,	it	is	important	to	note	that	
these events of frost mortality are observed not only in temperate 
regions, but also in tropical forests. In a recent study, it was shown 
that a widespread mortality event in a tropical dry forest from 
Mexico was related to an unusual combination of duration, inten‐
sity,	and	timing	of	a	frost	event	(Bojórquez,	Álvarez‐Yépiz,	Búrquez,	
& Martínez‐Yrízar, 2019). Similarly, dieback events related to frost 
injury	were	 also	 reported	 for	 species	 from	 the	Mediterranean	 re‐
gion	(Jalili	et	al.,	2010;	Matusick,	Ruthrof,	Brouwers,	&	Hardy,	2014).	
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These examples illustrate well the impact of global warming on the 
vegetation, since its effects, especially the large temperature fluctu‐
ations, can significantly increase the vulnerability of forest species 
in virtually all biomes.

3  | THE CONTROVERSIAL ROLE OF 
C ARBON DIOXIDE: A POTENTIAL FRIEND 
OR A CERTAIN ENEMY?

The growing increase in the atmospheric [CO2] is one of the main 
effects of anthropic activities. In fact, from the industrial revolu‐
tion to the present, [CO2] has increased from approximately 280 to 

400 ppm. If the current greenhouse gas emission pattern is main‐
tained, [CO2] is expected to reach levels of 750–1,300 ppm by the 
end of this century (IPCC, 2014). This significant rise in [CO2] may 
place a large number of species at risk because the weather ex‐
tremes previously discussed are directly related to the increase in 
the concentration of this gaseous molecule (Becklin, Walker, Way, 
& Ward, 2017; Warren, Jensen, Medlyn, Norby, & Tissue, 2015). 
However,	although	CO2 is considered one of the main villains of 
climate change, its real effect on the performance and survival 
of forest species remains extremely controversial (Ellsworth et 
al., 2017; Friedlingstein et al., 2014; Schimel, Stephens, & Fisher, 
2015; Sitch et al., 2015). For example, in addition to the central 
role of CO2 in driving climate change, several studies have shown 

F I G U R E  3   The controversial role of CO2.	High	[CO2] can stimulate plant growth through the increase in CO2/O2 ratio inside the 
chloroplasts, which enhance photosynthesis (A) and reduce photorespiration (PR), besides contributing to the increase in water use efficiency 
(WUE), as a result of reduced stomatal conductance (gs), thus minimizing the deleterious effect of some abiotic stresses. On the other 
hand, the fertilizer effect of high [CO2] is not always observed or only transitory, as a result of the downregulation of A, which is related 
to carbohydrate accumulation, repression of photosynthetic genes, and lower availability of nitrogen (N) and phosphorus (P). Moreover, 
some morphological and morpho‐anatomical changes induced by high [CO2] may also enhance the vulnerability of tree species to abiotic 
stresses, as a result of increased transpiration, reduced water uptake, increased vulnerability to cavitation, and higher respiration (R) and 
photorespiration (PR)	rates.	High	[CO2] can also compromise the interactions between plants and their pollinators, through phenology 
changes
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that higher [CO2] can enhance the performance and productivity 
of	forest	species	(Drake	et	al.,	2011;	Lewis,	Lloyd,	Sitch,	Mitchard,	
&	 Laurance,	 2009;	 Norby	 et	 al.,	 2005;	 Norby,	 Wullschleger,	
Gunderson, Johnson, & Ceulemans, 1999; Yang, Donohue, 
Mcvicar, Roderick, & Beck, 2016), as well as mitigate the deleteri‐
ous effects of some abiotic stresses (Oliveira, Silva, & Carvalho, 
2016;	Rodrigues	et	 al.,	 2016;	Roy	et	 al.,	 2016;	 Swann,	Hoffman,	
Koven,	&	Randerson,	2016).

One of the most significant effects of the increase in [CO2] is the 
enhancement of the photosynthetic process, especially in C3 plants 
(Ainsworth	&	Long,	2005;	Bader,	Siegwolf,	&	Körner,	2010;	Drake	
&	 Leadley,	 1991;	 Faralli,	 Grove,	Hare,	 Kettlewell,	 &	 Fiorani,	 2017;	
Idso	&	Kimbal,	1997;	Rey	&	Jarvis,	1998;	Streit,	Siegwolf,	Hagedorn,	
Schaub, & Buchmann, 2014; Tissue, Thomas, & Strain, 1997; Yang 
et al., 2016). This fertilizer effect of CO2 has been attributed to an 
increase in the carboxylase activity and a reduction in the oxygen‐
ase activity of Rubisco due to the greater relative proportion of CO2 
to O2	 within	 chloroplasts	 (Ainsworth	 &	 Rogers,	 2007;	 Rodrigues	
et	al.,	2016).	As	a	 result,	 increased	 [CO2] tends to significantly re‐
duce	photorespiratory	metabolism	(Drake,	Gonzàlez‐Meler,	&	Long,	
1997), which helps to explain the increase in growth rates observed 
in certain species. This increased [CO2] at Rubisco carboxylation 
sites also allows higher rates of A to be achieved at lower gs, result‐
ing in reduced consumption of water per molecule of carbon fixed 
and therefore higher water use efficiency (WUE; Faralli et al., 2017; 
Franks, 2013; van der Sleen et al., 2014; Streit et al., 2014) (Figure 3). 
Together, the reduction in photorespiratory activity and the increase 
in WUE, induced by higher [CO2], have the potential to minimize the 
deleterious effects of certain abiotic stresses. In fact, some studies 
have demonstrated the mitigating effect of high [CO2] on plants ex‐
posed to drought and high temperatures (Drake et al., 2011; Oliveira 
et al., 2016; Rodrigues et al., 2016; Roy et al., 2016; Swann et al., 
2016;	Yang	et	al.,	2016;	Yu,	Yang,	Jespersen,	&	Huang,	2014).	In	view	
of this increase in performance and productivity promoted by high 
[CO2], even in the presence of abiotic stresses, should we really be 
concerned about the dynamics of the distribution and survival of 
forest species under a climate change scenario? The answer to this 
question	 is	 extremely	 complex	 because	 the	 beneficial	 effects	 of	
high [CO2]	found	in	some	studies	(Drake	et	al.,	2011;	Idso	&	Kimbal,	
1997;	 Oliveira	 et	 al.,	 2016;	 Pérez‐Jiménez,	 Hernández‐Munuera,	
Piñero,	López‐Ortega,	&	del	Amor,	2018;	Radoglou	&	Jarvis,	1990;	
Rodrigues et al., 2016; Roy et al., 2016; Swann et al., 2016; Yu et al., 
2014) are in direct contrast to the results of several other reports 
(Calvo et al., 2017; Clark, Clark, & Oberbauer, 2010; Faralli et al., 
2017;	Feeley,	Joseph	Wright,	Nur	Supardi,	Kassim,	&	Davies,	2007;	
Voelker et al., 2017).

Although	high	[CO2] has the potential to increase growth rates, 
this effect is not always observed (Duursma et al., 2016; Feeley et al., 
2007;	Klein	et	al.,	2016;	van	der	Sleen	et	al.,	2014)	or,	in	many	cases,	
is	only	 transient	 (Grulke,	Riechers,	Oechel,	Hjelm,	&	Jaeger,	1990;	
Warren et al., 2015) (Figure 3). Indeed, downregulation of photosyn‐
thesis is a common response of C3 plants exposed to high [CO2] lev‐
els, and it has been attributed to the inability of sink organs to utilize 

the excess photoassimilate produced (Drake et al., 1997; Makino & 
Mae, 1999; Rey & Jarvis, 1998). In turn, higher carbohydrate content 
in source organs may induce repression of several photosynthesis‐
related genes, canceling the fertilizer effect of high [CO2] (Cheng, 
Moore,	&	Seemann,	1998;	Nie,	Hendrix,	Webber,	Kimball,	&	Long,	
1995).	 Another	 factor	 commonly	 associated	 with	 the	 downregu‐
lation of photosynthesis is N availability, as N deficiency may limit 
the translocation capacity of source organs, as well as the growth 
and	 activity	 of	 sink	 organs	 (Ruiz‐Vera,	 Souza,	 Long,	 &	 Ort,	 2017;	
Sharwood, Crous, Whitney, Ellsworth, & Ghannoum, 2017). In ad‐
dition to N, some studies have demonstrated that P availability is 
another determining factor for the mitigating effect of high [CO2] 
under	abiotic	stress	conditions,	particularly	drought	(Jin,	Lauricella,	
Armstrong,	Sale,	&	Tang,	2015)	(Figure	3).	Nonetheless,	P	deficiency	
may offset the beneficial effects of exposure to high [CO2] and limit 
the productivity of forest species, even under conditions where in‐
creases in A are observed (Ellsworth et al., 2017).

Another	 point	 that	 is	 frequently	 debated	 is	 the	 potential	 of	
high [CO2] to mitigate the deleterious effects of certain abiotic 
stresses. Some studies have shown that the beneficial effects of 
high [CO2] can be offset by an increase in canopy leaf area (Becklin 
et al., 2017; McCarthy, Oren, Finzi, & Johnsen, 2006; Warren, 
Norby, Wullschleger, & Oren, 2011), reductions in root depth 
(Duursma et al., 2011), and alterations in xylem anatomical proper‐
ties	(e.g.,	increase	in	vessel	diameter;	Ceulemans,	Jach,	Velde,	Lin,	
& Stevens, 2002). Such morpho‐anatomical changes induced by 
high [CO2] may result in increased transpiration demand and lower 
capacity to absorb and transport water due to reduced hydraulic 
conductivity of roots (Warren et al., 2011) and leaves (Domec et 
al., 2009) and higher vulnerability to cavitation in different organs 
(Domec,	Schäfer,	Oren,	Kim,	&	McCarthy,	2010),	exacerbating	the	
susceptibility of plants to drought events. The same scenario of 
uncertainties about the mitigating effect of high [CO2] is also ob‐
served for plants exposed to high temperatures, particularly when 
this stress is associated with drought (Becklin et al., 2017; Duan 
et al., 2014). Under these conditions, increased leaf area and re‐
ductions in transpiration rates can significantly reduce latent heat 
loss,	which	may	increase	leaf	temperature	and	subsequently	gen‐
erate a series of disturbances that may enhance vulnerability to 
heat stress (e.g., increase in R and PR rates; Voelker et al., 2017) 
(Figure 3).

Finally, another matter of concern regarding plant behavior 
under a scenario of increased [CO2] is altered regulation of specific 
processes related to development, particularly phenology (Becklin 
et al., 2017). Several studies have shown that changes in flow‐
ering time appear to be a common response of plants exposed to 
high [CO2]	 (Jagadish	et	 al.,	 2016;	 Springer,	Orozco,	Kelly,	&	Ward,	
2008; Springer & Ward, 2007) (Figure 3). Such changes can have 
a devastating impact on the composition of several plant commu‐
nities because changes in flowering time may, for instance, induce 
mismatches between plants and their respective pollinators and 
thereby compromise the reproduction and distribution of several 
species (Becklin et al., 2016; Polce et al., 2014; Springer & Ward, 
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2007). These results are even more worrying when we also consider 
the increase in global average temperature, another factor that has 
been directly associated with phenological changes in many species 
(Bock	et	al.,	2014;	Legave,	Guédon,	Malagi,	Yaacoubi,	&	Bonhomme,	
2015; Mulder, Iles, & Rockwell, 2017). Thus, it is clear that the effect 
of high [CO2] on the performance, survival, and distribution of spe‐
cies worldwide represents one of the greatest uncertainties related 
to climate change because its effects are extremely variable and also 
depend on a range of other factors.

4  | IMPAC T OF CLIMATE CHANGE ON 
SPECIES DISTRIBUTION AND FOREST 
COMPOSITION

As	discussed	above,	the	 interaction	between	multiple	climatic	fac‐
tors can trigger tree mortality due to the disruption of central physi‐
ological processes. Despite the uncertainties regarding the intensity, 
frequency,	 and	duration	of	 those	 extreme	weather	 events	 for	 the	

decades to come (IPCC, 2014), even in more conservative scenario 
several tree species probably will be exposed to climatic conditions 
that differ significantly from their physiological limits (Becklin et al., 
2016). Moreover, depending on the speed at which these stressors 
reach particular regions, the species inhabiting these regions may 
not have time to adapt to the new climatic conditions. Thus, if cli‐
mate model predictions are confirmed, profound changes in the 
composition of several biomes can be expected (Wiens, 2016; Zhang 
et al., 2017). In fact, some studies on plant dynamics indicate that 
climate changes predicted for the end of this century could result in 
the replacement of current biomes by those that are more adapted 
(Jiang et al., 2013; Park Williams et al., 2012), including the replace‐
ment	of	the	Amazon	forest	by	savannah	vegetation	(Lapola,	2007),	
leading to huge losses of biodiversity (Figure 4).

In addition to the prediction from climatic models, changes in 
forest composition can be already seen in several regions around 
the globe. For example, a recent study had shown that the increase 
in drought intensity had led to a shift in species composition in 
forests of the eastern United States toward species that are more 

F I G U R E  4  Climate	change	can	induce	profound	transformations	in	forest	ecosystems	worldwide	(a).	The	increase	in	frequency,	intensity,	
and duration of extreme weather events can trigger massive tree mortality, affect species recruitment (due to alterations in germination, 
establishment, and early seedling survival), and reduce fertility and/or change the phenology of several species (b), resulting in deep changes 
in species distribution and forest composition (c). This massive loss of biodiversity can reduce the resilience of several forest ecosystems, 
making them even more sensitive to the effects of climate change (d). Even when the extreme weather does not induce tree mortality, 
the reduction in carbon assimilation and the increase in carbon release, due to reduced performance, can transform the forest ecosystem 
from carbon sinks to carbon sources, further increasing the atmospheric [CO2] (e), and thus the rate of climate change itself (e). This further 
increase in [CO2] can have contrasting effects, depending on the environmental context in which tree species are inserted. For several 
regions, the increase in [CO2] can enhance the deleterious effect of drought and high temperature (see also Figure 3), which may place 
species in a condition that exceeds their physiological limits, resulting in even more mortality events (d). Contradictorily, for other regions, 
the changes in temperature and precipitation patterns can lead to more favorable conditions to some species, which may result in an 
increase in performance and biodiversity on those regions (f)
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drought‐tolerant, but with lower growth rates (Zhang et al., 2018). 
Besides the losses in biodiversity, the resulting increase in mor‐
tality rates and reduction in forest biomass accumulation might 
also transform the global forest ecosystems from carbon sinks to 
carbon	sources	(Brienen	et	al.,	2015;	Cavaleri	et	al.,	2017;	Hisano,	
Searle, & Chen, 2018) (Figure 4c). This situation was already ob‐
served in forest ecosystems which are crucial to the regulation of 
carbon	dynamics	worldwide,	like	the	Amazon	forest	(Brienen	et	al.,	
2015). Thus, it is clear that even small changes in forest composi‐
tion can have a feedback effect which might increase the concen‐
tration of atmospheric CO2, and thus the rate of climate change 
itself (Phillips et al., 2009).

Alterations	 in	 forest	 composition	can	also	 result	 from	shifts	 in	
the	 geographic	 distribution	 along	 climatic	 gradients	 (Hisano	et	 al.,	
2018). In fact, several pieces of evidence support the latitudinal and 
altitudinal shifts induced by alteration in climatic conditions (Bellard, 
Bertelsmeier,	Leadley,	Thuiller,	&	Courchamp,	2012;	Colwell	et	al.,	
2008;	Hisano	et	al.,	2018).	As	an	example,	expressive	increments	in	
atmospheric temperature, along with reductions in water availability, 
are attributed to the upward movement of trees from the lower el‐
evation range boundaries and also to elevational range contractions 
in	a	forest	from	southeastern	Arizona	(Brusca	et	al.,	2013).	Similarly,	
an extreme drought event in the early 2000s leads to rapid vege‐
tation redistribution in the southern California mountains (Fellows 
& Goulden, 2000). It is important to note that those shifts in plant 
distribution are highly species‐dependent since their environmen‐
tal	 requirements	 and	 capacity	 to	 adapt	 are	 highly	 variable	 (Butler	
et al., 2017). Thus, in a given forest community, species that display 
a set of morpho‐physiological traits that confer higher tolerance to 
a given environmental will tend to increase their dominance, while 
more	 sensitive	 species	 tend	 to	decay	 (Hisano	et	 al.,	 2018;	Moradi	
et al., 2012). This observation highlights the central role of biodi‐
versity in minimizing the deleterious effects of climate change on 
forest	 communities	 (Hisano	 et	 al.,	 2018),	 since	 a	more	 biodiverse	
system tends to be more resilient (Chapin et al., 2000; Grossiord, 
2019; Sakschewski et al., 2016). This link between biodiversity and 
forest safety can be clearly observed in a recent study in which the 
diversity in hydraulic traits of trees was a central factor in mediating 
ecosystem	resilience	to	drought	(Anderegg	et	al.,	2018).

Another	 concern	 regarding	 the	 changes	 in	 forest	 composition	
is related to tree recruitment since drastic changes in weather con‐
ditions can directly affect germination, establishment, and early 
seedling survival (Clark et al., 2016). In fact, some studies already 
showed a reduction in species richness due to reductions in seed‐
ling emergence and increased mortality following events of drought 
(Lucas‐Borja,	2016),	 especially	when	 in	 association	with	high	 tem‐
peratures	 (Lloret	&	Pen,	2004;	Lloret,	Peñuelas,	Prieto,	 Llorens,	&	
Estiarte, 2009). This disruption in seedling recruitment might be fur‐
ther intensified by the direct effect of environmental variations on 
plant reproduction, both due to reductions in fecundity (Saavedra, 
Inouye,	Price,	&	Harte,	2003;	Su	et	al.,	2013)	and/or	for	mismatches	
between plants and their pollinators (as discussed above for high 
[CO2]) (Figure 4d,e).

Finally, it is important to highlight that, for some forest com‐
munities, the changes in climatic conditions can have a positive ef‐
fect	on	plant	biodiversity	 (Bellard	et	al.,	2012;	Hisano	et	al.,	2018)	
(Figure 4f). For example, the increase in atmospheric temperature, 
in association with higher [CO2], can have a positive effect for many 
species (Rodrigues et al., 2016; Roy et al., 2016). Similarly, the in‐
crease in precipitation, predicted for some regions (IPCC, 2014), can 
also have a positive effect on threatened species, resulting in an in‐
crease in biomass production on those forest communities (Bellard 
et	al.,	2012).	However,	these	results	should	be	analyzed	with	care,	
since this controversial beneficial effect of climate change has been 
observed only on a small fraction of the vast literature that covers 
the impact of extreme weather events on plant function and com‐
position.	All	these	uncertainties	add	new	layers	of	complexity	to	the	
already puzzling task of predicting the impact of climate change on 
the composition of forest communities worldwide.

5  | CONCLUSIONS AND PERSPEC TIVES

As	 discussed	 in	 the	 previous	 sections,	 there	 are	multiple	ways	 by	
which factors associated with climate change can increase the vul‐
nerability of, as well as place at risk of extinction, numerous forest 
species distributed in the most diverse biomes around the world. 
Given this alarming scenario of potential changes in the composition 
of several plant communities, it is essential that more studies seek to 
elucidate the factors associated with climate change that may lead 
to plant mortality. Furthermore, more important than characteriz‐
ing the factors related to plant vulnerability to a particular stress 
is determining how the interaction between multiple stressors can 
influence the survival of such species. In situations of exposure to 
multiple stressors, it is also of paramount importance to better char‐
acterize the real role of CO2, as well as the influence of variation in 
nutrient availability, in the mitigation or intensification of the delete‐
rious effects of other stressors. In this sense, free‐air CO2 enrich‐
ment	(FACE)	and	open‐top	chamber	(OTC)	studies	that	simulate	the	
concomitant occurrence of other stresses, such as drought and high 
temperature, are key to better characterizing the impact of climate 
change on plant behavior (Becklin et al., 2017). In addition, the use 
of integrative approaches from genomics, metabolomics, and pro‐
teomics,	as	well	as	those	techniques	used	to	monitor	physiological	
changes in different organs (e.g., OV and micro‐CT methods), is of 
pivotal importance to trace a broader picture of the main limitations 
to plant performance under extreme weather events. The results 
obtained from such studies may provide valuable information for the 
optimization of models to monitor and predict the impact of climate 
change on the survival and distribution of plant species and public 
policies on forest management and reforestation.
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