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Objectives: To develop and validate a nomogram model based on radiomics features for
preoperative prediction of visceral pleural invasion (VPI) in patients with lung adenocarcinoma.

Methods: A total of 659 patients with surgically pathologically confirmed lung
adenocarcinoma underwent CT examination. All cases were divided into a training
cohort (n = 466) and a validation cohort (n = 193). CT features were analyzed by two
chest radiologists. CT radiomics features were extracted from CT images. LASSO
regression analysis was applied to determine the most useful radiomics features and
construct radiomics score (radscore). A nomogram model was developed by combining
the optimal clinical and CT features and the radscore. The model performance was
evaluated using ROC analysis, calibration curve and decision curve analysis (DCA).

Results: A total of 1316 radiomics features were extracted. A radiomics signature model
with a selection of the six optimal features was developed to identify patients with or
without VPI. There was a significant difference in the radscore between the two groups of
patients. Five clinical features were retained and contributed as clinical feature models.
The nomogram combining clinical features and radiomics features showed improved
accuracy, specificity, positive predictive value, and AUC for predicting VPI, compared to
the radiomics model alone (specificity: training cohort: 0.89, validation cohort: 0.88,
accuracy: training cohort: 0.84, validation cohort: 0.83, AUC: training cohort: 0.89,
validation cohort: 0.89). The calibration curve and decision curve analyses suggested
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that the nomogram with clinical features is beyond the traditional clinical and radiomics
features.

Conclusion: A nomogram model combining radiomics and clinical features is effective in
non-invasively prediction of VPI in patients with lung adenocarcinoma.
Keywords: CT, lung adenocarcinomas, radiomics, Nomogram, prediction, visceral pleural invasion
INTRODUCTION

Lung cancer is currently the second most common cancer in the
world and remains the leading cause of death among malignant
tumors (1). Over 83% of lung cancers are non-small cell lung
cancer (NSCLC) (2). Visceral pleural invasion (VPI), defined as
tumor extension beyond the elastic layer of viscera pleura, is one
of the most important adverse prognostic factors in non-small
cell lung cancers with tumor sizes ≤ 3 cm (3, 4). In the eighth
edition of TNM classification for NSCLC, VPI increases the T
staging of lung cancer with diameters ≤ 3 cm: the presence of VPI
leads to upstaging T1 tumor to T2 and stage IA tumor to IB
(5, 6).

Several studies have evaluated the morphological
characteristics of VPI in NSCLC based on CT images (7–9).
However, there is no definite morphological feature that can
reliably predict VPI, especially when the tumor is far from the
pleura without pleura indentation or pleural attachment (7–9).
Radiomics extracts a large amount of quantitative information
from medical images (10, 11). Radiomics have been utilized for
clinical-decision support systems in lung cancer, including
diagnose and prognostic prediction (12–14). However, few
studies have been reported to assess for the presence of VPI in
patients with NSCLC using radiomics methods (15).

Therefore, the purpose of this study was to construct a
nomogram model based on radiomics features, and determine
whether VPI of lung adenocarcinoma can be predicted using
the model.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the institutional
review board of the First Affiliated Hospital of Soochow
University (Suzhou, China), and the requirement for patient
informed consent was waived. Patients with peripheral lung
adenocarcinoma who underwent chest CT scans with thin-
section (1–1.25 mm) images from January 2016 to December
2020 were reviewed. Inclusion criteria were as follows: (a) all the
patients were confirmed as lung adenocarcinoma by pathological
examination, and whether pleural invasion or not was evaluated
pathologically; (b) the peripheral lesion was determined as
N0M0 stage with the largest diameter smaller than 3.0 cm; (c)
thin-section CT scan was performed within 30 days before
surgery; (d) available results for clinical data, including age,
sex, smoking history; (e) at least one of the following features
2

were presented on CT images: pleural depression, pleural
attachment or pleural closeness. 750 patients were excluded
because of the following reasons: (a) histological diagnosis of
SCLC (n=89); (b) tumor size > 3 cm (n=185); (c) whether pleural
invasion or not cannot be assessed pathologically (n=136); (d)
the lesion is far from the pleura without any of the above three
features (n =301). (e) poor imaging quality due to respiratory
artifact during examination (n=39). Finally, A total of 659
patients met all the inclusion criteria and included in this study.

CT Scans
Patients underwent preoperative unenhanced CT scanning using
various multidetector row scanners: Brilliance 16 or Brilliance
iCT (Philips Healthcare, Best, the Netherlands), Somatom
Sensation 64 or Somatom Definition (Siemens Healthineers,
Erlangen, Germany), GE revolution or Discovery CT 750 HD
(GE Healthcare, Chicago, USA), Aquilion One (Toshiba Medical
Systems, Tokyo, Japan). The imaging parameters for thin-section
CT were as follows: tube voltage 100-120 kV, automatic tube
current modulation, matrix 512 × 512, field of view (FOV) of
400 mm (Brilliance 16 scanner) and 500 mm (other machines),
slice thickness of 1-2 mm, the iterative reconstruction algorithm.
All CT images were obtained in the supine position during
inspiratory breath-hold.

Imaging Analysis
Two experienced radiologists analyzed the CT images
independently with a lung window (window width, 1500 HU;
window level, −500 HU) and mediastinum window (window
width, 400 HU; window level, 60 HU). Consensus was reached
by discussion in case of disagreement. Image features included
the following (1): tumor density (solid/part-solid) (2); maximum
diameter (3); margin (lobulated, spiculated) (4); air
bronchogram (5); pleura indentation, pleural attachment, or
pleural closeness (6); distance from the pleura. A part-solid
nodule was defined as a tumor that included both GGO and
solid components (0<CTR<1.0). A pure-solid nodule was
defined as a tumor that included only consolidation without
GGO (CTR=1.0) (16). In the current study, pure GGO was
excluded since VPI was never observed in these lesions due to its
minimally invasive nature and inability to penetrate the thick
elastic layer (17). Pleural indentation was defined as tumor
indentation of the visceral pleura on CT images at the lung
window. Pleural attachment was defined as no visible space
between the nodule and the visceral pleura on CT images at
the lung window or tumor attachment to the interlobar pleura at
the lung window. Pleural closeness was defined as tumor located
within 1.0 cm of the pleura (16).
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Histologic Evaluation
Surgically resected specimens were stained with hematoxylin and
eosin, and examined to determine the presence or absence of
VPI. VPI was defined as invasion beyond the elastic layer of the
visceral pleura according to the 8th edition of the TNM
classification criteria (5). Histologic evaluation was performed
by one experienced pathologist.

Tumor Segmentation and Radiomics
Feature Extraction
CT images of enrolled patients were exported from the picture
archiving and communication system (PACS), and segmented
semi-automatically using ITK-SNAP software (version 3.6.0, www.
itk-snap.org) (18). The workflow of the analysis is summarized in
Figure 1. All imageswere automatically segmented and adjusted by a
radiologist with 8 years of experience. After 4 weeks this radiologist
segmented the images of 30 randomly selected patients for intra-
observer reproducibility. In addition, another radiologist with 20
years of experience segmented 30 randomly selected patient images
for inter-observer reproducibility. The inter- and intra-observer
reproducibility of feature extraction was evaluated by intraclass
correlation coefficients (ICCs). ICCs greater than 0.75 were
considered as good consistency.

All images were performed image normalization before feature
extraction (19). Radiomics features were extracted from the ROI by
the pyradiomic package Python software (version 3.7.12, www.
python.org). A total of 1316 high-dimensional features were
Frontiers in Oncology | www.frontiersin.org 3
extracted from each sample and these were classified into seven
categories: first order statistics (n = 252), shape (n = 14),
neighborhood gray-tone difference matrix (n = 70), grey level
dependence matrix (GLDM) (n = 196), grey level co-occurrence
matrix (GLCM) (n = 336), run-length matrix (RLM) (n = 224), and
grey level zone size matrix (GLZSM) (n = 224).

Radiomics Feature-Based Prediction
Model Construction
Radiomics signature model based on selected features from the
training cohort was constructed. Two feature selection methods
were used to select the features. First, maximum relevance
minimum redundancy (mRMR) was performed to eliminate
redundant and irrelevant features. Then, least absolute shrinkage
and selection operator (LASSO) was used to select the most useful
features. A radiomics score (Radscore) was computed for each
patient through a linear combination of selected features weighted
by their respective coefficients. The final formula for the Radscore
was as follows: “Radscore=0.085*image_wavelet-LLL_glszm_L
argeAreaHighGrayLevelEmphasis+-0.034*image_exponential_first
order_TotalEnergy+-1.071*image_wavelet-LLL_ngtdm_
Coar s ene s s+0 . 21 * image_exponen t i a l _g l s zm_Large
AreaLowGrayLevelEmphasis+0.083*image_square_glszm
_ZoneVariance+-0.771*image_squareroot_firstorder_Skewness + -
1.266”. Furthermore, the Radscore was compared between lung
adenocarcinoma with VPI and those without VPI in both the
training and validation cohorts.
FIGURE 1 | Workflow of the study. Workflow can be divided into four parts: tumor segmentation, feature extraction, feature selection and analysis.
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Logistic regression was performed to select the independent
clinical predictors in the training cohort. Prediction models
combining radiomics features and clinical variables were
established. Finally, a radiomics nomogram based on the
multivariate logistic regression model in the training cohort was
constructed, and receiver operating characteristic (ROC) curveswere
developed to evaluate the discriminatory ability of the nomogram.
The calibration curve andHosmer-Lemeshow test was used to assess
the goodness-of-fit of nomogram (20, 21). Decision curve analysis
was performed to assessed the clinical value of nomogram. The net
benefit is calculated within a threshold probability, defined as the
minimumprobability of adisease requiring further intervention (22).

Statistical Analysis
Statistical analyses were performed using R software (version
4.1.0) for quantitative characterisation. The characteristics of
patients with VPI and without VPI were compared by Student’s
t-test for normally distributed data, otherwise the Mann-
Whitney u-test was used. The intra-observer reproducibility of
tumor segmentation and feature extraction were evaluated by
intraclass correlation coefficients (ICCs). ICCs greater than 0.75
were considered to have good consistency. A multivariate binary
logistic regression was implemented using the “rms” package.
The nomogram was created and the calibration plots were
created using the “rms” package. ROC curves were plotted to
evaluate the diagnostic efficiency of the nomogram model. The
area under the ROC curve (AUC) was calculated. P-values < 0.05
were considered to be significant.
RESULTS

Clinical Characteristics
A total of 659 patients were included in this study, of whom 193
(29.3%) were diagnosed with VPI and 466 (70.7%) were
diagnosed without VPI (Table 1).

There were significantly differences between VPI-presence and
VPI-absence group in gender, pleural indentation, pleural
attachment, air bronchogram, and lobulation (all P < 0.05).
Gender, pleural indentation, pleural attachment, air bronchogram,
and lobulation were independent risk factors for predicting VPI
after logistic regression analysis (Table 2). A clinical model was
developed based on these characteristics.

Reproducibility Analysis
The average ICCs of intra-observer was 0.96, indicating satisfactory
agreement. The number of features with fair consistency (0.75 >
ICC ≥ 0.4) and poor consistency (ICC <0.4) were 4 (0.3%) and 26
(2.0%), respectively. The average ICCs of inter-observer was 0.95,
indicating satisfactory agreement. The number of features with fair
consistency (0.75 > ICC ≥ 0.4) and poor consistency (ICC <0.4)
were 11 (0.8%) and 32 (2.4%), respectively.

Radiomics Feature Selection Signature
Construction, Validation, and Evaluation
30 features were retained after eliminating the redundant and
irrelevant features with mRMR. Then, 6 features were selected as
Frontiers in Oncology | www.frontiersin.org 4
the most predictive subset after LASSO (Figures 2A, B). The
corresponding coefficients were evaluated (Figure 2C) and a
predictive model was constructed. Radscore was calculated by
summing the selected features weighted by their coefficients.
There was a significant difference in radscore between lung
adenocarcinoma with VPI and without VPI in the training and
validation groups (Figure 3).

As shown in Figure 4, the radiomics feature model had an
AUC of 0.83 in the training cohort and 0.81 in the validation
cohort. Then, clinical indicators (Table 1) with p values less than
0.01 in the logistic regression analysis with radscore were used
to constructed a combined model, which showed an AUC of
0.89 (95% CI, 0.86-0.92) in the training cohort (Figure 4A) and
an AUC of 0.88 (95% CI, 0.83-0.94) in the validation cohort
(Figure 4B). The predictive performance of the combined model
was shown in Table 3. In both the training and validation
cohorts, the accuracy, specificity, positive predictive value, and
AUC of the combined model outperformed both the radiomics
feature model and the clinical feature-based model.

Subsequently, a nomogram model was created (Figure 5A).
The calibration curve of the nomogram for predicting VPI
matched well with the estimated and actual observed values of
the radiomics nomogram. The p-value for the predictive power
of the nomogram obtained by the Hosmer-Lemeshow test was
0.94 in the training cohort (Figure 5B) and 0.86 in the validation
cohort (Figure 5C).

The DCA showed that the net benefit of the combined
nomogram outperformed the clinical and radiomics feature
models (Figure 5D). The decision curve showed that the
combined nomogram established in this study has more
benefit for predicting VPI if the threshold probability of a
patient is between 0 to 55%, 60% to 80% and 90% to 100%.
DISCUSSION

This study constructed and validated a nomogram model based
on clinical and radiomics features extracted from CT imaging for
identifying VPI in lung adenocarcinoma less than or equal to
3 cm. The nomogram model was able to classify stage I lung
adenocarcinoma into those with VPI and without VPI, with
AUC values greater than those of the radiomics model and the
clinical model. The results demonstrated that the combined
model can reliability predict VPI.

In this study, we included patients with lung adenocarcinoma
to construct a nomogram to predict with or without VPI.
This is because research showed that no significant difference
in survival rates associated with VPI in NSCLC (23). As for
NSCLC, squamous cell carcinoma and adenocarcinoma
showed significantly different biological behaviors (24). Whereas
the heterogeneity in biological behavior between lung
adenocarcinoma and squamous cell carcinoma can be reflected
by radiomics, radiomics can predict their histological subtypes
(25, 26). In addition, lung adenocarcinoma is the most common
subtype of lung cancer, so in this study we only discussed lung
adenocarcinoma.VPI is a poor prognostic factor for lung
May 2022 | Volume 12 | Article 876264
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adenocarcinoma (27–29), since VPI has been associated with
increased overall mortality and decreased disease-free survival
(30). The visceral pleura is rich in lymphatic vessels and forms
an intercommunicating network on the lung surface. This
network penetrates the lung parenchyma, connects to the
bronchial lymphatics and flows into the hilar lymph nodes (31),
which may progressively develop into metastatic disease
(lymph node metastasis or distant metastasis). According to the
8th edition of the AJCC staging manual, a tumour size of 0-3 cm
with VPI (including PL1 and PL2) is considered IB stage (31).
Some previous studies have shown that patients with stage IB
NSCLC can benefit from adjuvant chemotherapy treatment
(32–34).

The correlation between CT morphological features and VPI
has been reported previously (30, 35, 36). The present study
concluded that lobulation and air bronchogram were not
significant indicators of VPI in lung adenocarcinoma, which
Frontiers in Oncology | www.frontiersin.org 5
was consistent with previous study (30, 35). A lobulated contour
implies uneven growth, which is associated with malignancy.
However, lobulation also occurs in up to 25% of benign nodules
(37). In our study, the lobulation sign was not an independent
risk factor for predicting VPI, which may be due to a selection
bias resulting from the small size of our enrolled tumors and the
fact that the number of patients in this study was not large
enough. The air bronchogram sign is the result of tumor cells
spreading along the wall of fine bronchus and alveolar wall in a
volvulus-like growth pattern without destroying the lung scaffold
structure, and the residual gas in the bronchus and alveoli is
visualized (38). In previous studies, air bronchogram signs were
associated with low invasiveness and helped to distinguish with
or without VPI of lung adenocarcinoma (39). Many studies have
suggested that the node-pleura relationship is an important
predictor of positive VPI. In lung adenocarcinoma, pleural
indentation is generally considered to be a positive predictor of
VPI (39). Indentation increases the risk of tumor invasion of the
visceral pleura (40). Pleural attachment is another known factor
for local recurrence and poor survival of lung adenocarcinoma
after radiotherapy for non-small cell lung cancer (41, 42).
Although most studies have evaluated the morphologic
features of VPI on CT images, the accuracy of studies based on
morphologic features of CT images remained low, and the
morphological features identified are dependent on the
experience of the radiologists (7–10).

Currently, radiomics allows for the non-invasive evaluation
of internal tumor heterogeneity by extracting and analyzing a
TABLE 1 | Characteristics of 659 lung adenocarcinoma patients, according to the presence of the visceral pleural invasion.

Characteristics Total (n=659) Univariate logistic regression Multivariate logistic regression

VPI (−) (n=466) VPI (+) (n=193) P value P value

Gender <0.001 0.01
Male 244 150 94
Famale 415 316 99
Age(years) 61 (53-67) 60 (52-66) 63 (57-69) <0.001 NA
Smoking status <0.001 NA
Active 553 413 140
Inactive 106 53 53
lobulation <0.001 0.04
Present 481 315 166
Absent 178 151 27
spiculation 0.528
Present 479 342 137
Absent 180 124 56
air bronchogram <0.001 <0.001
Present 352 298 54
Absent 307 168 139
Radiological tumor type <0.001 NA
Pure-solid 381 217 164
Part-solid 278 249 29
Pleura indentation <0.001 <0.001
Present 422 266 156
Absent 237 200 37
Pleural attachment <0.001 <0.001
Present 327 193 134
Absent 332 273 59
May 2
Age is expressed as Median (interquartile range). Otherwise, data are number of patients. The P value marked bold indicated statistical significance.
NA means that the characteristic is not included in the logistic regression.
TABLE 2 | Variables and coefficients of clinical model.

Variable Adjusted OR 95%CI P value

Gender 1.95 1.17-3.25 0.011
Lobulation 0.32 0.19-0.53 0.040
Air bronchogram 2.11 1.03-4.31 <0.0001
Pleura indentation 19.07 9.38-38.76 <0.0001
Pleural attachment 10.10 5.33-19.14 <0.0001
OR, odds ratio; CI, confidence interval.
022 | Volume 12 | Article 876264
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large number of advanced quantitative imaging features from CT
images (12, 43). Yuan et al. proposed a support vector machine
(SVM) based deep learning model to predict the status of VPI
from preoperative CT scans, with a high AUC in the validation
cohort (10). However, the model could only distinguish patients
with or without VPI based on radiomics models, without
incorporating relevant clinical characteristic parameters, and
did not take the relations of tumor to adjacent pleura
into account.

In this study, six optimal quantitative radiomics features
(including Coarseness, Skewness, TotalEnergy, ZoneVariance,
Frontiers in Oncology | www.frontiersin.org 6
LAHGLE and LALGLE) were extracted Coarseness is a
parameter for the neighbouring gray tone difference matrix
(NGTDM). The lower coarseness values in the present study
indicated more heterogeneous textures of the lesion. Skewness
and total energy are both the first order parameters. Lower
skewness and total energy values indicated higher
heterogeneity of the lesion. LAHGLE and LALGLE are
parameters for the gray level size zone matrix (GLSZM). Zone
variance is also a parameter for the GLSZM. In this study, the
high LAHGLE, LALGLE and zone variance values indicated high
heterogeneity of the lesion.
A

C

B

FIGURE 2 | Radiomics features associated with VPI were selected using LASSO regression models. (A) Cross-validation curve. An optimal log lambda (0.013) was
selected, and 6 non-zero coefficients were chosen. (B) LASSO coefficient profiles of the 1316 radiomics features against the deviance explained. (C) Histogram
shows the contribution of the selected parameters with their regression coefficients in the signature construction.
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According to our findings, the model that combines
radiomics features and clinical features is more effective.The
clinical features model included four semantic features (the signs
of lobulation, air bronchogram, pleural attachment and pleural
indentation) among the five features, all describing the perimeter
and morphology of tumor. Because of the difficulty in outlining
Frontiers in Oncology | www.frontiersin.org 7
peritumoral ROI due to the proximity of the tumor to the pleura,
this imaging histology study focused only on the interior of the
tumor. However, we included some of the imaging signs to
reflect the peritumoral situation as described previously.
Previous studies have demonstrated that the above features
were the risk factors of VPI. Furthermore, the radiomics
A B

FIGURE 3 | Difference in the Radscore between lung adenocarcinoma with VPI and without VPI in training cohort (A) and validation cohort (B). (Label 0: No VPI;
label 1: VPI).
A B

FIGURE 4 | Comparison of the performance of three models for predicting VPI in lung adenocarcinoma. ROC curves for clinical features alone, radiomics features
alone and combined features for the training (A) and validation (B) cohorts.
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TABLE 3 | Predictive performance of the three models in the training and validation cohorts.

Model Accuracy [95%CI] AUC [95%CI] Sensitivity Specificity PPV NPV

Training cohort
Radiomics features 0.74 [0.70-0.78] 0.83 [0.79-0.86] 0.86 0.69 0.55 0.91
Clinics features 0.75 [0.71-0.79] 0.86 [0.82-0.90] 0.87 0.69 0.56 0.93
Joint features 0.84 [0.81-0.88] 0.89 [0.86-0.92] 0.74 0.89 0.75 0.89
Validation cohort
Radiomics features 0.73 [0.66-0.79] 0.81 [0.74-0.87] 0.75 0.72 0.49 0.88
Clinics features 0.73 [0.66-0.79] 0.83 [0.76-0.90] 0.79 0.71 0.49 0.90
Joint features 0.83 [0.78-0.89] 0.88 [0.83-0.94] 0.71 0.88 0.65 0.90
Frontiers in Oncology | www.fro
ntiersin.org
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e 12 | Article 87
AUC, area under the curve; 95%CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
A

B

D

C

FIGURE 5 | Nomogram for prediction of VPI based on training cohort and the model evaluation of calibration curve. (A) Radiomics nomogram based on clinical
characteristics and Radscore. The calibration curves were used to evaluate the consistency of the probability of VPI predicted by the nomogram with the actual
fraction of visceral pleural invasion in the training (B) and validation (C) cohorts. (D) DCA for the prediction of VPI in lung adenocarcinoma for each model. X-axis
represents the threshold probability and Y-axis represents the net benefit. The red curve represents the nomogram. The blue curve represents the clinical features
model. The green curve represents the radiomics features model.
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focused on the heterogeneity within the tumor, the two models
were complementary to each other. Although the diagnostic
performances of the radiomic model and the clinical model
were similar, the combination of the two models can obtain a
higher diagnostic efficiency. The AUC values of the combined
model were higher than those of the radiomics and clinical models
(p < 0. 05). Moreover, the DCA results showed that the nomogram
was superior to both the clinical features model and the radiomics
model for most ranges of reasonable threshold probabilities.

There are several limitations in this study. Firstly, it was a
retrospective study and there may have been selection bias.
Secondly, tumour serum indicators may be missing due to the
small size of the tumour. Thirdly, multiple different CT scanning
devices were used, using different acquisition protocols.
Multicentre studies should be conduted to validate the
reliability of Nomogram.

In summary, a CT image-based nomogram model combining
radiomics features and clinical features was developed for
predicting VPI in lung adenocarcinoma. A nomogram based
on radiomics features may provide a non-invasive method to
evaluate the prognosis of early lung adenocarcinoma.
Frontiers in Oncology | www.frontiersin.org 9
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