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Acute anemia increases the risk for perioperative morbidity and mortality in critically ill patients who

experience blood loss and fluid resuscitation (hemodilution). Animal models of acute anemia suggest

that neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) is adaptive and protects against

anemia-induced mortality. During acute anemia, we have observed a small but consistent increase in

methemoglobin (MetHb) levels that is inversely proportional to the acute reduction in Hb observed

during hemodilution in animals and humans. We hypothesize that this increase in MetHb may be a

biomarker of anemia-induced tissue hypoxia. The increase in MetHb may occur by at least two

mechanisms: (1) direct hemoglobin oxidation by increased nNOS-derived NO within the perivascular

tissue and (2) by increased deoxyhemoglobin (DeoxyHb) nitrite reductase activity within the vascular

compartment. Both mechanisms reflect a potential increase in NO signaling from the tissue and

vascular compartments during anemia. These responses are thought to be adaptive; as deletion of nNOS

results in increased mortality in a model of acute anemia. Finally, it is possible that prolonged

activation of these mechanisms may lead to maladaptive changes in redox signaling. We hypothesize,

increased MetHb in the vascular compartment during acute anemia may reflect activation of adaptive

mechanisms which augment NO signaling. Understanding the link between anemia, MetHb and its

treatments (transfusion of stored blood) may help us to develop novel treatment strategies to reduce

the risk of anemia-induced morbidity and mortality.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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Introduction: what is methemoglobin?

Methemoglobin (MetHb) is a form of oxidized hemoglobin
(Hb) normally maintained as a very small proportion of total
hemoglobin (o1%), primarily by the action of red blood cell (RBC)
MetHb reductase activity. Clinically significant methemoglobine-
mia can occur due to metabolic deficiencies in MetHb reductase
and due to acquired exposure to oxidizing medications [1]. Until
recently, the primary clinical significance of acute increases in
MetHb levels was related to its inability to carry oxygen, leading
to tissue hypoxia when MetHb levels increased to represent a
significant portion of total Hb. However, we have recently
proposed the novel hypothesis that small increases in MetHb
levels may actually reflect an adaptive increased nitric oxide (NO)
signaling during acute anemia [2,3].
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What is the problem with anemia?

Acute and chronic anemia are well defined independent
predictors of increased mortality in patients with systemic dis-
ease [4]. Acute blood loss and fluid resuscitation (hemodilution)
are also associated with mortality in surgical patients in a manner
that is proportional to the degree of Hb loss [4,5]. Currently, no
treatment strategy has been shown to reduce this risk. While
transfusion of stored allogeneic red blood cells (RBC) is utilized to
restore optimal oxygen carrying capacity; collective data from
randomized clinical trials has not demonstrated any survival
benefit of RBC transfusion in critically ill or surgical patients
[6–10]. In addition, new analysis suggests that stored RBCs may
also be associated with increased mortality [11]. In search for an
understanding of the mechanism of acute anemia-induced mor-
tality, we have assessed the potentially adaptive role of nNOS-
derived NO during acute anemia [12–14]. Our recent studies have
shown that neuronal nitric oxide synthase (nNOS) knockout mice
suffer increased mortality during acute anemia, supporting an
adaptive role for nNOS in this setting [14]. In addition, we have
proposed that the proportional but small increase in MetHb
observed in acutely anemic animals and humans [2,3] may
provide a means of assessing the degree of anemia-induced tissue
hypoxia in the clinic. In this hypothesis article we propose a
mechanism to link these experimental observations and propose
that nNOS-derived NO and/or nitrite is important in MetHb
formation which in turn may represent a novel indicator for
anemia-dependent toxicity.
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Fig. 1. The impact of acute and chronic anemia on the oxyhemoglobin (OxyHb)

dissociation curve. With an acute reduction in hemoglobin (from 140 through to

50 g/L), without any shift in the curve, the measured reduction in tissue oxygen

tension (from 60 to 40 mmHg) would result in movement along the existing

OxyHb dissociating curve (Hb�140) from point 1 to 2. This would increase oxygen

off-loading (extraction) as indicated by the red shaded area. During chronic

anemia, a moderate reduction in Hb�90 g/L does not result in a shift in the

curve. However, with more severe anemia (Hb�50), there is a significant rightward

shift in the OxyHb dissociation curve and a decrease in Hb affinity for Oxygen. This

effect would allow for a greater proportional off-loading of oxygen (blue shaded

area) represented by a drop in OxyHb saturation from 3 to 4. The maximal effect of

both acute and chronic anemia would be reflected by movement from point 1 to 4,

thus optimizing oxygen unloading and maximally increased DeoxyHb levels.

Modified from Rodman et al. [17]. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
Anemia disrupts oxygen homeostasis and lead to tissue
hypoxia

Experimental studies demonstrate that while global oxygen con-
sumption is maintained during anemia, regional tissue hypoxia
occurs and oxygen homeostasis is jeopardized. For example, during
acute hemodilution (Hb�50), overall brain oxygen consumption is
maintained (to match constant O2 demand). This is achieved by many
factors including a proportional increase in cerebral blood flow which
compensates for the reduction in blood oxygen carrying capacity (in
attempts to sustain O2 supply) and which would explain the
mechanism for acute increases in the proportion of oxygen extracted
by the brain as demonstrated in animal models [15]. In addition and
as illustrated in Fig. 1, a rightward shift in the oxyhemoglobin
dissociation curve (i.e. decreasing oxygen affinity due to increased
2,3 DPG) would facilitate increased oxygen extraction [16,17].
Whereas this phenomenon has been demonstrated in chronic ane-
mia, this has never been demonstrated in the microcirculation of
acutely anemic mammals. Finally, the contributing effects of
increased microvascular blood flow, increased functional capillary
density and/or a reduction in overall cerebral metabolism, are all
mechanisms that may maintain cerebral oxygen homeostasis during
acute anemia [18].

Importantly however, compensated oxygen supply is not suffi-
cient to fully meet the tissue demand during anemia as brain
microvascular PO2 decreases proportionally with decreased Hb
[14]. This reduction in local tissue PO2 results in-part from sustained
tissue metabolic activity which facilitates increased dissociation of
oxygen from hemoglobin (i.e. increased DeoxyHb) according to the
well-defined oxyhemoglobin dissociation curve [16,17]. Recent
assessment of the oxygen dependence of oxidative phosphorylation
and the ability of mitochondria to act as oxygen sensors, suggest
that tissue oxygen demand regulates physiologic responses such as
the increase in cardiac output and regional tissue blood flow
observed during anemia [19]. Evidence of increased expression of
hypoxic cellular mediators including HIF and nNOS, suggests that
the measured drop in tissue PO2 is biologically relevant and sensed
by the brain parenchymal cell [13,14]. The importance of these
adaptive responses is emphasized by the finding that mice lacking
nNOS are susceptible to anemia induced mortality [14]. Thus, nNOS
derived NO support survival during anemia.
Anemia, NO signaling and increased MetHb

The importance of nNOS to survival during anemia supports
the paradigm that tissue derived NO signaling is important to
maintain overall oxygen homeostasis during anemia. This effect is
not observed with eNOS or iNOS indicating specificity regarding
the mechanism and/ or compartmentalization of NO-formation in
protecting against anemia [14]. One possibility is that nNOS
activity primes or loads the vascular compartment with stable
NO-metabolites, which are subsequently used to maintain vital
tissue perfusion. Evidence of an nNOS mediated tissue-to-
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intravascular NO gradient are supported by three independent
findings: Firstly, nNOS-derived NO is required for perivascular
(endothelial) HIF stabilization in the anemic brain [14] which may
serve to optimize homeostatic mechanisms during anemia, such
as glucose transport [20]; Secondly, anemia results in a propor-
tional increase in the oxidation of hemoglobin (Hb) to methemo-
globin (MetHb) in a manner [2,3] that is partially dependent on
nNOS (Fig. 2). In these experiments, progressive systematic
normovolemic hemodilution was performed in wildtype (nNOS
replete) and nNOS deficient mice (nNOS�/�), as previously
reported [14]. Comparison of MetHb levels demonstrate an nNOS
dependent increase in MetHb as total Hb levels decrease to levels
near 60 g/L. Below this Hb level, there is a more marked increase
in MetHb that is independent of nNOS (Fig. 2, possible reflecting
increased DeoxHb nitrite reductase activity). During anemia,
nNOS may be particularly well suited to provide a source of
tissue NO as its activity requires a relatively high tissue PO2,
which is the case during anemia, in contrast to hypoxia [21].
Finally, changes in vascular tone during anemia appear to be
mediated by factors that are extrinsic to the resistance artery [14].
Thus, influences from the local environment on both the adven-
titial and/or luminal aspect of the microvasculature may regulate
vascular tone and local blood flow during anemia. This constella-
tion of findings led us to focus on the importance of NO-
hemoglobin interactions in anemia.

Herein we build upon the seminal findings that acute anemia
causes a small (1–2%) but proportional and significant increase in
MetHb in animal and human studies [2,3]. Potential mechanisms
for increased methemoglobin include: (1) direct oxidation of Hb
to MetHb by NO or peroxides [22,23]; (2) production of MetHb as
an intermediate molecule in the biosynthesis of SNO-Hb [24]; and
(3) as a product of deoxyhemoglobin (DeoxyHb) nitrite reductase
activity [25]. Recently, a new mechanism has been described
whereby MetHb can modulate NO signaling in the vascular
compartment [26]. Straub et al provide evidence that regulation
of MetHb levels by MetHb reductase (also known as cytochrome
b5 reductase 3) can facilitate NO signaling at the level of the
junction between endothelium and vascular smooth muscle
(VSM). An increased level of MetHb (Fe3þ state), reduces NO
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Fig. 2. In acutely anemic mice, there is a progressive increase in MetHb levels as

the total hemoglobin (Hb) decreases. This effect is attenuated in nNOS-deficient

mice, demonstrating a degree of nNOS dependence to this process. However, at

lower Hb levels, nNOS independent factors accentuate the increased in MetHb in

both strains; possibly due to an increased nitrite reductase activity of DeoxyHb.

These experiments were performed as per the hemodilution protocol outlined in

Tsui et al. PNAS 2011 (ANOVA, group and hemoglobin effect, po0.001 for both;

post-hoc Tukeys test, npo0.05 from baseline, #po0.05 between groups).
binding and allows NO to readily diffuse to neighboring cells and
activate the NO signaling pathways in the VSM. Thus, multiple
paradigms exist for redox mediated changes in Hb can influence
NO signaling within the vasculature. Regardless of the mechan-
ism, we hypothesize that increased intraerythrocytic MetHb is an
intravascular marker which reflects inadequate tissue oxygen
delivery during acute anemia and reflects an associated increase
in NO signaling, the goal of which is to improve tissue blood flow
and maintain oxygen homeostasis during anemia.

Within the paradigm hypothesized above, methemoglobin
represents an intriguing player, particularly as putative biomarker
to indicate anemia. The degree of methemoglobin formation in
this setting is still relatively low and unlikely to compromise
oxygen carrying capacity (since methemoglobin does not bind
oxygen). However, methemoglobin formation can also be viewed
as a gain of toxic function, due to its potential to promote
oxidative stress by reacting with peroxides (hydrogen peroxide,
lipid hydroperoxides) and forming ferrylhemoglobin, a process
illustrated by acellular hemoglobin transfusion dependent toxi-
city [27]. Red blood cells (RBC) are naturally endowed with a
MetHb reductase system that maintains intraerythrocytic levels
of MetHb at relatively low (o0.5%) levels. Since anemia usually
occurs in the setting of a background inflammatory (and likely
oxidative) stress it is possible that the ability of RBC to limit
MetHb dependent oxidative stress is compromised. Thus, initially
MetHb may represent a by-product of the RBC reflecting pro-
cesses aimed at promoting NO-bioavailability and maintaining
oxygen homeostasis. However, prolonged anemia (together with
addition of stored RBCs which is pro-inflammatory, see below),
may lead to an environment in which MetHb is driving the
pathogenesis via oxidative stress.

The observed increased in tissue nNOS-derived NO could serve
to link the cellular requirement for oxygen to the vascular
compartment by an NO gradient from tissue to the vascular
space. nNOS (vs. eNOS) is particularly suited to this function as
the dependence of its activity on substrate oxygen, favors the
production of large amounts of NO at relatively preserved high
tissue pO2 values seen in anemia [21]. We hypothesize that
nNOS-derived NO could serve to preload the vascular compart-
ment with stable NO metabolites (e.g. nitrite). In addition, the
ongoing tissue demand for oxygen and increased oxygen extrac-
tion is known to increase the proportion of DeoxyHb from �30%
to �50% in the brain microvasculature. We posit that this
metabolically driven increase in the proportion of DeoxyHb
would facilitate production of vascular NO by DeoxyHb depen-
dent nitrite reduction. The kinetics of this reaction may be favored
by an increased in DeoxyHb and an overall reduction in total
hemoglobin (i.e. NO binding sequestering capacity). Thus, by two
coordinated mechanisms increases in tissue and vascular NO
production may maintain oxygen homeostasis during acute
anemia.
Nitrite reductase activity and NO-scavenging balance

Together with oxygen carrying capacity, red cells also control
blood flow, thereby ensuring oxygen delivery meets local meta-
bolic demands. Blood flow is controlled by mechanism(s) that
couple hemoglobin deoxygenation with the stimulation of NO-
dependent vasodilation. The proposed mechanisms have been
discussed previously [28] with nitrite-reduction being one. The
latter occurs by DeoxyHb mediated reduction of nitrite, inter-
mediate formation of reactive nitrogen species, and ultimate
formation of NO and metHb [29]. The initial rate of this reaction
displays a bell shaped dependence on oxygen fractional satura-
tion, increasing with desaturation from 100% to �50%, and then
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Specifically, a higher deoxyhemoglobin concentration coupled with decreased NO-scavenging (due to less hemoglobin) is proposed to promote NO-signaling and represent

an adaptive response to maintain tissue perfusion during acute anemia.
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decreasing thereafter [30]. Thus over the range of oxygen frac-
tional saturations observed in the cerebral circulation during
anemia, without overt hypoxia, nitrite reduction by DeoxyHb, is
predicted to be graded and proportional to the degree of desa-
turation. Importantly however, in order for any NO-generated by
RBC to elicit a signaling effect in the vasculature, the rapid scaven-
ging of NO- by oxy- or deoxyhemoglobin has to be overcome and
underscores the overall paradigm that the balance between RBC-
dependent NO-scavenging and formation will control function, with
this balance being shifted to the latter during anemia (Fig. 3).
Effect of RBC aging on nitrite reductase activity and increased
mortality

The unresolved clinical paradox, that anemia and its treatment
namely stored red blood cell transfusion are both associated with
increased mortality may be partially explained by the effect of
storage on RBC reactions with NO. Recently published data has
demonstrated that stored human RBCs have an increase in NO
scavenging [31,32]. In addition, we posit that due to storage
dependent increased oxygen affinity, which in turn will limit
deoxygenation, NO-formation from nitrite reduction will also be
compromised [32]. These mechanisms may also help explain why
blood transfusion of old stored blood has not improved survival.
Indeed, transfusion of stored blood may actually decrease survi-
val. Thus, further exploration of the hypothesis that old blood
may short circuit the ‘normal’ balance between RBC dependent
NO-formation vs. scavenging towards the latter and thereby
impede regulatory mechanisms for increasing NO and local tissue
blood flow during anemia is required.
Transfusion of HBOCs may increase mortality by impeding NO
signaling as reflected by enhanced MetHb production

An additional link between the NO, hemoglobin and MetHb
can be made by assessing the relationship between hemoglobin
based oxygen carrier therapy, increased MetHb and mortality. In
both experimental and clinical settings, transfusion of HBOCs
results in a disproportionate increase in MetHb, likely due to the
limited MetHb reductase activity in the plasma compartment.
Experimental models show a constant rate of MetHb production
over time in vivo. Increased rates of NO scavenging compared
to erythrocytic hemoglobin, together with increased peroxide
dependent oxidation of acellular hemoglobin (due to lower
peroxide scavenging potential in the extracellular environment)
most likely underscores MetHb formation in this setting. Thus,
production of MetHb no longer reflects adaptive biological pro-
cesses and NO is globally sequestered in the vascular compart-
ment. This may explain the consistent finding that HBOC’s can
increase blood oxygen content and prevent transfusion but
uniformly increase myocardial injury and mortality [33].
Conclusion

Acute anemia provides a unique environment within which to
assess the importance of tissue and RBC based NO signaling
mechanisms which attempt to maintain oxygen homeostasis
and promote survival. The complexity of the interaction between
tissue and vascular NO production in the setting of acutely
reduced RBC Hb is complex and requires assessment in vivo in
intact vascular beds. Based on experimental and clinical studies,
we have proposed a potential mechanism by which anemia-
induced tissue hypoxia may activate nNOS to generate biologi-
cally relevant tissue NO. The associated increase in tissue oxygen
extraction, facilitated by the imbalance in oxygen supply and
demand, may provide a vital link between the tissue and
intravascular responses. By increasing the proportion of DeoxyHb
during acute anemia, the kinetics of DeoxyHb nitrite reductase
may be favored, leading to a further increase in local tissue NO
signaling. Both mechanisms may be associated with an increase
in MetHb levels providing a strong rationale for continued
assessment of the hypothesis that increased MetHb is an impor-
tant biomarker of anemia-induced tissue hypoxia.
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