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ABSTRACT We report the draft genome sequence of a new Clostridium cochle-
arium strain, AGROS13, which was isolated from a sheep dairy farm environment
in New Zealand. The genome is 2.7 Mbp, with a GC content of 28.2%. The genome
sequence was found to be closely related to that of Clostridium cochlearium ATCC
17787. The new strain harbors a biosynthetic gene cluster coding for an unknown
sactipeptide.

Clostridium species are obligate or facultative anaerobic bacteria, producing en-
dospores that are highly resistant to heat and other environmental factors (1, 2).

Some Clostridium species are well-known pathogens (1, 3–6), whereas some are detri-
mental to milk and dairy product quality (7, 8). Of all the important Clostridium species
known, not much has been stated about Clostridium cochlearium, a species that has
been found to spoil dairy products and also has been isolated from infant formula milk
(9, 10). Here, we report the whole-genome sequence of a new Clostridium cochlearium
strain, AGROS13, which was isolated from a New Zealand sheep dairy farm silage
sample.

Bacteria were isolated using a previous methodology, with slight modifications (11).
Briefly, 20 g of silage was weighed in a stomacher bag, suspended in 50 ml of
phosphate buffer to blend the sample, and centrifuged at 3,466 � g for 1 h. The pellet
was resuspended in 10 ml of phosphate buffer and heated at 80°C for 10 min. One
milliliter of the heated sample was added to cooked meat-glucose starch medium (12)
and incubated anaerobically at 35°C for 48 h. The growth suspension was serially
diluted, plated on Shahidi-Ferguson agar, and incubated anaerobically for 24 h (13).
Proteolytic activity was preliminarily investigated by visualizing a clear zone around the
bacterial growth on a skimmed milk agar plate (14). The presumptive C. cochlearium
strain AGROS13 was found to be proteolytic, indicating potentially a dairy spoilage
bacterium. Genomic DNA was extracted from pure cultures grown in tryptic soy broth
(Fort Richard, New Zealand) by using the phenol-chloroform extraction method (15).
The quality and concentration of DNA were determined using a Qubit 2.0 fluorometer
(Thermo Fisher Scientific, USA).

The whole genome of Clostridium strain AGROS13 was prepared with the NuGEN
Celero enzymatic fragmentation DNA library kit and sequenced using the Illumina
MiSeq sequencing platform version 3 (Massey Genome Services, Palmerston North,
New Zealand), producing 484,293 read pairs of 300 nucleotides and 291,544,386 bp and
giving a coverage of �109-fold. The reads were quality trimmed, filtered, and assem-
bled via the A5-miseq pipeline version 20160825 with default settings (16). The
assembly produced 75 contigs, with a total genome size of 2.7 Mb, an N50 value of 78
kb, and a GC content of 28.2%. A BUSCO version 3.0.2 (17) test using the bacterial
reference produced a completeness score of 93.9%.

A two-way average nucleotide identity test (http://enve-omics.ce.gatech.edu/ani) of
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the new Clostridium strain AGROS13 produced a 98.96% match with Clostridium co-
chlearium NCTC 13027 (GenBank accession number NZ_LT906477.1) (18). A compara-
tive genomic analysis of these two genomes using in silico digital DNA-DNA hybrid-
ization (dDDH) via the Type (strain) Genome Server (TYGS) (https://tygs.dsmz.de) (19)
resulted in a dDDH (d6) value of 80%, indicating the same species but with probable
differences at the strain level. We investigated the presence of biosynthetic gene
clusters (BGCs) in strain AGROS13 using antiSMASH version 5.1.2 (https://antismash
.secondarymetabolites.org) (20). The software predicted the presence of a BGC encod-
ing an unknown sactipeptide, a ribosomally synthesized and posttranslationally mod-
ified peptide (RiPP) (21). RiPPs have been recognized as a predominant group of natural
antimicrobial compounds, of which sactipeptides and lanthipeptides are the dominant
ones identified in some Clostridium species (22, 23). Further studies are required to
identify the sactipeptide and to investigate its properties. As part of the submission
process, NCBI annotated the genomic scaffolds with PGAP version 4.11 (24), resulting
in 2,692 genes being annotated in total.

Data availability. The raw reads have been deposited in the NCBI SRA under the
accession number SRX8326676. This whole-genome shotgun project has been depos-
ited in DDBJ/ENA/GenBank under the accession number JABFIF000000000. The version
described in this paper is version JABFIF010000000.
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