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Abstract
In the Kappa effect, two visual stimuli are given, and their spatial distance affects their per-

ceived temporal interval. The classical model assumes constant speed while a competing

Bayesian model assumes a slow speed prior. The two models are based on different

assumptions about the statistical structure of the environment. Here we introduce a new

visual experiment to distinguish between these models. When fit to the data, both the two

models replicated human response, but the slowness model makes better behavioral pre-

dictions than the speed constancy model, and the estimated constant speed is close to the

absolute threshold of speed. Our findings suggest that the Kappa effect appears to be due

to slow speeds, and also modulated by spatial variance.

Introduction
The Kappa effect is a spatiotemporal illusion where the perception of elapsed time between the
sensory stimuli is systematically distorted by the irrelevant distance between the stimuli [1, 2].
In the simplest version, two lights are flashed with a chosen temporal interval at a given dis-
tance, and the perceived time increases with the spatial distance between the stimuli [3, 4]. In a
more complicated scenario, three lights are flashed to define two successive temporal intervals
and two adjoining spatial intervals. When the two temporal intervals are physically equal, the
perceived time of longer spatial interval is longer than that of shorter spatial interval [1, 2].

A classical model explains the Kappa effect assuming constant speed within each trial [3, 5,
6]. It assumes that subjects have learned that objects in the environment move at constant
speed [7], implicitly interpreting the static lights as moving [2, 4, 8]. This idea was captured by
an algebraic model to quantitatively explain the Kappa effect [3, 5, 6]. It assumes that the per-
ceived inter-stimulus time is a weighted average of the actual time and the expected time, calcu-
lated as the ratio of known distance and velocity. This model even explains an auditory (pitch)
version of the Kappa effect [9, 10]. However, this weighted average model cannot tell us how
the relative weights are determined.

Recently, a Bayesian model was proposed based on a slow velocity prior [11, 12]. It assumes
an environment in which slower motions are more likely than faster ones, giving observers the
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expectation that objects move slowly [13–15]. The model combines this prior expectation with
the observed spatiotemporal information into an optimal percept. The model does not only
replicate the cutaneous rabbit illusion, the tactile Tau effect, the tactile Kappa effect, and other
tactile spatiotemporal illusions, but it also explains tactile temporal order judgment and spatial
attention effects [11, 12]. This raises the question if the model can also explain the visual
Kappa effect.

In a typical Bayesian model, the mean of the posterior is a weighted average of the means of
the prior and the likelihood [16, 17]; Similarly, in the classical model, the perceived time is the
weighted average of the actual time and the expected time. This may suggest that the classical
model, when properly defined, can also be written as a Bayesian model (also see [12]). Nothing
prevents the assumption of constant speeds to be defined as a proper Bayesian prior.

Here we hypothesized that participants may expect constant speed and not just low speed.
We formulate both the slow speed model and the classical (constant speed) model as a Bayesian
model that deals with noisy data. We conducted a modified time reproduction task to replicate
the simplest version of the Kappa effect [3, 4], and to understand which model best explains
the Kappa effect.

Experiment 1

Methods
Participants. Nine right-handed participants (6 males and 3 females, 19 to 32 years of

age) took part in the Experiment 1. Each participant had normal or corrected-to-normal visual
acuity. Informed consent was obtained prior to participation. The project was approved by the
review board of Southwest University, which were in accordance with the Declaration of
Helsinki.

Stimuli and procedures. The visual stimuli were displayed on a black background in the
center of a computer screen (screen resolution, 1024 × 768 pixels; refresh rate, 85 Hz). A white
and a blue square were 2 mm in size (0.191°); a white circle was 6 mm in diameter (0.573°). We
used MATLAB and Psychtoolbox to control stimulus presentation and record the subject
responses [18]. The computer screen was placed about 60 cm in front of participants.

A modified time reproduction task was adopted to replicate the Kappa effect. The task was
used to study visual Kappa effect [4] and an effect of temporal context on interval timing [19].
Given the Kappa effect was observed regardless of directions of circles flashed [1, 2, 8], we
adopted one direction that circles flashed from left to right. At the beginning of each trial, a
white square appeared in the center of screen for 1 s as a fixation target (Fig 1). Participants
were instructed to fixate the central square throughout the trial. Two white circles flashed from

Fig 1. The illustration of one trial.

doi:10.1371/journal.pone.0154013.g001
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the left to right visual fields in sequence, and then the central square turned blue. The vertical
distance between the circles and the central square was 30 mm (2.865°). The horizontal dis-
tances between the two circles and the fixation square were equal. The distance between the
two circles was randomly chosen from 17 distances (1.414°×i, i = 0, 1, 2. . .16). Participants
were asked to estimate the sample time interval between the presentations of the two circles
and to reproduce the time interval by pressing a key. The production times were measured
from the onset of the blue fixation to the time participants responded.

We used two sample time intervals (0.8 s and 1.2 s). The two sample intervals were tested in
separate blocks, the order of which was counterbalanced across participants. Each treatment
consisted of 40 trials, so there were 1360 trials in the present study (2 × 17 × 40). Participants
would have a short break (about half a minute) once they completed 170 trials, and they would
have a rest for about 10 minutes after completing one sample time interval condition.

Bayesian models. Classical model. The classical model [6] assumes that observers tend to
impute uniform motion to discontinuously displayed successive stimuli, their observed time is
taken to be the weighted average of the given sample time interval (ts) and the expected time, E
(t), that would be required to traverse the given distance (l) at constant speed (v0). The
observed time can be written (S1 Appendix),

te ¼ ots þ ð1� oÞ l
v0

ð1Þ

We continue to show that the same Eq 1 can be deduced from an appropriately defined
Bayesian model. The Bayesian model uses the standard steps: A presented stimulus interval, a
noisy measurement, a Bayesian estimation, and a production (Fig 2).

The three-stage Bayesian model was modified from an ideal observer model for time repro-
duction [19]. In the first stage, a sample interval (ts) is measured. The distribution of measured
interval (tm) given ts is p(tm|ts), which is a Gaussian distribution with mean ts and standard
deviation σm. It is consistent with the scalar timing theory that internal representation of a tem-
poral duration is a distribution of values which has an accurate mean [20].

The second stage is a Bayesian estimator. Participants have a prior belief of a constant speed
(v0) on moving objects. Given moving distance (l), they believe a prior time interval distribu-
tion, p(τ), which is modeled as a Gaussian function with mean l/v0 and standard deviation στ.
The prior distribution is:

pðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
st

e
�

t� l
v0ð Þ2

2s2t ð2Þ

Fig 2. The three-stagemodel for time reproduction.

doi:10.1371/journal.pone.0154013.g002
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The likelihood is p(tm|τ), and the posterior distribution can be computed using Bayes rule.

pðtjtmÞ / pðtmjtÞpðtÞ ¼
1ffiffiffiffiffiffi
2p

p
sm

e
�ðtm�tÞ2

2s2m � 1ffiffiffiffiffiffi
2p

p
st

e
�

t� l
v0ð Þ2

2s2t ð3Þ

The mean of the posterior distribution is:

te ¼
s2
t

s2
t þ s2

m

� tm þ s2
m

s2
t þ s2

m

� l
v0

ð4Þ

Given sample interval (ts), the estimated time (te) is:

htejtsi ¼
s2
t

s2
t þ s2

m

� ts þ
s2
m

s2
t þ s2

m

� l
v0

ð5Þ

Let o ¼ s2t
s2tþs2m

Thus,

htejtsi ¼ o � ts þ ð1� oÞ � l
v0

ð6Þ

And we can see that our Eq 6, derived from a Bayesian constant speed model, is identical to
Eq 1.

In the last stage, participants use te to produce tp. Given an estimated time te, the distribution
of production time (tp) was determined by p(tp|te). Previous studies showed that the standard
deviation of the production time increases linearly with their mean, a property that is termed
scalar variability. Thus σp = wpte, wp was a Weber fraction [21–23],

pðtpjteÞ ¼
1ffiffiffiffiffiffi

2p
p

wpte
e
�ðtp�teÞ2
2ðwpteÞ2 ð7Þ

Slowness model. Goldreich [11] developed a Bayesian model to replicate the tactile Kappa
effect and other tactile spatiotemporal illusions which is based on the assumption of slowness.
The slow speed prior reflects observers’ expectation of slow movement, and it is modeled as a
Gaussian function centered at zero [11, 12]. This model deduced a formula for the Kappa effect
(S1 Appendix),

ts ¼ teð1� 2
l st

ss

� �
sv
ss

� �

sv
ss
te

� �2

þ 2

2
64

3
75

2

Þ ð8Þ

l was distance between two stimuli, ts was sample time interval, te was estimated time, σs and σt
were standard deviations (SD) of perceived spatial and temporal information, and σv was SD of
prior speed. The estimated time (te) can be computed using the fzero command in MATLAB
(The MathWorks Inc.).

Finally, participants used te to produce tp, which was the same with the last stage of Bayesian
version of the classical model.

Fitting the models to the data. We assumed that tp values associated with any ts were
independent across trials. The joint conditional probability of individual tp values across all N
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trials could be expressed as follows:

pðt1p ; t2p ; . . . ; tNp jteÞ ¼
YN

i¼1
pðtipjteÞ ð9Þ

and

log pðt1p ; t2p ; . . . ; tNp jteÞ ¼
XN

i¼1
log pðtipjteÞ ð10Þ

The parameters of the models were found by maximizing the likelihood using fminsearch
command in MATLAB. For the classical model, previous study reported ω changes as a func-
tion of sample time intervals [6], thus four parameters were ω0.8 for the 0.8-s sample time inter-
val condition, ω1.2 for the 1.2-s condition, v0 and wp.

For the slowness model, four parameters were σt0.8 for the 0.8-s condition, σt1.2 for the 1.2-s
condition, σv and wp. The σs can be inferred according to previous studies [24–26]. In the con-
stant method with a two-alternative forced choice paradigm, the just noticeable difference
(JND) is defined as the difference between 25% and 75% on the psychometric functions, and
then the standard deviation (σ) can be computed using JND for a Gaussian distribution, σ =
JND/0.6475 [25, 26]. The visual acuity threshold is an application of JND in measuring spatial
resolution of the visual processing system. A previous study reported two visual acuity thresh-
olds (Vernier and grating resolutions) as functions of eccentricity were described by k = 0.93 ×
ε0.69 and k = 1.34 × ε0.71 respectively (the unit of κ is minute not degree), where κ is the visual
acuity threshold (or JND of spatial resolution), and ε is the eccentricity [24]. Thus the σs was
written as functions of the eccentricity (the unit of σs is degree not minute), σs = 0.0239 × ε0.69

(Vernier resolution) and σs = 0.0345 × ε0.71 (grating resolution). To evaluate the effect of differ-
ent types of visual acuity thresholds on model fitting, the Vernier and grating resolutions were
used to compute σs respectively.

Akaike information criterion (AIC) was adopted to evaluate the goodness of model fitting.
AIC difference (Δ) was computed for competitive models. Δ is the difference of AIC values
between each model and the best model (smallest AIC) (Δ = AICi-AICmin) [27, 28].

Results
Here we wanted to ask if the Kappa effect could be best explained assuming constant speeds or
by assuming slowness. We employed a modified time reproduction task to analyze the simplest
version of the Kappa effect (Fig 1). Two circles were presented in sequence to define two tem-
poral and 17 spatial intervals. This allows us to characterize the reproduced interval as a func-
tion of distance and temporal delay.

As a baseline for all tests we need to know the response bias (BIASr) when the two targets
are at the same position. For each sample time interval, we computed a mean production time
when the two targets were right above the fixation (the vertical distance was 30 mm), and then
the BIASr was obtained by subtracting the sample time interval from the mean production
time (Fig 3). One sample t-test revealed that the mean BIASr was significant higher than zero
for the 0.8-s condition [mean ± SE: 0.137 ± 0.045 s, t(8) = 3.016, p< 0.05, Cohen’s d = 1.007],
and it was not significant for the 1.2-s condition [0.045 ± 0.066 s, t(8) = 0.681, p> 0.05,
Cohen’s d = 0.227]. We corrected all response biases by subtracting the measured subject spe-
cific response bias, despite the fact that these biases are quite small.

For each treatment, BIASk is the difference of the mean production time between the treat-
ment and the baseline when the two targets are at same location, and VAR is the corresponding
variance (Fig 3). BIASk and VAR were obtained from single-subject data. The BIASk increased
with increasing distance between the two circles (Figs 3 and 4), which is consistent with
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previous studies on the Kappa effect [4, 6, 29]. For all participants, the mean VAR was signifi-
cantly smaller in the 0.8-s sample interval condition (mean ± SE: 0.027 ± 0.005 s2) than that in
the 1.2-s condition (0.051 ± 0.014 s2) [t(8) = -2.57, p< 0.05, Cohen’s d = -0.862]. Reproduction
of longer sample time intervals accompanying more uncertainty is in line with scalar variability
[21–23].

When fit to the data, both the classical model and the slowness model replicated human
results (Fig 4). The classical model predicts production time as a linear function of distance. Its
parameters seem intuitive, with two ω very close to one, a v0 of 0.2°/s, and a wp of 0.2 (Table 1).

For the slowness model, the estimated time increases more slowly with long distance than
that with short distance in the 0.8-s condition, but it is close to the response of the classical
model in the 1.2-s condition. The slowness model with two different visual acuity thresholds
produce almost the same estimated time (Fig 4B and 4C), and their best-fitting parameter val-
ues are approximately equal (Table 2). σt is about 0.01 s and 0.02 s for the 0.8-s and 1.2-s condi-
tions; σv and wp are about 0.9°/s and 0.2, respectively. The slowness model appears better to
qualitatively explain the data (Fig 4).

AIC difference (Δ) was obtained from each participant to evaluate the goodness of model
fitting (Table 3). The larger Δ is, the less plausible it is that the fitted model. According to the
levels of empirical support for model (0� Δ� 2, substantial; 4� Δ� 7, considerably less; Δ>

10, essentially none) [27], the slowness model is superior for 6 out of 9 participants in the 0.8-s
condition, and 1 out of 9 participants in the 1.2-s condition (Δ� 4). Sign test revealed that AIC
of the classical model was significant larger than that of the slowness model for the 0.8-s condi-
tion (p< 0.01), whereas the difference of AIC between two models was not significant for the
1.2-s condition (p> 0.05).

Predictions of the two models were plotted with distances between two circles from 1.4° to
150° based on the best-fitting parameters (Fig 5). Only the Vernier resolution was used,
because of the identical responses for the slowness model with two visual acuity thresholds (Fig
4). Production time increases linearly with increase of distance for the classical model; it
increases as increasing distance but with a tendency of deceleration for the slowness model.
The difference between two models increases with increasing distance. It indicates that a much
larger range of distance should be used in the future work on Kappa effect.

Fig 3. The production time for a typical subject. (A) The 0.8-s sample time interval condition. (B) The 1.2-s condition. Gray dots stand for production time
for every trial. Black spots connected with black lines show the mean for each distance condition. Red lines indicate the values of sample time intervals,
green lines indicate the production time when the two targets are at the same location, and blue lines indicate mean production time of a treatment.

doi:10.1371/journal.pone.0154013.g003
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Fig 4. The production time for all participants and the Bayesian models. Left: the 0.8-s sample time interval condition; Right: the 1.2-s condition. (A) The
classical model. (B) The slowness model with the Vernier resolution. (C) The slowness model with the grating resolution. Black spots connected with black
lines show the mean response of all participants. Red, green and blue lines represent the mean response of the Bayesian models. The error bar and shadow
indicate one standard error.

doi:10.1371/journal.pone.0154013.g004
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Experiment 2
A basic hypothesis in the Experiment 1 is that, there is only one response bias for one sample
time of a participant. We designed a supplementary experiment to test if bias was modulated
by location.

Method
We recruited an extra nine right-handed participants (5 males and 4 females, 19 to 29 years of
age) took part in the Experiment 2. These participants did not take part in the Experiment 1.
Informed consent was obtained prior to participation. The project was approved by the review
board of Southwest University, which were in accordance with the Declaration of Helsinki.

The visual stimuli and apparatus were identical with the Experiment 1. Two white circles
flashed at the same location in each trial. The vertical distance between the circles and the cen-
tral square was 30 mm (2.865°). The horizontal distances between the circles and the fixation
square were 12° in the left visual field, 0°, and 12° in the right. There were two sample time
intervals (0.8 s and 1.2 s). Two sample time intervals and three locations were randomly pre-
sented. Each treatment consisted of 40 trials, so there were 240 trials in the Experiment 2 (2 × 3
× 40). The rest were identical with the Experiment 2.

Table 1. Best-fitting parameter values of the classical model for each of nine participants.

ω0.8 ω1.2 v0 wp

S1 0.9983 0.9986 0.2290 0.1501

S2 0.9989 0.9993 0.1851 0.1652

S3 0.9995 0.9986 0.2107 0.1400

S4 0.9979 0.9999 0.2161 0.1266

S5 0.9990 0.9979 0.2139 0.1295

S6 0.9996 0.9994 0.1752 0.1246

S7 0.9984 0.9995 0.2065 0.2581

S8 0.9999 0.9987 0.2638 0.2657

S9 0.9990 0.9994 0.2764 0.2594

Mean 0.9989 0.9990 0.2196 0.1799

doi:10.1371/journal.pone.0154013.t001

Table 2. Best-fitting parameter values of the slownessmodel with the Vernier (SMV) and grating (SMG) resolutions for each of nine participants.

SMV SMG

σt0.8 σt1.2 σv wp σt0.8 σt1.2 σv wp

S1 0.0068 0.0076 0.2531 0.1499 0.0107 0.0121 0.4085 0.1499

S2 0.0060 0.0056 0.2210 0.1650 0.0094 0.0089 0.3595 0.1650

S3 0.0043 0.0077 0.1616 0.1394 0.0066 0.0121 0.2626 0.1394

S4 0.0081 0.0022 0.1701 0.1248 0.0127 0.0034 0.2779 0.1249

S5 0.0181 0.0510 1.8804 0.1299 0.0235 0.0657 2.4121 0.1299

S6 0.0170 0.0355 2.5765 0.1248 0.0180 0.0372 2.6780 0.1248

S7 0.0079 0.0048 0.1343 0.2556 0.0122 0.0075 0.2220 0.2556

S8 0.0052 0.0380 2.1775 0.2659 0.0046 0.0327 1.8416 0.2659

S9 0.0098 0.0065 0.0580 0.2566 0.0137 0.0093 0.1043 0.2567

Mean 0.0092 0.0177 0.8481 0.1791 0.0124 0.0210 0.9518 0.1791

doi:10.1371/journal.pone.0154013.t002
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Result
The response biases (BIASr) were obtained for each sample time interval each location of nine
participants (Table 4). Two-way repeated measurement ANOVA was conducted on the BIASr
with Duration (0.8 s and 1.2 s) and Location (12° in the left, 0° and 12° in the right) as within
subject factors. The main effects of Duration [F(1, 8) = 3.586, p = 0.095, ηp

2 = 0.310] and Loca-
tion [F(2, 16) = 0.150, p> 0.05, ηp

2 = 0.018] were not significant, and the interaction of
Duration × Location was not significant [F(2, 16) = 0.137, p> 0.05, ηp

2 = 0.017]. The results
suggest that the BIASr was not significantly modulated by location.

Table 3. Model comparison for each of nine participants.

0.8-s condition 1.2-s condition

CM SMV SMG CM SMV SMG

AIC Δ AIC Δ AIC Δ AIC Δ AIC Δ AIC Δ

S1 -707 1 -708 0 -708 0 -334 2 -336 0 -336 0

S2 -555 1 -556 0 -556 0 -306 0 -306 0 -305 1

S3 -905 4 -909 0 -908 1 -392 1 -393 0 -393 0

S4 -650 16 -666 0 -666 0 -863 8 -871 0 -871 0

S5 -755 4 -759 0 -759 0 -680 1 -681 0 -681 0

S6 -908 6 -915 0 -914 1 -728 0 -727 1 -727 1

S7 -119 7 -126 0 -126 0 406 0 406 0 406 0

S8 -205 1 -206 0 -205 1 469 2 467 0 467 0

S9 -64 7 -71 0 -71 0 293 1 292 0 292 0

CM represents the classical model, SMV represents the slowness model with the Vernier resolution, and SMG represents the slowness model with the

grating resolution.

doi:10.1371/journal.pone.0154013.t003

Fig 5. Predictions of the classical (red) and the slowness (green) models. Bottom: the 0.8-s sample time
interval condition; Top: the 1.2-s condition. The shadow indicates one standard error.

doi:10.1371/journal.pone.0154013.g005

Bayesian Models of the Kappa Effect

PLOS ONE | DOI:10.1371/journal.pone.0154013 April 21, 2016 9 / 14



General Discussion
Here we repeated a typical Kappa effect that the production time increases with the distance
between two circles. Then we compared the fits of the Bayesian models between assuming con-
stant speeds and slowness. Both the classical model and the slowness model replicated human
response (Fig 4). AIC index provided quantitative evidence that the slowness model fits data
better than the classical model.

The response bias was found in the present study, which is consistent with previous study
[30–32]. As early as 1868, Vierordt [33] discovered that short durations are reproduced longer
than the standard durations, and long durations shorter (Vierordt’s law). To the best of our
knowledge, no study reported whether the response bias is modulated by locations of visual sti-
muli, thus we hypothesized that there is only one response bias for one sample time interval of
a participant (Fig 3). We conducted a supplementary experiment to answer whether the
response biases at the peripheral locations are the same to that at the central locations (Experi-
ment 2). The difference of response bias between the central and the peripheral areas was not
significant, which suggests that the response bias is not modulated by the locations of visual
stimuli.

It is necessary to interpret a detail about response bias in the classical model (S1 Appendix).
Jones and Huang [3, 6] did not indicate the response bias explicitly. They proposed, given a
temporal duration, the internal code of observed time is the combination of the given dura-
tion’s scale value and the expected time for Kappa effect (Equation A2 in S1 Appendix). When
they fitted the equation to the data, the scale value was contributed by the sample time and the
response bias (Equation A4 in S1 Appendix) [6]. Thus the term ‘scale value’ has an ambiguous
psychological meaning. We separated response bias from the sample time, that is, the produc-
tion time is the sum of Kappa effect and response bias (Equation A5 in S1 Appendix). The sep-
aration interpretation is equivalent to Jones and Huang’s equation mathematically, but has an
unambiguous psychological meaning.

We can fit models to the data in two ways. The first way is to correct response bias before
data fitting. An advantage is that we can focus on the Kappa effect and avoid the influence of
response bias during data fitting. The second way is to fit the data without correcting, and con-
sider the response bias as a parameter. A disadvantage is that overfitting may occur when a
model has too many parameters. We did a supplementary analysis for the two models. For the
classical model, six parameters were ω0.8, ω1.2, v0, wp, BIASr0.8 and BIASr1.2 (Equation A5 in S1
Appendix). The ω should smaller than one, but the ω was larger than/equal to 1 for four partic-
ipants (S4, S5, S7 and S9). For the slowness model, the mean of tp is modeled as a Gaussian
function centered at te+BIASr. Six parameters are σt0.8, σt1.2, σv, wp, BIASr0.8 and BIASr1.2. The
σt and σv should be positive, but they are negative or zero for some participants (Vernier acuity:
S8; grating acuity: S2, S4, S8 and S9). The overfitting might occur for those participants with

Table 4. Mean and standard error of response biases in the left, central and right visual fields for nine
participants.

Left Central Right

0.8-s

M 0.134 0.133 0.146

SE 0.056 0.038 0.059

1.2-s

M 0.047 0.054 0.057

SE 0.042 0.028 0.042

doi:10.1371/journal.pone.0154013.t004
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unreasonable parameters. For other participants, parameters were close to the fitted values
with response bias corrected (Tables 1 and 2). This analysis large convinced us that our analysis
is solid.

The classical model and the slowness model both assume a speed prior but with different
statistic structures. The slowness model is based on a low speed prior, which assumes that the
prior for motion is centered on zero [13–15, 34, 35]. The classical model assumes that the per-
ceived inter-stimulus time is a weighted average of the actual time and the expected time, calcu-
lated as the ratio of known distance and prior speed. Logically, a constant speed can be slow.
Estimated time is longer than physical time between two circles in the Kappa effect. Given the
mean of posterior is larger than the mean of likelihood, the mean of prior time interval must be
larger than that of likelihood (Fig 2), in other words, the prior speed must be slower than
speeds of circles flashed (v = l/t). Consistent with prediction of the classical model (Fig 2), we
found that the constant speed is about 0.2°/s, which is far less than the speeds of circles flashed
in the present study (1.2 to 28.3°/s). A previous study reported that the absolute threshold of
speed is 0.12°/s for old participant group, and 0.09°/s for young participant group [36]. In that
the constant speed is close to the absolute threshold of the speed, it is reasonable to consider
the constant speed as slowness, which is the reason that both the classical model and the slow-
ness model replicated human response (Fig 4).

The slow speed prior, which was widely studied in the field of motion perception [37], was
proven to mirror statistical structures of the visual environment that fast-moving objects are
relatively rare [38]. The neural substrate of the slow speed prior remains under debate. Vintch
and Gardner [39] suggested that the slow speed prior is encoded by neural populations in the
same early cortical areas that provide sensory evidence (V1 area). Jogan and Stocker [40] indi-
cated the combination of the sensory information with the prior belief is likely to occur down-
stream of medial temporal area (MT), however, it does not imply that the prior information is
also represented in the area MT as has been proposed [41]. More conclusive evidence is needed
to identify the neural substrate of the slow speed prior.

Both the classical model and the slowness model employ the slow speed prior, however, the
slowness model is superior to the classical model in data fitting. There seems only a tendency
of deceleration for production time with increasing distance in the 0.8-s condition rather than
the 1.2-s condition (Fig 4). We believe that this is because that the distance is not long enough
for the 1.2 s condition in the present study. We computed the predictions of the two models
with distance from 1.4° to 150° based on the best-fitting parameters. The slowness model pre-
dicts a tendency of deceleration for production time in the 0.8-s and 1.2-s conditions (Fig 5).
Thus, the production time from 1.4° to 22.6° in the 1.2-s condition, seems like a straight line,
but is really part of a curve. The main difference between two models is that the slowness
model considers spatial variance as an influence of the Kappa effect, but the classical model
does not. In the visual system, visual acuity reduces sharply with increase of eccentricity [24].
The Vernier and the grating resolutions were used to compute spatial variance for each dis-
tance in fitting the slowness model, which indicates that spatial variance increases with increase
of eccentricity. Furthermore, it was proven that, the same physical distance with a larger spatial
variance seems shorter [11], and then a shorter length perception leads to a shorter duration
perception. Therefore, the slowness model predicted a tendency of deceleration for production
time with increasing distance, which is the reason that the slowness model fits data better than
the classical model (Fig 4).

Both the classical and the slowness models have advantages and disadvantages. An advan-
tage of the classical model is that, it is based on a simple idea that the perceived time is a
weighted average of a given time and the expected time [6]. Here we revealed that the relative
weight was determined by uncertainty of measurement and prior time interval. It is consistent
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with previous studies that the central nervous system (CNS) incorporates knowledge about
temporal uncertainty of internal and the environment to produce an optimal timing [19, 42,
43]. The classical model also has disadvantages. First, the linear classical model fitted data
worse than the nonlinear slowness model in the 0.8-s condition. Some nonlinear features of
spatial information (e.g. spatial variance) should be combined into the model. Second, the rela-
tive weight ω changes as a function of sample time intervals [6], which prevents the model
from predicting production time for a new sample time with the best-fitting parameters
obtained.

The slowness model is based on probability distributions of neural activity [11]. An advan-
tage of this model is that the uncertainties of spatiotemporal information were considered. It
predicts a tendency of deceleration for production time (Figs 4 and 5), which enables the
model to fit data better than the linear model. The first disadvantage of the slowness model is
its complex expression. The estimated time cannot be written as a function of sample time for
the model, te = f(ts). We cannot obtain a precise estimated time, but only an approximate one
by a numerical method. Second, approximate spatial variances were inferred from previous
studies [24–26]. The spatial variances remained unchanged for nine participants. Individual
differences, luminance contrast, and shapes of visual stimuli may modulate the spatial vari-
ances. Third, the uncertainty of temporal information changed with sample time (Table 2).
Given best-fitting parameters, the change of parameter prevents the model from predicting
production time for a new sample time. To develop a better model of Kappa effect, the advan-
tages and disadvantages of the two models should be considered.

In summary, we conducted a new experiment to explore the cognitive mechanism underly-
ing the Kappa effect. Both the classical and the slowness models replicated human response,
because the two models are both based on the slow speed prior. The slowness model further
considers spatial variance as an influence of the Kappa effect, which is the reason why the slow-
ness model fits data better than the classical model. To improve the classical model, it is neces-
sary to integrate the spatial variance into the model in the future work.
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