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Abstract

Item response theory (IRT) is the statistical paradigm underlying a dominant family of gener-

ative probabilistic models for test responses, used to quantify traits in individuals relative to

target populations. The graded response model (GRM) is a particular IRT model that is

used for ordered polytomous test responses. Both the development and the application of

the GRM and other IRT models require statistical decisions. For formulating these models

(calibration), one needs to decide on methodologies for item selection, inference, and regu-

larization. For applying these models (test scoring), one needs to make similar decisions,

often prioritizing computational tractability and/or interpretability. In many applications, such

as in the Work Disability Functional Assessment Battery (WD-FAB), tractability implies

approximating an individual’s score distribution using estimates of mean and variance, and

obtaining that score conditional on only point estimates of the calibrated model. In this man-

uscript, we evaluate the calibration and scoring of models under this common use-case

using Bayesian cross-validation. Applied to the WD-FAB responses collected for the

National Institutes of Health, we assess the predictive power of implementations of the

GRM based on their ability to yield, on validation sets of respondents, ability estimates that

are most predictive of patterns of item responses. Our main finding indicates that regular-

ized Bayesian calibration of the GRM outperforms the regularization-free empirical Bayes-

ian procedure of marginal maximum likelihood. We also motivate the use of compactly

supported priors in test scoring.

Introduction

Item response theory (IRT) encompasses a class of latent variable models for quantifying traits,

such as abilities and attitudes, using questionnaires [1, 2]. Some of its highest-profile applica-

tions include the Graduate Record Exam (GRE) [3] and the Scholastic Aptitude Test (SAT)
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[4]. Besides its widespread use in high-stakes educational assessment, it is also heavily used in

psychometrics [5, 6] and medical diagnostics [7].

Fundamentally, IRT models are generative non-linear factor analysis models [8]. These

models yield predictions, in the form of probability mass functions, for how a particular per-

son will respond to a particular test item. The key assumption in IRT is that the probability of

one’s response to any particular item on a test is a function composed of person and item-spe-

cific effects. As commonly implemented, the item-specific parameters inform each item’s diffi-

culty and discriminatory power. The person-specific parameter relates to an underlying ability

relative to a target population. Altogether, these models assume that an individual can be char-

acterized by a low-dimensional set of parameters known as traits or abilities, which are the

embedded factors. Hence, these parameters constitute a representation of an individual’s traits,

or interchangeably, a person’s responses.

Statistical choices in IRT model construction

IRT models are informed through a process known as item calibration. In calibration, one

aims to train the item parameters in the IRT model using responses from a sample of the target

population. In order to do so, however, one must either simultaneously infer or control for the

person-specific parameters within the sample. Hence, calibration involves the parallel infer-

ence tasks of determining person and item-specific parameters.

Scoring is the process by which calibrated IRT models are applied to new responses, in

order to obtain person-specific parameters applicable to the new respondents. In scoring, the

new respondents are fit into the scale defined by the original calibration responses. Hence, the

application of IRT models for use in prediction differs from usual statistical models in that

another inference step is required after the initial training.

As high-dimensional models, the details of how one calibrates and scores IRT models are

important. Unregularized maximum likelihood is known to be insufficient for calibration, due

to parameter unidentifiability confounded by the nonlinear nature of the models. Similarly,

scoring is sometimes done in settings where few test responses are known and maximum like-

lihood is unstable—this occurs regularly in computer adaptive testing for instance, where a

test is scored in real-time, and this scoring informs the presentation of new items.

This particular drawback of the maximum likelihood method can be found in the Work

Disability Functional Assessment Battery (WD-FAB) which is a relatively recent application of

IRT to the assessment of work-related physical and behavioral function intended to inform

processes related to disability determination and other potential applications [9].

Work Disability Functional Assessment Battery (WD-FAB)

We focus on the concrete application of improving the statistical properties of the IRT model

underlying the Work Disability Functional Assessment Battery (WD-FAB) [9–13].

Background. The concept of work disability is evolving as represented by the World

Health Organization’s International Classification of Functioning, Disability and Health [14].

Modern models of work disability characterize the outcome of the interaction of a person’s

functional abilities within the work environment. Due to the complex nature of the interac-

tion, a fundamental issue is how to identify and measure work disability within this contempo-

rary framework [9].

The U.S. Social Security Administration (SSA) provides support to adults and children who

qualify as disabled through the Supplemental Security Income (SSI) and Social Security Dis-

ability Insurance (SSDI) programs that provide health insurance and cash benefits to benefi-

ciaries. As these are the two largest federal disability programs in the U.S. supporting millions
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of Americans, accurate assessment of work disability is critical to applicants as an important

safety net program and to the federal government to effectively allocate resources. The Social

Security Administration (SSA) uses a statutory definition of work disability characterized as

the inability to take part in “substantial gainful activity due to any medically determinable

physical or mental impairment that can be expected to result in death or to last for a continu-

ous period of not less than 12 months.” The Work-Disability Functional Assessment Battery

(WD-FAB) was developed as an additional, comprehensive source of information about whole

person function intended to support adjudicators when making disability determinations and/

or re-determinations.

Prior development of the instrument. In this paper we evaluated the Work Disability

Functional Assessment Battery (WD-FAB) which was developed by researchers at the Boston

University Health and Disability Research Institute (BU) in conjunction with the National

Institutes of Health (NIH). It is a computer-adaptive testing tool, backed by an IRT model,

encompassing eight scales including four physical function scales and four mental function

scales to identify self-reported function relative to work. The items within these scales consist

of Likert-scaled multiple choice questions.

Work-related job function is a multifaceted concept, not easily summarized by any single

quantitative factor. In the development of the WD-FAB, a combination of expert guidance and

empirical evidence was used to inform the multidimensional nature of the instrument. An

expert panel developed an item bank consisting of Likert scaled questions relating to physical

and mental function. In a series of three surveys, a large-scale simple random sample of

approximately 5000 SSA disability claimants in the United States was administered the entire

item bank for use in calibrating the instrument. Separately, approximately 2000 individuals

from the general population of both claimants and non-claimants were in placing the instru-

ment in larger population context (in other words, a normative or reference sample).

The empirical portion of the creation of the WD-FAB, from individual responses, pro-

ceeded in two steps. The first step, exploratory factor analysis [15–18] (EFA) splits up an item

bank into independent domains. The second step, confirmatory factor analysis [19] (CFA),

verifies that a latent unidimensional trait is explanatory for the pattern of responses found for

questions in each domain.

In EFA, step-wise item selection based on p-value cutoffs were used to factor the items into

eight domains. Four of the domains pertain to physical function: Basic Mobility (BM), Fine

motor function (FMF), Upper body function (UBF), and Community Mobility (CM). Four of

the domains are used to evaluate psychological characteristics: Mood and emotions (ME),

Resilience (RS), Self Regulation (SR), and Communication and Cognition (CC).

In CFA, heuristic (and ultimately arbitrary) values for fit statistics based on the PROMIS

guidelines [2, 20] justified the instrument. In neither the EFA nor the CFA step were generaliz-

ability of the instrument considered. Additionally, both EFA and CFA, based on their own fac-

torization models, do not guarantee consistency with nonlinear IRT models, which are

themselves factor models. The specific IRT model adapted for the WD-FAB is the graded

response model [21] (GRM). With the domains in place, marginal maximum likelihood

(MML) was used to calibrate eight independent IRT models, and Warm’s weighted maximum

likelihood [22] was adopted for test scoring.

Purpose of the present study

In this manuscript we improve on the predictive power of the graded response model underly-

ing the WD-FAB by regularizing its calibration using fully-Bayesian methods. This approach

is motivated by prior literature showing Bayesian calibration to be more accurate than MML
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calibration for small datasets, even while using diffuse priors [23, 24], and the modern trend in

applied Bayesian statistics towards utilizing stronger weakly informative priors for the purpose

of statistical regularization [25–27].

As a metric for assessing predictive power, we adapt cross validation to estimate out-of-

sample model accuracy in a manner that is consistent with how the WD-FAB instrument is

used and interpreted. For predictive model assessment, cross validation and related methods

are commonly used in machine learning and have found widespread adaption in the Bayesian

statistical modeling world, but are not in common use for IRT model assessment.

Commonly-used alternatives to cross validation include information criteria such as the

WAIC [28–30] and the AIC, which under certain conditions [31, 32] are asymptotically equiv-

alent to leave-one-out cross validation. However, it is not straightforward to compare Bayesian

versus non-Bayesian models using standard information criteria. Additionally, information

criterion require two models to have identical prediction outputs for direct comparison and

are therefore not flexible enough to handle common IRT model selection use cases like item

selection. Finally, these criteria are not typically mindful of how models are interpreted.

To be mindful of common IRT-model use cases, where both model calibration and scoring

require statistical decisions, and scores are interpreted alongside their inferred errors, we

develop a custom variant of a cross validation metric based on the out-of-sample leave-K-out

log marginal likelihood. We show that Bayesian IRT model calibration, coupled with regular-

ized Bayesian scoring, outperforms the commonly-used procedures of marginal maximum

likelihood (MML) calibration and weighted likelihood estimation (WLE) scoring.

Materials and methods

Although the methods in this paper generalize broadly to other item response theory models,

we formulate our methods based on the unidimensional graded response model (GRM) for

polytomous item responses. The GRM [21] applies to assessments where there is an intrinsic

ordering in responses, as in Likert scales. According to the GRM, the probability of a response

of j to item i for person p obeys the likelihood function

PrðXpi ¼ jjyp; τ; λÞ ¼ PrðXpi � jjyp; τ; λÞ � PrðXpi � jþ 1jyp; τ; λÞ

¼
1

1þ expðliðtij � ypÞÞ
�

1

1þ expðliðti;jþ1 � ypÞÞ
;

ð1Þ

where λi are the item-specific discrimination parameters and τij< τi,j+1 are the item-specific

threshold parameters, and θp are person-specific ability parameters. The schematic of the

GRM is presented in Fig 1, where for each of P people, predictions of their I item responses are

determined by these parameters.

Eq 1, demonstrates that in the GRM, the person-specific parameter θp only has interpret-

ability relative to the item-specific parameters. Mathematically speaking, the likelihood func-

tion in Eq 1 is unidentifiable, in both location and scale. To improve identifiability, one

typically either imposes or encourages a scale and location on the person-specific θp, on the

population level, so that a target population has θp follows roughly a Gaussian distribution of a

given scale (typically unit).

The unidimensional formulation of Eq 1 can be extended to multidimensional traits (repre-

senting each individual using a vector of values rather than a scalar), by fitting models for each

domain (dimension) separately, effectively partitioning tests into domains of items (as per the

PROMIS guidelines [33]). Such item partitioning is typically completed with the aid of linear

factor analysis methods [34] though factorization directly within the nonlinear IRT model is

possible [8].
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In this manuscript, we assume that one has designed a test constituted of ordinal response

items, intended to measure a latent construct in a population. We assume that the items in the

test have already been pre-partitioned, through domain-specific knowledge, empirical meth-

ods, or a combination of both. Note however that the methods in this manuscript may be used

to evaluate item partitioning schemes, in case multiple possibilities are being considered. Addi-

tionally, we assume that one has already administered the test to a representative sample of

individuals within the target population, collecting responses that we will refer to as the cali-

bration data. Fundamentally, we assume that one intends to use the data to create an instru-

ment that will generalize to the wider target population. At this stage, one has the requisite

materials needed for model calibration.

Fig 1. Graded response model. The Graded response model (GRM) with item parameters λ, τ, and person-specific parameters θ.

https://doi.org/10.1371/journal.pone.0266350.g001
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Model calibration

The model in Eq 1 can be learned in many ways. Non-Bayesian approaches typically involve

maximum likelihood estimation (MLE) [35, 36] or the empirical Bayesian procedure of maxi-

mum marginal likelihood (MML) [37], where given a set of responses {xpi}p,i the marginal like-

lihood

Y

p

Y

i

PrðXpi ¼ xpijτ; λÞ ¼
Y

p

Y

i

Z

PrðXpi ¼ xpijyp; τ; λÞdN yp
ðŷp; ŝpÞ ð2Þ

is optimized recursively along with estimates of ability, typically using expectation maximiza-

tion (EM). In Eq 2, the distribution of ability for a person p is approximated using a Gaussian

distribution centered at ŷp of variance ŝ2
p. Hence, model calibration yields estimates for both

item-specific parameters and person-specific parameters.

Bayesian calibration. Fundamentally, the GRM is a high-dimensional nonlinear latent var-

iable model informed using discrete observations. Hence, its fit must be constrained in order to

ensure parametric identifiability. The standard methods for constraining its parameters typically

lie in scaling of the ability parameters across the calibration sample so that they are unit scale.

Beyond this imposition of scaling, most non-Bayesian methods do not use other regularization.

Modern high-dimensional statistical problems have necessitated the development of regulari-

zation techniques. In the Frequentist world, these regularization techniques usually involve pen-

alty functions placed on the objects to be inferred, or hierarchical structure built into the

problem as in the case of mixed effects linear regression. Using well-designed regularization,

one obtains models that perform better at making predictions than those without regularization.

This fact has to do with shrinkage and partial pooling properties of regularized models. Shrink-

age is a statistical property where estimates of effect sizes (parameters) are shrunk towards zero.

Partial pooling is a form of shrinkage where collectively the differences between parameters are

shrunk so that overall group-level means are obeyed. These properties lead to more robust cali-

bration of models in their response to noisy data. At that point, the lines between Frequentist

and Bayesian methods are blurred as regularization can be interpreted as prior information.

In Bayesian modeling of IRT problems, prior distributions are placed on all model

parameters [35]. Even when using diffuse priors, these distributions help regularize the

overall inference problem [23, 24]. Bayesian modeling allows wide latitude in how one

wishes to specify the IRT model. For the purposes of this manuscript, we consider modeling

under the principle of using weakly informative prior distributions [27], for the purpose of

parameter regularization. To put this principle in concrete terms, we consider the overall

probabilistic model for generating Xpid, person p’s response to item i in domain d, on a test

where each item has J possible responses,

Xpid � categoricalðpðdÞpi;1; . . . ; pðdÞpi;JÞ

pðdÞpi;j ¼ PrðXpid ¼ jjfyðdÞp gd; fft
ðdÞ
ij gjgd; fl

ðdÞ
i gdÞ ðsee Eq: 1Þ

l
ðdÞ
i � cauchyþð0; 5Þ

t
ðdÞ
i;j � normalþðmðdÞ

t
; sðdÞ

t
Þ subject to tðdÞi;j > t

ðdÞ
i;j� 1

mðdÞ
t
� normalð0; 5Þ

sðdÞ
t
� cauchyþð0; 1Þ

y
ðdÞ
p � normalð0; sðdÞÞ

sðdÞ � cauchyþð0; 1Þ;

ð3Þ
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where normal+, cauchy+ refer to the non-negative half–normal and half–cauchy distribu-

tions respectively. The model presented in Eq 3, features weakly-informative priors that are

similar to those used in the prior literature [30, 38]. The purpose of weakly informative pri-

ors is to regularize the statistical and computational problem of inferring the parameters of

the model. Weakly informative priors have been shown in many contexts to reduce type-I

and type-M errors in statistical estimation problems [25, 27], including in IRT problems

[26].

Bayesian inference involves computing the statistics of a hierarchical model. For IRT mod-

els, this inference is not analytically tractable and the computations are done typically through

approximate methods like Markov Chain Monte Carlo (MCMC) or Automatic Differentiation

Variational Inference (ADVI) [39, 40].

The end result of calibration are posterior distributions over the model parameters in the

Bayesian setting, or point-estimates in the non-Bayesian setting. Point estimates can also be

obtained from the Bayesian model through consideration of an appropriate loss function. For

example, the posterior mean minimizes L2 loss whereas the posterior median minimizes L1

loss. In many applications, such as the one motivating this manuscript, point-estimate summa-

ries of the model parameters are necessary.

Scoring

While calibration is performed off line, the model is usually intended for online use in the aim

of determining the ability scores of new applicants. This process is known as scoring and per-

tains to estimation of the model’s latent factors (person-specific ability parameters) conditional

on learned posteriors for the item parameters.

In computer adaptive testing, the calibrated IRT model also guides the presentation of

items. Classical methods for item selection have used the local Fisher information matrix, con-

ditional on estimated score [41]. More-contemporary approaches also take score uncertainty

into account [42–44]. Regardless of item selection approach, a method for scoring is necessary.

In scoring, full Bayesian treatment of the calibrated model parameters is often infeasible

and optimization of the likelihood conditional on point-estimates of the item parameters is a

common procedure. As opposed to calibration, in this step the item-specific parameters are

assumed known and fixed. It is also computationally expensive to propagate posterior distribu-

tions of the item parameters so their uncertainty is ignored. Using their point estimates, the

likelihood is maximized relative to the ability estimate of a new person, given his or her pattern

of item responses [34].

To make meaningful comparisons between the ability of people, one must quantify the pre-

cision of the ability estimate. Given the fitted scores, it is common to perform an asymptotic

approximation of the standard error using the Fisher information matrix IðŷpÞ. This approxi-

mation is the Cramer-Rao lower bound,

VarðŷpÞ �
1

IðypÞ
; ð4Þ

an asymptotic bound for the variance for unbiased estimators based on applying Laplace’s

method on the posterior density. It is handy to interpret the ability estimate as if it were Gauss-

ian, using the implied variance estimate of Eq 4, and the mapping

ðŷp; ŝpÞ 7! N yp
ðŷp; ŝpÞ; ð5Þ

where ŝp ¼ 1=

ffiffiffiffiffiffiffiffiffiffi

IðŷpÞ

q

:
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Weighted Likelihood Estimation (WLE) scoring. The commonly-used weighted likeli-

hood estimator [22] (WLE) removes the leading-order asymptotic bias of the maximum likeli-

hood estimator. The asymptotic bias of this particular estimator is Oðn� 1Þ. This estimator is

often used in conjunction with the variance estimate of Eq 4.

Marginal Maximum Likelihood (MML) scoring. We also consider an estimator found

by maximizing the marginal maximum likelihood of Eq 2 with respect to the score directly,

hereby referred to as the MML scoring estimator. For this estimator, we optimize Eq 2 with

respect to the score (ŷp) while using Eq 4 to impose the score variance. This estimator resem-

bles a variational Bayesian estimator under interchange of expectations and logarithms within

the objective.

Expected A Posteriori (EAP) scoring with a compactly-supported prior. Finally, we

consider expected a-posterior (EAP) estimation, using a fully Bayesian procedure where we

regularize score inference using a prior distribution. In particular, we use an explicitly-trun-

cated normal distribution to restrict score estimation within a compact interval surrounding

zero. We believe this restriction to be well-motivated when one realizes that in scoring an indi-

vidual, the model is interpolating that individual into the pre-calibrated model, finding a place-

ment for that individual relative to the people in the original calibration sample.

In calibration, scores for a representative sample of a population are inferred. These scores

follow some distribution, however, the usual assumption is that the scores are approximately

normal. Since the scale of the distribution is arbitrary, let us assume without generality that the

population follows a unit normal distribution on a given trait.

The tails for a normal distribution fall off rapidly. One should expect to observe someone

with scores more extreme than four standard deviations once out of approximately sixteen

thousand times. That ratio becomes one in 1.7 million outside of five standard deviations.

Hence, for an IRT instrument calibrated using 1.7 million respondents, one would not expect

to see scores more extreme than ±5, when placed on unit scale.

Predictive model evaluation

This manuscript evaluates model calibration and scoring methods for the GRM based on the

predictive power of each model’s corresponding Gaussian approximations of ability (Eq 6). In

generality, one measures the predictive power of a model by approximating an appropriate

risk function as computed by the model on new data. The typical ways of doing this task are

cross-validation, and approximate cross-validation through the computation of information

criterion.

Cross-validation involves the separation of datasets into training and testing sets, where the

testing set is left out and the model is fit using the training set. The testing set is then used to

test the model for predictive accuracy. Information criteria in the cases of the Akaike informa-

tion criterion (AIC) and Watanabe-Akaike information criterion (WAIC) [28] are under cer-

tain conditions [32] asymptotic approximations of forms of cross validation. Regardless, the

objective of each of these approaches is to approximate the log likelihood of the model for

future data that is not available at training.

A limitation of each of the information criterion is that they can only be used when making

comparisons between models based on the same data. For this reason, they cannot be used for

looking at inclusion or exclusion of items since two models with different items use different

data. Furthermore, the AIC and WAIC are from different statistical paradigms. The WAIC

[29, 31, 45] is a Bayesian variant of the AIC, scaled to model deviance like the AIC. However, it

operates under the assumption that one uses the full posterior of a Bayesian model in making

predictions. In the scoring step at test administration, computational trade-offs must be made.
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While calibration is performed off line, the model is intended for on-line use in determining

the ability scores of new applicants. In this stage of computation, Bayes is often infeasible, and

optimization of the likelihood is a common procedure. As opposed to calibration, in this step

the item-specific parameters are assumed known and fixed. It is also computationally expen-

sive to propagate posterior distributions of the item parameters, so their uncertainty is

ignored.

Let O ¼ [K
k¼1
O
ðkÞ

, where O(j) \ O(k) = {} for j 6¼ k, represent a partition of the P people that

responded to items for calibration. Leaving out one of the partitions O(k) at a time, one cali-

brates (fits) K sets of model parameters. The outputs of these calibrations are discrimination

parameters l
jOnOðkÞ

and item threshold parameters tjOnO
ðkÞ

. Each calibration, applied to its corre-

sponding left-out data, yields a set of ability estimates and estimates for the standard deviation

of these ability estimates fðŷ jOnO
ðkÞ

p ; ŝ jOnOðkÞp Þgp2OðkÞ : These estimates self-consistently model the

likelihood of the item responses of the left-out people by providing Gaussian approximations

for their abilities θp through the mapping

ðŷ jOnO
ðkÞ

p ; ŝjOnOðkÞp Þ 7! normalypðŷ
jOnOðkÞ

p ; ŝ jOnOðkÞp Þ; ð6Þ

where N yðm; s
2Þ is a Gaussian measure with mean μ and variance σ2. This mapping is crucial

since it allows one to evaluate comparisons by evaluating quantities such as Pr(θp − θq> 0),

while respecting uncertainty in ability estimates.

We wish to evaluate a model based on its predictive ability to forecast item response pat-

terns in a way that is self consistent with such comparisons. To do so, we use the inferred

approximations over the ability distributions and the GRM likelihood to formulate a predic-

tion risk for the given model.

For risk, we consider an approximation of the information loss for a given model M, which

is expressed by the deviance-scaled measure
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ŷ
jOnOðkÞ
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where N is a Gaussian measure and F is the cumulative density function for the unit normal

distribution, is well-known [46].

We use the criterion in Eq 7 to compare regularized Bayesian calibration of the GRM using

the model of Eq 3 to calibration performed using marginal maximum likelihood (MML), cou-

pled with the following scoring methods: expected a-posteriori (EAP), weighted maximum

likelihood (WLE) [22], and marginal maximum likelihood (MML). The criterion being devi-

ance-scaled has the same interpretation as the AIC, consisting of an estimate of the out-of-

sample model likelihood.
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Results

We performed all analyses in R 3.5, with empirical-Bayesian and non-Bayesian analyses per-

formed using the R package mirt. For Bayesian analyses, we used the Stan probabilistic pro-

gramming language [47], interfaced in R using the package rstan. We implemented the

custom EAP scoring method in R, as well as all of the computations behind the cross-valida-

tion metric that we use to compare models. This section mainly shows the results of the com-

parisons performed on both cross-validation folds and on a control sample. The detailed

discussion of the results is provided in the Discussion section.

Comparison of calibration methods on claimant sample

Our main objective is to compare the predictive performance of regularized Bayesian calibra-

tion to unregularized MML calibration across the different scoring methods (EAP, WLE,

MML). To this end, we used response data collected from the target subpopulation of claim-

ants and calibrated the WD-FAB using the Bayesian model of Eq 3 and using MML. To be spe-

cific, we used four-fold cross validation on each domain (BM, CC, CM, FMF, ME, RS, SR,

UBF), leaving out one fold at a time and fitting the model on the remaining responses. From

each model, we computed the cross-validation criteria for each left-out fold. The only excep-

tion was RS, where we instead used three-fold cross validation.

First, we computed the metric of Eq 7 for all pairings of calibration and scoring methods. In

Fig 2, deviance values of Eq 7 are presented for each of the left-out groups. The criterion of Eq

7 takes uncertainty of the estimated scores into account. To look at the predictive accuracy of

the point-estimate for the score, ignoring uncertainty, we considered the same deviance mea-

sure in Eq 7, with the variance taken to be zero, regardless of scoring method. The results of

the point-wise criterion are shown in Fig 3.

Fig 2. Four fold cross-validation comparison of calibration of and scoring choices for 8 domains of the WD-FAB

(lower is better), performed on claimant sample. The deviance measure is computed for each left out fold using Eq 7.

This measure is scaled in-line with the AIC so lower values are better.

https://doi.org/10.1371/journal.pone.0266350.g002
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Comparisons on an out-of-sample control population

For the WD-FAB, the calibration group was taken from a sample of disability claimants. To

put work-related function for these people in context, a separate control sample of adults was

also taken. This sample was meant to be representative of the population at-large. We evalu-

ated the different model calibration and scoring methods on the data, using the same measure

as in Fig 2, except without leaving out folds during calibration. Hence, we evaluated how well

each model, trained solely on claimant data, predicts responses to the test items for the control

population. The results of this evaluation are shown in Fig 4.

Comparing scoring methods

Finally, we evaluated each of the WLE, EAP, and MML scoring methods for consistency with

each other and with scores inferred during model calibration. Recall that calibration also

entails inference of abilities—the item parameters are found self-consistently with these. Fig 5

presents pairwise comparisons of scores obtained using the full Bayesian model, where the

label “Calibration Bayes” corresponds to posterior means of ability estimates inferred at cali-

bration. Shown are scores for the domain BM. We performed the same analysis on models cal-

ibrated using MML. These results are shown in Fig 6. Likewise, in this figure, “Calibration

MML” corresponds to ability estimates for the MML model obtained at calibration.

Discussion

In this manuscript we compared full Bayesian inference of IRT models against marginal maxi-

mum likelihood (MML) based empirical Bayesian inference [48, 49]. Coupled with these these

Fig 3. Point-estimated out-of-sample comparison of calibration and scoring choices on claimant responses for 8

domains of the WD-FAB (lower is better). The point-estimated deviance measure is computed by taking the variance

parameters in Eq 7 to zero. This measure is scaled in-line with the AIC so lower values are better.

https://doi.org/10.1371/journal.pone.0266350.g003
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Fig 4. Out-of-sample out-of-subpopulation comparison of calibration and scoring choices for the 8 domains of

the WD-FAB (lower is better). The deviance measure is given in Eq 7. These are computed on a control group that

was neither used nor intended for use in calibrating the WD-FAB.

https://doi.org/10.1371/journal.pone.0266350.g004

Fig 5. Pairwise comparison of scoring of the Basic Mobility (BM) scale calibrated using the full-Bayesian model. The methods compared are

Warm’s weighted likelihood estimator (WLE), EAP, and MML. Calibration Bayes refers to the score inferred during item calibration.

https://doi.org/10.1371/journal.pone.0266350.g005
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choices for item calibration methodology, we also looked at compactly supported expectation

a-posteriori (EAP) scoring compared to weighted likelihood and MML scoring.

Our evaluation metric, targeted at predictive accuracy, is rooted in the concrete and real life

application of the assessment of work-related physical and mental function. In particular, the

metric is consistent with how scores of such an instrument are typically interpreted—where

the error in the ability estimate is interpreted as if it were the standard deviation of a Gaussian

distribution. Hence, we defined the metric of Eq 7 to be consistent with such an interpretation.

In defining the metric, we use the approximation of Eq 8. We note that using probit rather

than logistic functions to model the item response functions would render such an approxima-

tion unnecessary. Using this metric we found that choices of calibration and scoring method-

ologies clearly matter.

Full Bayesian calibration consistently outperforms MML

In all of our analyses, models calibrated using full Bayesian inference outperformed MML,

across all cross-validation splits and all item domains. This trend is visible in Fig 2, where the

Bayesian models have lower estimated model deviance than the MML models, regardless of

scoring methodology. In some applications, one does not care to interpret uncertainty in scor-

ing. In these situations, one may refer to the analyses of Fig 3, where the results are consistent

with those of Fig 2. The metric used here more-closely resembles Frequentist cross-validation

measures like the AIC that do not account for parameter uncertainty.

Fig 6. Pairwise comparison of scoring of the Basic Mobility (BM) scale calibrated using marginal maximum likelihood (MML). The methods

compared are Warm’s weighted likelihood estimator (WLE), EAP, and MML. Calibration MML refers to the score inferred during item calibration.

https://doi.org/10.1371/journal.pone.0266350.g006

PLOS ONE Regularized Bayesian calibration and scoring of IRT

PLOS ONE | https://doi.org/10.1371/journal.pone.0266350 April 8, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0266350.g006
https://doi.org/10.1371/journal.pone.0266350


Additionally, the Bayesian models transfer better than the MML models. When evaluating

the resulting models on a true out-of-sample set of responses given by the control sample, the

same trends held (Fig 4). While the WD-FAB instrument is meant to be calibrated relative to a

claimant subpopulation, it is not known a-priori whether a given applicant should be a mem-

ber of this population. Hence, it is important for the instrument to generalize and provide

meaningful results for non-claimants as represented by the control sample.

The superiority of full Bayesian calibration was consistent across all scoring methods,

though scoring methods also differed in terms of performance. The EAP and MML scoring

methods exhibited similar performance in all of the cross-validation experiments of Figs 2 and

3. WLE, on the other hand, performed consistently poorly when paired with either MML cali-

bration or full Bayesian calibration. For many of the domains, pairing the full Bayesian model

with WLE scoring was sufficient to remove the performance advantage of Bayesian calibration

over MML calibration.

The WLE approach gives scores inconsistent with item calibration

Focusing on the poor performance of WLE scoring, relative to the other methods, we com-

pared the scores produced using WLE after calibration versus those of other methods. Figs 5

and 6 provide these comparisons using the full-Bayesian and MML calibrated IRT models

respectively.

The item parameters produced in the calibration of these models are self-consistent with

ability estimates produced during calibration. Hence, it is salient to compare the score

obtained with each scoring method against ability estimates produced at calibration.

The WLE scores obtained, conditional on either model, are only weakly-correlated with the

scores at calibration. The WLE is a correction to the first order term in an asymptotic approxi-

mation of the signed score bias [22]. Our results show that such a correction does more harm

than good. Furthermore, we question the motivations behind attempting to correct this mea-

sure of bias, while ignoring other objectives such absolute bias and estimator variance.

EAP regularization for scoring marginally improves predictive

performance

In both Figs 5 and 6, both EAP and MML-based scoring had high correlations (>0.99) with

scores computed at calibration. The MML-based scoring method does well—since the objec-

tive integrates over an estimate of the score uncertainty, which itself induces shrinkage in the

ability estimates. Hence, it is more-regularized than unregularized maximum likelihood or the

WLE.

Comparing EAP and MML directly, the EAP method has explicit regularization imposed

by the truncated Gaussian prior. Hence, while the MML estimator performs some shrinkage,

scores computed with EAP tend to be shrunk relative to MML, particularly at the tails. Impos-

ing compact support on the scoring process guards against facetious extrapolation of the

model beyond the range consistent with calibration. By definition, few calibration subjects fall

into the extremes. Hence, IRT models are, by construction, less certain in estimating tail

behavior within populations.

The shrinkage is most pronounced when performing the comparisons on the MML-cali-

brated IRT model. However, looking at the out-of-sample results of Fig 4, we see that EAP gen-

erally performs better than MML in terms of predictive performance as EAP tends to have

smaller deviances. This behavior is expected because the general population has different char-

acteristics than the subpopulation used at calibration. The regularization in the EAP method

helps guard against instabilities induced by these differences. In Fig 5, using the MML-
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calibrated IRT model, the effects of regularization are clear. EAP shrinks scores but better-pre-

serves relative ordering of scores. In fact, the EAP scores have stronger correlation than the

MML scores are with the scores obtained while calibrating the item parameters using MML.

In this manuscript we compared pairs of calibration and scoring methodologies as applied

to assessing predictive ability of the WD-FAB. In this application, scores and their uncertainty

are used to compare respondents. In-line with the interpretation of the IRT model, we

developed the deviance metric of Eq 7. We found full-Bayesian item response calibration,

coupled with regularized EAP scoring to provide for more-predictive self-consistent model

interpretations.

Limitations and extensions

In this manuscript our goal was to evaluate calibration and scoring of the WD-FAB. For this

reason, we did not formulate the cross validation criterion with item selection in mind—or

other use cases where two candidate models would have a different set of items. A straightfor-

ward method to extend the enclosed methodology to these use cases would be to restrict the

sums of Eq 7 to shared items. Future work will focus on looking at item selection through a

predictive lens.

For process reasons, we used as a starting point of this work the previously-developed

WD-FAB instrument. The development of WD-FAB followed the same procedure as the

Patient-Reported Outcomes Measurement Information Systems (PROMIS) program. And all

study design and sampling was contingent on the use of this program.

Each unidimensional factor in WD-FAB was developed from the exploratory and confir-

matory factor analysis. It would be interesting to investigate how WD-FAB can be developed

using truly multidimensional IRT models [8] which consider the correlation among multiple

factors.
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