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Unsupervised learning techniques, such as clustering and embedding, have been
increasingly popular to cluster biomedical samples from high-dimensional biomedical
data. Extracting clinical data or sample meta-data shared in common among biomedical
samples of a given biological condition remains a major challenge. Here, we describe a
powerful analytical method called Statistical Enrichment Analysis of Samples (SEAS) for
interpreting clustered or embedded sample data from omics studies. The method derives
its power by focusing on sample sets, i.e., groups of biological samples that were
constructed for various purposes, e.g., manual curation of samples sharing specific
characteristics or automated clusters generated by embedding sample omic profiles
frommulti-dimensional omics space. The samples in the sample set share common clinical
measurements, which we refer to as “clinotypes,” such as age group, gender, treatment
status, or survival days. We demonstrate how SEAS yields insights into biological data sets
using glioblastoma (GBM) samples. Notably, when analyzing the combined The Cancer
Genome Atlas (TCGA)—patient-derived xenograft (PDX) data, SEAS allows approximating
the different clinical outcomes of radiotherapy-treated PDX samples, which has not been
solved by other tools. The result shows that SEAS may support the clinical decision. The
SEAS tool is publicly available as a freely available software package at https://aimed-lab.
shinyapps.io/SEAS/.
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INTRODUCTION

Systematic software platforms to organize large metadata and clinical data [also called “clinotype”
(Nguyen et al., 2021)] is essential in biomedical research (Burgun and Bodenreider, 2008; Ohmann
and Kuchinke, 2009). These software platforms, such as (Ta et al., 2018; Kim et al., 2019; Hume et al.,
2020), have two key objectives. First, it allows the biomedical researcher to perform manual cohort
selection quickly. Here, the researcher inputs the filtering query and gets the data from all patients
meeting the filtering criteria. Second, it allows quick data exploration, including data visualization
and simple aggregated analysis. Here, the researcher may view the basic characteristic of the selected
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subcohort, find potential clinical bias, and adjust the filtering
criteria to obtain a better subcohort. Integrating Biology and the
Bedside (Murphy et al., 2010) is a typical example of a clinical
metadata software system. Some systems and techniques may
offer more in-depth and specific analysis. For example, Weng
et al. (2017) implemented a machine-learning based system to
estimate the patients’ cardiovascular risk from the routine
checkup records. Fang et al. (Fang et al., 2014) implemented a
visual analytic system to view patient’s geographical demographic
and disease comorbidities.

On the other hand, the state-of-the-art clinical data software
still has three limitations. First, the simple aggregated analysis has
not been well-developed for categorical clinical attributes.
Therefore, the researcher may not easily find whether a
specific categorical attribute is explicit for the selected cohort
compared to the whole population. Second, methods to quantify
and visualize patients’ similarities have not been implemented.
Therefore, the existing clinical software is likely ineffective in
clinical support scenarios such as “finding the clinical outcome
data about previous patients that are the most similar to the
under-treatment patients”. Third, the existing software does not
support patient clustering. Therefore, they may not automatically
recommend subcohort to the researcher. This feature could
provide new insights to biomedical research; for example, a
tool that quickly shows two clusters in a treatment-selected
cohort may enable a new hypothesis about the treatment
outcome.

This work introduces Statistical Enrichment Analysis of
Samples (https://aimed-lab.shinyapps.io/SEAS/), a software tool
with both online and standalone versions to tackle the above
limitations. SEAS graphical user interface is user-friendly, where
the user interacts by uploading datafile, primarily uses mouse
operations, and requires a very limited amount of typing.
Furthermore, SEAS implements methods to analyze numerical
and categorical data, compute patient similarity, and
automatically cluster the patients. For the demo, we use SEAS
to analyzing the glioblastoma multiforme (GBM) patients’
clinical metadata in The Cancer Genome Atlas Program

(TCGA) (Verhaak et al., 2010) and estimate the clinical
outcome of patient-derived xenograft (PDX) models data.

SEAS FUNCTIONS

Figure 1A summarizes a SEAS session. The required input is the
clinical metadata that is organized in one table. The user may
choose to let SEAS automatically compute and represent the
patients’ similarity in a 2D embedding space or optionally upload
another patients’ scatterplot. Here, each plot represents a patient,
and the distance among the plots should represent patients’
similarities. Then, the user may manually enter a subcohort,
automatically let SEAS select a subcohort, or semi-automatically
choose a subcohort. After selecting a subcohort, SEAS performs
clinical feature enrichment analysis (CFEA) and reports all
enriched features in the selected subcohort.

Automatically Compute Patients’ Similarity
and Embedding
In this step, the categorical clinical attributes are digitized as in
(Zaki et al., 2014). For example, if the categorical attribute X has
three discrete values: low, normal, and high, it can be decomposed
into three binary attributes: is_X_low, is_X_normal, is_X_high. If
a patient has a “high” categorical value for X, then the patient’s
digital representation is (0, 0, 1). On the other hand, the
numerical attributes are normalized using the z-score approach.

After digitizing the clinical attributes, SEAS applies the
embedding method (Figures 2–7) to represent the patients in
a 2D space. By default, SEAS uses the umap (McInnes et al., 2018)
algorithm. Alternatively, the user may also select tSNE (Hinton
and Roweis, 2002) for embedding. SEAS computes patients’
similarities using the 2D embedded coordinate.

Automatically Select a Subcohort
In SEAS, the user can manually define a subcohort by typing the
list of patient IDs (Figure 2). Besides, the user may use SEAS to

FIGURE 1 | Overview of data processing and analysis.
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FIGURE 2 | Screenshot showing that SEAS visualizes the TCGA-GBM patients using embedding, and the user manually selects the subcohort.

FIGURE 3 | SEAS identifies a subcohort by clustering the TCGA-GBM patients (green dots on the top-right of the embedding scatterplot).
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automatically select a subcohort in two ways. In the fully
automatic approach, SEAS applies clustering algorithms to
divide the patient data into multiple groups. Then, the user
selects a group as a subcohort. This approach is preferred
because the clustering results can provide the threshold to

discretize the numerical attributes into categorical attributes,
resulting in the next step. By default, SEAS uses the density-
based clustering algorithm (Ester et al., 1996, Figure 3). In
the semi-automatic approach (Figures 4, 6), the user selects a
patient ID, a radius of “similarity area” in the 2D embedding

FIGURE 4 | SEAS identifies a subcohort by a circle region around PDX JX14P_A datapoint.

FIGURE 5 | SEAS identifies enriched clinical features for the subcohort in Figure 4.
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space. All patients in the circle area are centered by the
selected patient ID, and the radius becomes the selected
subcohort.

Analyze Clinical Feature Enrichment
Besides implementing Wilcoxon-ranksum (Mann and Whitney,
1947) and test between the selected cohort and the whole

FIGURE 6 | SEAS identifies a subcohort by a circle region around PDX JX14P_RT_A datapoint.

FIGURE 7 | SEAS identifies enriched clinical features for the subcohort in Figure 6.
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population for numerical attributes, SEAS defines the CFEA that
can be applied for both numerical and categorical attributes.
Here, we denoted a patient population S and a set of all clinical
attributes C. Given any cohort s in S, the main question is which
attributes are representative or enriched in s. For a categorical
attribute, SEAS applies the hypergeometric test, which compares
the proportions of patients having the attribute between s and S.
This approach is well-known in gene set enrichment analysis
(Falcon and Gentleman, 2008). Here, the null hypothesis is the
proportion of patients having attribute C in s and S is the same.
This is analog to the null hypothesis in the Wilcoxon-ranksum
(Mann and Whitney, 1947) test, where the median of attribute C
in s and S is the same. To apply in numerical data, the numerical
attributes are discretized. For example, in our GBM case study,
“CDE_survival_time” (survival day), which is a numerical
attribute, is discretized into “Discrete_CDE_survival_time
<300 days” and “Discrete_CDE_survival_time ≥300 days.” As
mentioned in the previous section, clustering the patient and
using the cluster to determine the numerical thresholds is a good
approach. SEAS reports all enriched clinical attributes and their
p-values and the Bonferroni adjusted p-value (for false discovery
rate control) (Sedgwick, 2014), as in Figure 5.

Implementing the Software
The SEAS web version is built primarily by bs4Dash (https://
cran.r-project.org/web/packages/bs4Dash/index.html) and
R-shiny (https://shiny.rstudio.com/) packages. Both packages
run based on R and can be hosted inside well-known web
programming languages: HTML, CSS, and javascript. In
addition, the data processing and statistical methods are also
implemented in R.

Demo Using TCGA-GBM Dataset
We acquired and preprocessed TCGA-GBM dataset, which
consists of 389 patients, according to the pipeline in Jia et al.
(2018). The dataset had both the genetic and the clinical sections.
Among 108 clinical attributes, 22 categorical and seven numerical
ones were used to compute patient similarity and embedding
(Supplementary Data S1). Also, we used 45 GBM tumor-
samples hosted in patient-derived xenograft (PDX) models
(Willey et al., 2020). In these samples, the patients were
treated by radiation therapy (RT), but did not have clinical
information. Besides the automatic embedding using the
clinical data, we manually applied tSNE (Hinton and Roweis,
2002) on the combined TCGA-GBM and PDX genetic data as
another 2D representation. We checked the quality of the
embedding by the close positions of the PDX JX14P_A/
JX14P_B sample pair and the PDX JX14P_RT_A/JX14P_RT_B
sample pair. These pairs are replicates of the same patient tumor
JX14P (before radiation therapy) and JX14P_RT (after radiation
therapy—RT), as shown in Supplementary Figure S1.

In this case study, to estimate the clinical outcome of an
unknown PDX sample, we select a TCGA-GBM subcohort
surrounding the PDX sample (Figures 4, 6) and performed
SEAS in the selected TCGA subcohort. In Figures 4, 5, SEAS
shows no enriched clinical feature for sample PDX JX14P_A.
Here, the average survival time among the surrounding TCGA

patients was 339 days. In Figures 6, 7, feature
“Discrete_CDE_survival_time >300”, which means that the
patients who survive for more than 300 days, are enriched
among the TCGA samples surrounding the PDX JX14P_RT_A
sample. Here, the average survival time for these patients was
434 days. This result suggests radiation therapy may improve the
clinical condition of the JX14P patient. Thus, SEAS analysis
suggests two opposite clinical outcomes for GBM patients even
when being treated by the same therapy. The finding could be
helpful in further clinical decisions regarding the selected
patients.

Other Notes About Similarity Measures and
Embedding Options
Similarity Measures
In SEAS, we used the embedded coordinates to compute the
Euclidean distance between two patient datapoints

d(i, j) � �������������������(xi − xj)2 + (yi − yj)2
√

(1)

Here, i and j denotes two patients, d(i, j) denotes the distance
between i and j, (xi, yi) denotes the embedded coordinate for
patient i, and (xj, yj) denotes the embedded coordinate for
patient j. We did not use any other similarity measure because
we assume that the good embedding results already reflect the
patient-wise similarity. In case the user’s defined similarity could
not be reflected by SEAS, the user can manually enter the list of
similar patients to perform the enrichment analysis.

Embedding Options
By default, if the user does not supply the embedding input, SEAS
may use umap (McInnes et al., 2018) or tSNE (Hinton and
Roweis, 2002) to embed the patient from the clinical features. The
embedding algorithms, as in (Konopka, 2020), require a pairwise
distance or similarity matrix. At this release, SEAS supports the
Euclidean distance (default), cosine similarity, and Jaccard index.
Besides, the user is encouraged to supply an embedding file for
more in-depth analysis. For example, in our GBM case study, the
patient pairwise similarity and embedding are computed by the
gene expression data instead of the clinical feature. The PDX have
gene expression data but do not have clinical attributes; therefore,
they could not be embedded correctly with SEAS default option.
When the clinical data is insufficient to compute good embedding
results, we highly recommend the user to use other tools to
compute the embedding prior to using SEAS.

DISCUSSION AND CONCLUSION

To summarize, we developed the user-friendly and online version
of SEAS. The tool can provide new and significant insights into
clinical data research andmay support the clinical decision. In the
future, we expect to develop the add-on version of SEAS, which
can be integrated into I2B2 clinical data management system.

One limitation in this SEAS first release is that we have not
implemented techniques handling missing values in the patients’
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clinical data. To lower the impact of this limitation, we chose the
enrichment methods, such as the hypergeometric test, that do not
require a very large data size. In our GBM case study, the
population consists of 389 patients, which is a moderate size.
However, it is sufficient to perform the statistical test even if the
missing data rate for one clinical attribute is 10%. On the other
hand, we encourage the user to use the non-clinical data to embed
the patients; therefore, the missing clinical data may not impact
the quality of SEAS results. In fact, our GBM case study shows an
approach to infer unknown clinical attributes in PDX data by
SEAS analysis of TCGA-GBM data.
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