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Abstract: The world is living the fourth industrial revolution, marked by the increasing intelligence
and automation of manufacturing systems. Nevertheless, there are types of tasks that are too complex
or too expensive to be fully automated, it would be more efficient if the machines were able to
work with the human, not only by sharing the same workspace but also as useful collaborators.
A possible solution to that problem is on human–robot interaction systems, understanding the
applications where they can be helpful to implement and what are the challenges they face. This
work proposes the development of an industrial prototype of a human–machine interaction system
through Augmented Reality, in which the objective is to enable an industrial operator without any
programming experience to program a robot. The system itself is divided into two different parts:
the tracking system, which records the operator’s hand movement, and the translator system, which
writes the program to be sent to the robot that will execute the task. To demonstrate the concept, the
user drew geometric figures, and the robot was able to replicate the operator’s path recorded.

Keywords: augmented reality; collaborative robots; industrial robots; programming by demonstration

1. Introduction

If we look back a few decades, the factories had big lines of operations where repetitive
work was done by humans. Most of these workers had injuries or fatalities because they
had to perform the same movement thousands of times a day. Now, this hazardous work is
made by machines with high accuracy, which allows humans to conduct tasks that demand
critical judgment [1].

The world is living the fourth industrial revolution, also known as Industry 4.0 [2].
An important aspect of this manufacturing paradigm is the increasing intelligence of
manufacturing systems and decentrally connected cyber-physical systems. The term
intelligence refers to adaptability, autonomy, and flexibility through the decentralized
decision making and an increased data generation and processing [3]. The increasing
need for automation in the industrial environment is due to the markets becoming more
fast-moving and complex. This reduces the product’s life cycle and increases the product
variety, particularly, being more relevant in assembly tasks [4].

Nevertheless, some tasks are too complex or too expensive to be fully automated.
Therefore, it would be more efficient if the machines were able to work with the humans,
not only by sharing the same workspace but also as useful collaborators [5]. A possible
solution to that problem is through human–robot interaction systems, by understanding
the applications where robots can be helpful and what are the challenges they might face.
Collaborative robots can be an ally, working alongside humans. This enables the human
to perform critical tasks that demand reasoning and reflection, leaving the repetitive and
heavy ones to the robots. However, programming this collaborative robot can be a complex
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task that demands expertise in robot programming. For the manufacturing companies, it
translates into extra costs, and the need to hire and train dedicated personnel.

However, is it possible to enable operators to program robots, even when they do
not have any programming knowledge? In an attempt to solve that problem, Learning by
Demonstration uses Machine Learning to program the robots through policies. This way,
the human does not need to work on complex algorithms, the computer generates them by
training the models. Conversely, this implies huge reliability on well-constructed datasets
to achieve valid results and a relatively large amount of time to train the models [6].

As an alternative method, Augmented Reality (AR) can be a viable solution to explore
to improve the effectiveness of tasks executed in the industry environment. In this sense,
this work presents a prototype in which an operator, with no knowledge in robot program-
ming, can program a collaborative or industrial robot. The system was implemented in
Microsoft HoloLens 2, a head-mounted device that the operator could wear. AR technology
is used to teach the robot what tasks it must perform, enabling the operator to program
by demonstration.

The focus of this work is timely as it is necessary to learn and implement the tech-
nologies which most contribute to finding solutions for simpler and more efficient work
in the industry. This way, the companies can save time and money finding a specialist
to do it. Thereby answering the research question formulated: can an operator (without
programming skills) program robots by demonstration using AR technology?

2. Related Work

Industry 4.0 is focused on improving productiveness and enhancing the user ex-
perience, which are key features of AR. Human–robot collaboration is one of the main
application areas of AR in the industry at the moment [7,8]. The pandemic COVID-19
accelerated the evolution of AR and the worldwide spending on these technologies is
expected to grow from $12.0 billion in 2020 to $72.8 billion in 2024 [9]. According to the
International Data Corporation, the 5-year compound annual growth rate will be 54%.

Programming by demonstration can be a very important tool for an operator that does
not have experience or knowledge of computer programming at all. This way they would
be able to program the robot just by doing the task themselves and then the robot would
do the same.

Aleotti et al. [10] proposed a visual-haptic AR system for manipulating objects and
task learning from human demonstration. This proposal it is used a haptic device for object
interaction and a desktop AR setup. The manipulators of the haptic device are located
remotely, not in an environment where the real objects are presented. The object recognition
and registration are performed automatically by a moving laser scanner mounted on a
robot arm. The results obtained with the experiments performed show that the learned
task can be successfully executed by the robot system.

Araiza-Illan et al. [11] proposed a system to re-program robot packing intuitively
through simple hand gestures and information gathered by the AR device (HoloLens).
The experiment setup was composed of a UR10 robot, a multi-finger suction gripper, a wrist
Robotiq camera, two types of objects (sugar sachets, and coffee pods), two trays with
distinct QR markers, and the HoloLens device. The wrist camera was added to increase the
accuracy of the information acquired. In the AR interface, the operator matches each object
to the corresponding tray with hand gestures, and the resulting pick-and-place program is
sent to the robot. The robot was able to execute the task by placing the objects of a certain
type on the respective tray and then repeating it for the other type of objects. If new objects
were added after completion, the robot would continue the task until the objects were
all organized. This way it was possible to quickly re-configure the packing application
without having previous robot programming knowledge.

Rudorfer et al. [12] presented an intuitive drag-and-drop programming method using
AR that could be performed by an operator without robot programming knowledge.
In the implementation the devices used were the Microsoft HoloLens and the UR5 robot,
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integrated into a framework of web services. The main objective was for the user to pick
a recognized object and place it in the desired location so that the robot could imitate
it. The robot started by acquiring the image, then it recognized the object and its pose.
After recognizing all the objects, the objects were displayed in the AR device, overlaying
the real ones. Then, the robot control module extracted the initial and final coordinates
of the desired locations and performed the referential transformations from the camera
referential to the robot referential. Finally, the pick and place task could be executed.
The results obtained by the prototype developed were successful but the robot’s accuracy
was unsatisfactory.

Blankemeyer et al. [4] developed an AR application for HoloLens and the prime
objective was to enable operators to program a pick-and-place task in an industrial robot
by linking real and virtual objects. For that, the user had to move the virtual object to the
desired position. Then the coordinates of the start and end points had to be transformed
from the internal coordinate system of the HoloLens into the robot’s base coordinate system.
Finally, the path planning was carried out directly by the robot controller. The results
of the tests performed showed that the robot was able to complete the tasks with two
components, but the researchers assured that the same could be expected when adding
more components.

In the works referred to in the literature, the user moves virtual objects to the desired
points, and the robot replicates the paths in the real world. Conversely, the purpose of this
study is to develop a system where the operators can virtually draw with their hand the
robot’s path. This approach avoids the usage of markers, providing smoother and easier
path recording.

3. Materials and Methods

The system developed to program robots using AR was divided into two different
subsystems: the one where the path data were acquired and the one responsible for
translating the hand coordinates to the robot’s language and sending them to the robot.
The main objective of the first one was to provide a simple and smooth interface, which
had to be intuitive and cannot contain any distractions, otherwise, the operator could be
confused with the excessive information. The second one focused on the development
of the translators that transformed the received hand coordinates into the different robot
programming languages. As the robots used for the implementation were the Universal
Robots UR5 and the ABB IRB 2600, the translators developed could generate code for
the languages URScript and RAPID. It was opted to develop these translators in Robot
Operating System (ROS). Figure 1 represents the system overview.

• Hand movements were captured by the Microsoft HoloLens 2 (HL2), using the plat-
forms Unity and Visual Studio to program the application, and then the data were
properly transmitted through a Robot Operating System (ROS) topic;

• In ROS, some nodes could subscribe the data received in the specific topic and translate
the list of coordinates acquired to the robot language before sending to the robot;

• Finally, the ROS node connected to the Robot via a socket, and the generated program
was sent to the robot, which executed the previously recorded movement.

Figure 1. System’s overview.



Sensors 2021, 21, 5976 4 of 13

3.1. Augmented Reality Based Robot Programming System

The interaction with the user was designed to be as simple as possible. So, the method
chosen to perform it was to use popup windows. This way they always appeared in
the middle of the user’s field of view and were not anchored in the same place like it
would happen with buttons, which could induce some confusion in the user. Additionally,
when these popup windows appear, they produced a sound, warning the user that the
application state had changed.

3.1.1. Workspace Setup

The interface was divided into three different parts; the first one was where the user
chose what robot was going to be programmed, the second part was where the robot’s
coordinate system was defined, and the third defined the robot workspace. For the purpose
of this work, two different types of robots were chosen to test the developed system,
a collaborative (Universal Robots UR5) and a traditional industrial robot (ABB IRB 2600).
The objective was to integrate two different types of robots and demonstrate that the
programming by demonstration methodology proposed could be generalized to any type
of industrial manipulator, therefore, simplifying the operator’s work in the plant floor.

In order to differentiate the type of robot that the user wanted to program, when the
tracking application was launched, a popup dialog showed up asking the user to choose
the type of robot. This choice would influence the future configurations of the application,
such as the robot workspace.

To be able to program the robot correctly, the robot’s and the HoloLens 2’s coordinate
systems had to match. The HoloLens 2 coordinate system was defined when the application
was initiated at a specific distance from the headset, and it was different every time the
application was launched. In order to solve this problem, a manual coordinate system
had to be define by the user. The HoloLens 2 software did not allow us to define a second
coordinate system, so the method found to work around this problem was to place an object
with the desired pose and then estimate the hand coordinates in relation to that object
and not in relation to the headset. The object chosen was the Gizmo, which represented a
three-axis referential and could verify if the coordinate system was correctly defined.

The HoloLens 2 had an Inertial Measurement Unit (IMU) that defined the Y-axis
always pointing upwards (despite the orientation in which the application was launched),
enabling the coordinate system to be defined with only two points—the origin and the
Z-axis orientation (Figure 2). To minimize the errors of both coordinate systems matching, it
was relevant to have in mind that the points were defined by the projected hand hologram
and not the real hand. Summing up, the application’s coordinate system was defined by
placing the Gizmo in the position of the first point defined by the user and applying a
rotation, so that the Y-axis was pointing forward. This way, the coordinate system defined
in the interface was the one where the Y-Z plane matched the robot’s base plane and the
X-axis pointing upwards.

Figure 2. Coordinate system definition: (a) finger marking the origin’s place. (b) Finger marking the
point that would define the referential frame orientation. (c) Setup finished.

A previous study [13] experimentally evaluated Hololens 2 hand tracking accuracy
using OptiTrack motion capture system (a sub-millimetric precision system) as ground
truth. The experiments were performed by different users to evaluate Hololens 2 behaviour
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with different hand sizes and shapes, as well as different hand movements and velocities.
The results demonstrated an accuracy between 1 and 3 cm, which indicates that this system
is suitable for applications that do not require high precision standards.

To prevent the operator to perform movements that could not be reproduced by the
robot, an hologram of the robot’s workspace was projected into the environment. In addi-
tion to this visual assistance, the application also monitored the operator’s movement and
warns him/her whenever the robot’s workspace was violated.

The robot workspace was adapted accordingly to which robot the user defined, namely,
the dimensions of the objects that limited the working area. The workspace was projected
when the user finalized the coordinate system definition and the object’s materials were
green, only when the user was recording, and when the limits were violated, the materials
turned red, returning to green after confirming in the Dialog that another recording had to
be performed.

For the Universal Robots UR5, the robot’s workspace was quite straightforward
to draw (Figure 3a). So a cylinder inside a sphere was used to create the workspace.
The sphere had a diameter of 1.7 m, as it was the recommended reach, and the cylinder
had a diameter of 0.151 m and a total height of 1.621 m. The available space to record
the movement was the one which intersected the area outside the cylinder and inside
the sphere.

Figure 3. Projected workspace: (a) Universal Robots UR5. (b) ABB IRB 2600.

The user exited the robot’s workspace when his/her right index finger tip has a
distance from the Gizmo (calculated as in Equation (1)) higher than 0.85 m (radius of the
sphere) or a distance from the Gizmo (calculated as in Equation (2)) lower than 0.0755 m
(radius of the cylinder). The calculation to see if the user entered the cylinder was done
only with the x and z measurements because, as the object was a cylinder, the height was
limited with the sphere restriction.

Sphere_distance =
√

x2
Gizmo + y2

Gizmo + z2
Gizmo (1)

Cylinder_distance =
√

x2
Gizmo + z2

Gizmo (2)

where, xGizmo, yGizmo, zGizmo are the coordinates of the user’s right index finger tip in relation
to the Gizmo.

The ABB IRB 2600 workspace was not as simple as UR5. In order to simplify the draw-
ing of the 3D object representing the workspace, the robot’s workspace was approximated
by two spheres, one inside the other, as represented in Figure 3b. The diameters of the
spheres were set to 2.90 m for the maximum limit and 0.94 m for the minimum limit.
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The method used to verify if the user was recording the movement within the robot’s
workspace was similar to the one used for UR5, but, as in this case the workspace is
constituted by two spheres, the equation used to calculate the maximum and minimum
distance was Equation (1). It is worth urging the fact that this design was an approximation
of the robot’s model, as the 3D object drawing was not the core of this work.

3.1.2. Path Recording

This application required being as simple and flexible as possible. In that sense, the use
of buttons was avoided because it could cause some confusion to the operator. Therefore,
the use of gestures was preferred. For convenience, the Air Tap [14] gesture was chosen
to start and finish the path recording. This movement begins with the hand opened, then
touching the thumb with the index finger and, finally, pointing the index finger straight up
toward the ceiling again. The algorithm could recognize Air Tap gestures from both hands
(right and left), so the user could choose the preferred one.

In an effort to simplify the user’s awareness of the system’s state, a small sphere was
added in the right index finger tip; and it was red when the system was not recording
and turned green while it was recording. Additionally, to increase the perception of the
movement recorded, while the user performed the movement the systems drew a line
representing the path. This way, when the user finished the recording, he/she could verify
if the movement was done correctly or if it was not and needs to be repeated. To contrast
with typical materials found in industrial settings, the recorded path is represented in hot
pink. The Figure 4 depicts examples of two paths recorded.

Figure 4. Example of recorded paths: (a) triangle. (b) Square.

The coordinates to send to the robot are the ones relative to the Gizmo object, represent-
ing the robot’s origin. The function developed to perform the transformation had two major
steps: the first one was to calculate the distance vector between the absolute coordinate
(point2trans f orm) and the Gizmo position (originGizmo_ f rame)—Equation (3), and the second
one was to calculate the relative position (relative_coordinates), as shown in Equation (4),
by the product of the rotation transformation matrix (RGizmo_ f rame) of the Gizmo’s referen-
tial frame and the vector_distance, plus the Gizmo’s translation vector (TGizmo_ f rame). It is
worth mentioning that the HoloLens 2 coordinate system was left-handed, whereas the
one used in the robot was right-handed. So, one of the axes was inverted by multiplying it
by −1; this way the application referential resulted in a right-handed one.

vector_distance = point2trans f orm − originGizmo_ f rame (3)

relative_coordinates = RGizmo_ f rame · vector_distance + TGizmo_ f rame (4)

After collecting the path coordinates, to increase the level of abstraction and compati-
bility, they were sent to Robot Operating System (ROS), since ROS drivers already exist for
several robot models. Thereafter the data were analyzed and a program built to send to the
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robot. In order to facilitate the communication between the HoloLens 2 application and
ROS, it was used as base the ROS# library [15].

3.2. Program Translators

A ROS package was created to implement the two program translators, one for each
robot programming language required (URScript and RAPID). There was one additional
adjustment to be done to the coordinates, because in HoloLens 2 application the coordinate
system was defined to have the X axis pointing upwards, whereas the robots’ coordinate
system had the Z axis pointing upwards. Thereby, the coordinates were matched as shown
in Equation (5), where a rotation matrix was applied between both referentials (Figure 5
represents that matching graphically).xrobot

yrobot
zrobot

 =

0 1 0
0 0 1
1 0 0

xHoloLens
yHoloLens
zHoloLens

 (5)

Figure 5. Coordinate system comparison: (a) AR application coordinate system. (b) Robots’ coordi-
nate system.

There were three major steps that the C++ programs followed to translate the coordi-
nates into the robot programming language. First, when the ROS topic received a signal
indicating that the coordinates list was going to be transmitted, the robot program was
initialized. Then, when the topic started receiving the hand coordinates recorded, they
were added to the robot program with the adjustments explained previously (Equation (5)).
Finally, when the topic received a signal indicating the end of the transmission, the robot
program was finalized and closed. This procedure had some minor differences according
to the robot that was programming, which will be explained in the following subsections.

3.2.1. Universal Robots UR5

Firstly, to demonstrate the concept of this work, the program was developed for the
Universal Robots UR5. It was possible to control this robot through different levels, namely,
the Graphical User-Interface Level, the Script Level and the C-API Level [16]. The method
chosen was the Script programming because it would enable the connection between ROS
and the UR5 controller through a TCP/IP socket.

As the desired process was to move the robot’s end-effector to the received coordinates,
replicating the user’s hand movements, the function used in the URScript program was
movel. This function moved the end-effector to the specified position linearly in tool-space,
and it took the following variables as arguments:

• Target pose, which was constituted by the x, y and z coordinates in meters and the
rotations in those axis (rx, ry and rz).

• Tool acceleration, in meters per squared seconds.
• Tool speed, in meters per second.
• Time, which is movements duration and is represented in seconds.
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• Blend radius, which was the tolerance in which the robot’s control assumed that the
end-effector reached its location, and is represented in meters.

When using this function, the programmer could either choose to define the end-
effector’s velocity or the time in which the movement must be executed. In this case, it was
opted to use the velocity instead of the time. All the parameters’ values could be adapted
for the application in which the robot was going to work, this way the robot’s movement
could be adjusted and its speed increased or decreased accordingly. Table 1 shows an
example of a program generated by the ROS nodes with the coordinates recorded by the
AR application to program UR5, using the programming language URScript.

Table 1. URScript program example for UR5.

def myProg():
movel( p [ 0.324881, 0.118973, 0.253622, 2.2, 2.2, −0.3 ], a = 0.01, v = 0.5, r = 0.1)
movel( p [ 0.324776, 0.117087, 0.252939, 2.2, 2.2, −0.3 ], a = 0.01, v = 0.5, r = 0.1)
movel( p [ 0.324623, 0.115607, 0.252753, 2.2, 2.2, −0.3 ], a = 0.01, v = 0.5, r = 0.1)
movel( p [ 0.324372, 0.113685, 0.252663, 2.2, 2.2, −0.3 ], a = 0.01, v = 0.5, r = 0.1)
end

3.2.2. ABB IRB 2600

The industrial robot ABB IRB 2600, as it is not a collaborative robot, it did not have
strength and pressure safety sensors. One of the critical issues was controlling the robot’s
speed, as it was much faster than a collaborative robot. The controller mode of the robot
was defined as semi-manual, meaning that the speed would be automatically reduced to
half and the robot would only move when the user was pressing a button on its teaching
pendant; the moment the user let loose the button, the robot would stop. Additionally,
when executing the program, in the teaching pendant, the speed was defined to be 50%,
consequently, in total the speed was 25% of its programmed value. These security mea-
sures were necessary for the testing steps, but when the programs are correctly verified,
the robot’s velocity can be increased accordingly to the application requirements.

The language used to program this robot was RAPID, as it is a high-level programming
language used to control ABB industrial robots. The generated file that contained the
program had to be initialized, declaring the module and invoking the main function and
then finalized.

The function used to move the robot to the desired positions was MoveL, which moved
the tool center point linearly to a given target, and it took as arguments the variables shown
below [17].

• ToPoint, which had the data type robtarget, and provided the target point of the robot
and the external axis. This variable was defined by four different arrays:

1. The x, y and z vector, which represent the robot’s target position in millimeters,
from the recorded movement by the HoloLens 2 application.

2. The quaternion q1, q2, q3 an q4, which represented the orientation.
3. The robot configuration for axis 1, 4, 6 and external.
4. The configuration of the external joints angles, it was possible to control six

external joints by default.

• Speed, which represented the velocity of the tool center point in millimeter per second.
Alternatively to the speed input, it can be also specified the time in which the robot
should move.

• Zone, which defined the accuracy in millimeters of the robot’s tool center point.
• Tool, which specified the tool in use when the robot moved, the tool center point was

then moved to the target position.
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4. Results

In the following link (https://youtu.be/joV-4uArWDw, accessed on 18 August 2021)
a video is displayed illustrating the experiments performed. Although any path could be
programmed, the first experiment on UR5 was drawing a triangle, for being easy to detect
if it was being correctly performed (three vertices and three edges). Figure 6a,d show the
different moments where the robot reached a vertex. The blue circles numbered and the
orange arrows were added to mark the previous vertices reached by the robot, for a easier
understanding of the movement through the images. Additionally, another experiment
was performed: a square. Figure 7 shows the different moments where the robot reached
each vertex (Figure 7a,e).

Figure 6. UR5 path execution (triangle): (a) Robot at initial point. (b) Robot at second point. (c) Robot
at third point. (d) Robot at final point.

Figure 7. UR5 path execution (square): (a) robot at initial point. (b) Robot at second point. (c) Robot
at third point. (d) Robot at fourth point. (e) Robot at final point.

https://youtu.be/joV-4uArWDw
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The first experiment on ABB IRB 2600 was drawing a triangle, for being easy to detect
if it was being correctly performed (three vertices and three edges). Figure 8 shows the
different moments where the robot reached a vertex. The blue circles numbered and the
orange arrows were added to mark the previous vertices reached by the robot, for an easier
understanding of the movement through the images. Additionally, another experiment
was performed: a rectangle. Figure 9 shows the different moments where the robot reached
each vertex.

A third experiment was performed in a three-dimensional space. Figure 10a shows
the different directions of the drawing following the three axis. In that sense, a three-
dimensional figure was drawn like the Figure 10b. The robot started in point 1 and moveed
through the Z axis to point 2; then, through the Y axis reached point 3; next, to go to
point 4 moved along the X axis; afterwards, to go to point 5 advanced through the Y
axis; finally, to go to point 6 proceeded through the Z axis. Figure 10c,h try to show that
three-dimensional drawing.

Figure 8. ABB IRB 2600 path execution (triangle): (a) Robot at initial point. (b) Robot at second point.
(c) Robot at third point. (d) Robot at final point.

Figure 9. ABB IRB 2600 path execution (rectangle): (a) Robot at initial point. (b) Robot at second
point. (c) Robot at third point. (d) Robot at fourth point. (e) Robot at final point.
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Figure 10. ABB IRB 2600 path execution (3D solid): (a) path referential frame. (b) Path sequence.
(c) Robot at initial point. (d) Robot at second point. (e) Robot at third point. (f) Robot at fourth point.
(g) Robot at fifth point. (h) Robot at final point.

5. Discussion

The main objective of these experiments was to demonstrate the concept of pro-
gramming a robot by demonstration using AR. After analysing the results of these five
experiments, it is possible to conclude that the goal was achieved with both robots. It was
chosen to use robots from different brands to exhibit the feasible generalization. Neverthe-
less, there is always room for improvement. In that sense, this section intends to enumerate
possible improvements to enhance the developed product for a better user experience
and simplicity.

The first simple improvement that could be implemented is the rate of the coordinates
recording. At this point the programs records the coordinates at every frame, but it could
be simplified to record at a fixed rate and a more far-between sample acquisition. As a
matter of fact, this sampling rate could even be adjusted accordingly to the application in
which the system will be applied.

One possible upgrade could be to project an arrow in the headset indicating the next
robot’s movement. This way the operator would be able to anticipate possible reactions
and feel more comfortable alongside the robot.

A possible addition that can be integrated is to consider the hand orientation when
recording. As it was explained, for this case it was only considered the position, so the usage
of the hand’s orientation would make the range of possible applications of the product
wider. For example, enabling it for pick and place applications where some objects require
specific movements to be executed. Following that example of a pick and place application,
it would also be a great addition the possibility of controlling the robot’s end-effector.

Furthermore, the possibility of cutting out the intermediary of the whole process, ROS
in this case, would simplify the user experience for an operator without any programming
knowledge. To accomplish that, the translators would have to be implemented in the
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AR application along with the sockets to communicate with the robots. These additions
could slightly slow down the application, but the advantages that it would provide are
more significant. The main advantage is the fact that the system can work only with the
HoloLens 2 and the robots, avoiding the use of an external computer.

6. Conclusions

The prime objective of this work was to develop a system that would provide the
operator without coding knowledge, a way to program robots using AR technologies.
Therefore, this work proposed a case study where the operator would use a HoloLens 2
device to record movements, and then the robot would replicate those paths.

The system was divided into two different parts: the AR application that would
record the operator’s hand movements, and then the translators that would transform the
recorded path coordinates to the robot language required.

The AR application had the primary goal of providing the user with a simplistic and
easy-to-use application without distractions. In that sense, the interaction with the interface
is made by hand gestures and popup windows, avoiding the use of buttons that could
confine the user to a specific zone. With the coordinate system definition done by the user,
the application projects the robot workspace according to its specifications, which prevents
the operator to record movements out of the robot’s reach.

In order to test the developed system and to validate it, some experiments were made
to demonstrate the concept proposed initially. In that sense, it was opted to draw geometric
figures, because it would be easy to verify if the robot was able to replicate the path.
Therefore, the chosen paths were a triangle, square/rectangle, and a three-dimensional
solid to test that the path drawing could be done in a 3D space. These experiments were
considered successful in both robots, as they were able to replicate the recorded path. It is
worth mention that the orientation and velocity imposed in these experiments were always
the same, although that can be altered accordingly to each robot’s application. Additionally,
it was also tested the case where the user would try to record a path outside the robot’s
workspace, which was immediately interrupted and the user had to restart the recording.

The obtained results allow us to demonstrate the concept of this work, thereby answer-
ing the research question formulated: enabling an operator to program a robot by demon-
stration using AR technology. This work used two robots, a collaborative and an industrial
one, nevertheless the application was built to easily add new ones. For that, the program-
mer only needs to insert the robot’s parameters to define its workspace, and build the
correspondent translator. If this work was to be integrated into Industry, some remarks had
to be considered regarding the robot’s path execution. Namely, the robot’s speed and blend
radius that was hard-coded for these experiments. Accordingly to the robot’s application,
the speed can be increased and the blend radius adjusted to the desired accuracy of the
path execution.

In conclusion, this work provides a viable, effortless, and economic solution for pro-
gramming robots by demonstration, with no need for programming skills. The core of
the work is to avoid the use of markers, providing a smoother and easier path record-
ing method. Moreover, this approach is computationally light-weighted compared to
other Learning from Demonstration techniques, such as Machine Learning approaches.
Although, it is worth mentioning that, due to the system’s accuracy, the proposed work
can only be implemented in applications that do not require less than one-centimeter error.
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