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Abstract: Chronic lymphocytic leukemia (CLL) is a high incidence B cell leukemia with a highly
variable clinical course, leading to survival times ranging from months to several decades. MicroRNAs
(miRNAs) are small non-coding RNAs that regulate the expression levels of genes by binding to
the untranslated regions of transcripts. Although miRNAs have been previously shown to play a
crucial role in CLL development, progression and treatment resistance, their further processing and
diversification by RNA editing (specifically adenosine to inosine or cytosine to uracil deamination)
has not been addressed so far. In this study, we analyzed next generation sequencing data to provide a
detailed map of adenosine to inosine and cytosine to uracil changes in miRNAs from CLL and normal
B cells. Our results reveal that in addition to a CLL-specific expression pattern, there is also specific
RNA editing of many miRNAs, particularly miR-3157 and miR-6503, in CLL. Our data draw further
light on how miRNAs and miRNA editing might be implicated in the pathogenesis of the disease.
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1. Introduction

Chronic lymphocytic leukemia (CLL) is a common B cell tumor of the elderly with a highly
variable clinical course [1]. Patients are classically categorized according to the immunoglobulin heavy
chain variable region (IGHV) mutation status of their CLL cells, with unmutated IGHV indicating
a worse prognosis [2]. A broad panel of genetic aberrations have been defined for CLL, including
chromosomal deletions del13q, del11q, del17p and trisomy 12 and non-synonymous mutations in
more than 50 cancer drivers such as NOTCH1, MYD88, TP53, ATM and SF3B1 [3–5]. While deletions
del11q and del17p result in the loss of tumor suppressors ATM and P53, del13q leads to the deletion
of the microRNAs miR15a and miR16-1, which regulate BCL2 expression—important for cell cycle
regulation and apoptosis [6,7]. Further studies revealed that microRNAs (miRNAs) are substantially
deregulated in CLL and that their specific expression patterns contribute to the development and
progression of CLL and have prognostic and predictive relevance [8–11].

RNA editing is a posttranscriptional mechanism conserved in metazoans, which comprises
adenosine (A) to inosine (I) deamination in RNA by ADARs (adenosine deaminases that act on
RNA) [12] and cytosine (C) to uracil (U) deamination by APOBEC (Apolipoprotein B mRNA Editing
Catalytic Polypeptide-like) enzymes [13,14]. As I is a guanosine analog, A to I editing has the same
effect as an A to G mutation. Consequently, A to I or C to U editing can alter the protein sequence
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of genes, the stability of RNAs and the target sequence of miRNAs. ADAR-mediated RNA editing
has been recently shown to significantly contribute to tissue specific epitranscriptome diversity in
humans, by introducing A to I changes in many mRNA target transcripts [15]. In addition, many
cancer cells were shown to exhibit a specific editing pattern compared to their normal counterpart
cells [12,16–18]. From this panel of edited mRNA transcripts, many of them result in amino acid
changes on the protein level with reported functional differences, contributing to proliferation and
metastasis in cancer [19–22]. In this study, we analyzed miRNA editing in CLL and normal B cells. Our
data revealed that, in addition to the substantial deregulation of specific miRNAs between CLL and
normal B cells, CLL-specific miRNA editing occurs. Our data show, for the first time, a comprehensive
analysis of miRNA editing in CLL and provide a novel insight into how aberrant miRNA expression
and editing contribute to CLL pathogenesis.

2. Results

2.1. Identification of miRNAs Differentially Expressed between CLL and Normal B Cells

First, we analyzed miRNA expression in a set of 44 previously untreated CLL patients and
compared it with that from 23 B cell samples. miRNAs were isolated from purified CLL cells obtained
from patients enrolled in a previously reported clinical trial using rituximab in combination with
fludarabine and lenalidomide (AGMT-REVLIRIT trial, ClinicalTrials.gov Identifier: NCT00738829 and
94 NCT01703364, [23]). The patient characteristics are shown in Table 1.

Table 1. Patient characteristics.

Parameters Total Numbers (%)

CLL samples 44 (100)
Male (%) 24 (55)

Female (%) 20 (45)

Age (years)
Mean 65.9

Median 66.9
Range 43.3–79.8

Duration of disease (years)
Mean 3.8
Range 0–10.3

RAI stage at diagnosis
nda 2 (5)

I 7 (16)
II 15 (34)
III 12 (27)
IV 8 (18)

Molecular risk parameters
Unmutated Ig VH 21 (48)

IGHV nda 5 (11)
FISH karyotype

del11q 9 (20)
del13q 19 (43)
del17p 4 (9)

Trisomy 12 6 (14)
Normal karyotype 5 (11)

Karyotype nda 1 (2)

Treatment status
Untreated at sampling 44 (100)

Untreated at last follow up 0 (0)

CLL, chronic lymphocytic leukemia; IGHV, Immunoglobulin variable heavy chain; FISH, fluorescence in situ
hybridization; nda, no data available.
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High throughput sequencing of microRNAs (miRNAs) was performed on the Illumina platform
(Illumina, Inc., San Diego, CA, USA), and miRNA-seq data from normal B cells were accessed from
repositories. By applying a threshold of false discovery rate adjusted p-values < 0.01, we found a total
of 227 miRNAs differentially expressed between normal and malignant B cells (Figure 1, Table S1).
Although this is far more than previously reported, we could confirm the CLL-specific aberrant
expression of many miRNAs, such as miR-101, miR-10b, miR-140, miR-148, miR-155, miR-181 and
miR-19a [24,25]. In addition, we found four miRNAs differentially expressed according to IGHV
mutation status in CLL, which were miR-125a, miR-30a, miR-99b and miR-10a (Table S2).

Figure 1. Gene expression profiles of miRNAs in CLL (n = 44) and normal B cells (n = 23). The heatmap
indicates the expression values of individual miRNAs (listed on the y-axis) in the respective samples
(listed on the x-axis). Significantly differentially expressed miRNAs are summarized in Tables S1 and S2.

2.2. Identification of miRNAs Editing in CLL and Normal B Cells

To determine miRNA A to I editing in CLL and normal B cell samples, we bioinformatically
screened the miRNA-seq data for A to G (corresponding to I) and C to U changes. In total, we found C
to U editing occurring in 11 (3.5%) and A to I editing in 14 (4.4%) of the 315 miRNAs expressed. Most
of these editing events were at very low editing frequencies (<10%) and low incidence and were not
restricted to CLL samples but occurred also in B cells (Tables S3 and S4). Regarding C to U editing,
we found robust editing (>10% editing frequency) of miR-31 in a single CLL sample and recurrent
miR-184 editing in CLL (9 of 44) as well as in B cells (5 of 23) (Figure 2A). In addition, we noticed the
recurrent C to U editing of miR-106b exclusively in B cells (9 of 23) (Figure 2A). We could not observe
any apparent correlation of C to U editing with miRNA expression (Figure 2B).
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Figure 2. C to U editing in miRNAs from CLL and normal B cells. (A) Editing frequencies are indicated
as a heat map in CLL (n = 44) and normal B cells (n = 23). (B) The heat map shows the fold change in
miRNA expression in normal B cells versus CLL cells, normalized to mean expression in normal B cells.

For A to I editing, we also found many editing events at frequencies <10% (Table S4). However,
we observed the robust (>10% editing frequency) and recurrent editing of miR-589 in two CLL samples
and one B cell sample, of miR-3157 in two CLL samples and of miR-6503 exclusively in CLL cells
(7 of 45) (Figure 3A). Particularly, for miR-6503, we found that editing occurred in samples with high
miR-6503 expression (Figure 3B). Notably, six of the seven patients with editing of miR-6503 were
IGHV-mutated (Figure 3).

Figure 3. A to I editing in miRNAs from CLL and normal B cells. (A) Editing frequencies are indicated
as a heat map in CLL (n = 44) and normal B cells (n = 23). (B) The heat map shows the fold change in
expression in normal B cells versus CLL cells, normalized to mean expression in normal B cells.
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2.3. Clinical and Biological Relevance of miRNA Editing in CLL

Next, we tested the relevance of recurrent (editing in at least two CLL samples) and robust (>10%
editing frequency) miRNA editing, which we observed for miR-184 (C to U), miR-589, miR-3157 and
miR-6503 (A to I). For miR-589 and miR-6503, editing occurred within the seed sequence of the miRNAs
(bases 2–8 from the 5′ end of the mature miRNA), which is essential for proper binding to mRNAs [26]
(Figure 4A). Hence, we next performed genome-wide target prediction for the edited miRNAs using
DIANA-tools and extracted the high-confidence target transcripts (prediction score > 0.9). Thereby, we
confirmed for all miRNAs different targets for their edited and non-edited versions. For miR-184, the
edited version was predicted to target fewer transcripts than the non-edited miRNA (seven shared
targets and two targets for the non-edited version). For miR-589, only 10 targets were shared, while
229 and 342 targets were unique for the edited and non-edited versions, respectively. For miR-3157, the
edited miRNA was predicted to target two novel transcripts in addition to the 18 shared transcripts;
for miR-6503, no targets were shared between the edited and non-edited versions; and 12 versus 32
unique targets are predicted to be recognized by the edited versus non-edited version of miR-6503
(Figure 4A, Table S5).

Figure 4. Significance of miRNA editing in CLL. (A) Sequences of edited miRNAs are shown. The mature
miRNA is shown in red with the edited base indicated in blue. The numbers of predicted high-confidence
mRNA targets for edited and non-edited miRNAs are indicated by Venn diagrams. (B) Progression
free survival (PFS) of 44 CLL patients with or without edited miRNA-184. (C) Progression free survival
(PFS) of 44 CLL patients with or without edited miRNA-3157.

Finally, we monitored whether miRNA editing would correlate with a specific disease development
in the patients within our small cohort of 44 patients. Generally, we found that patients that exhibited
editing of any miRNA had slightly more unfavorable chromosomal aberrations (Table S6). We noticed
that for patients with edited miR-184, progression free survival (PFS) was slightly longer (Figure 4B).
Furthermore, patients exhibiting miR-3157 editing had a shorter (PFS) compared to patients without
miR-3157 editing (Figure 4C). The characteristics of patients with miR-184 or miR-3157 editing
are summarized in Table S7. Strikingly, in multivariate analysis, miR-3157 editing remained the
most powerful independent parameter compared to IGHV mutation status and the presence of the
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chromosomal aberrations del11q or del17p (hazard ratio: 10; 95% confidence interval: 1.8–55; p-value:
0.0076; Table S8). For the other miRNAs, we could not find apparent impact on PFS or time to treatment
(Figure S1).

3. Discussion

RNA editing substantially affects epitranscriptome diversity in humans. Apart from the recoding
of mRNAs, RNA editing contributes to substantial editing of transcribed non-coding Alu-repeats [16,27].
This is important, as non-edited Alu-repeats are recognized by dsRNA sensors such as MDA5 in the
cell, which elicit a pro-inflammatory IFN-response, leading to embryonic lethality [28]. However,
increased IFN signaling upon ADAR inhibition in cancer seemed an attractive therapeutic option,
as this could overcome immune silencing and potentiate immune checkpoint therapies [29].

Aside from in mRNA and transcribed Alu-repeats, editing can also occur in miRNAs and their
precursors. This can alter the specificity of the miRNAs for particular target transcripts and also affect
their processing to mature miRNAs and, hence, their abundance and stability [30].

Normally, the primary miRNA transcript (pri-miRNA) is processed by Drosha in the nucleus,
which yields a 50–70 nt RNA loop called the precursor miRNA (pre-miRNA). The pre-miRNA is
exported from the nucleus and further processed to the mature 21–23 nt dsRNAs by DICER [31].
As ADARs prefer dsRNA structures as targets, miRNAs and their precursors would be ideal ADAR
substrates. Indeed, studies in Caenorhabditis elegans showed that more than 40% of miRNAs’ levels
were altered in ADAR mutant strains, mostly reflected by increased miRNA levels and corresponding
decreased pri-miRNA levels [32]. In CLL, the binding of ADARB1 to pri-miR-15/16/ impeded their
further processing and resulted in the downregulation of mature miR-15/16. As miR-15/16 belong
to the group of tumor suppressor miRNAs, their downregulation in leukemia likely contributes to
disease pathogenesis [33].

Shoshan and coworkers showed that miRNA editing can alter their target specificity and redirects
them to a different mRNA network. They showed that the wild-type, but not edited, version of miR-455
promotes the growth and metastasis of melanoma in vivo by regulating a different set of mRNAs [34].
In line with this initial report, other miRNAs were recently shown to alter target specificity in normal
and malignant tissues upon RNA editing [35–39].

RNA editing is mediated either by ADARs (A to I editing) or by AID (activation induced
deaminase)/APOBEC enzymes (C to U editing). Previous RNA sequencing studies showed that
both catalytically active ADAR members (ADAR and ADARB1) as well as at least some of the
AID/APOBEC family members are expressed in CLL and normal B cells [40]. However, editing is
not only dependent on the presence of specific deaminases but also relies on yet poorly defined
editing cofactors, which likely account for the observed differences in miRNA editing described in
our study [15]. While editing by ADARs is well characterized, editing by AID/APOBECs is still
more enigmatic. From the catalytically active family members (AID, APOBEC1 and APOBEC3A-H),
evidence for RNA editing capabilities could so far be only shown for APOBEC1, APOBEC3A and
APOBEC3G [13,14,41–44]. The editing of miR-184, described in this report, would well fit to the
previously described APOBEC1 target motif A/UCA/U [14]; however, APOBEC1 is hardly expressed in
CLL [40]. By contrast, APOBEC3A and APOBEC3G are both present in CLL and normal B cells, and
there is also evidence for APOBEC3-mediated C to T conversions in genomic DNA from CLL cells,
showing that APOBECs likely contribute to off-target DNA mutations in CLL [40,45,46].

In our study, we provide the first evidence that miRNA editing also occurs in CLL and contributes
to deregulated mRNA network targeting by edited miRNAs, in addition to the previously reported
editing-based alteration of miRNA expression levels in CLL [33]. Particularly, the recurrent (n ≥ 2)
editing of hsa-miR-3157 and hsa-miR-6503 was restricted to CLL cells, which leads to many different
predicted mRNA targets. Particularly, the editing of hsa-miR-3157, although only occurring in two
out of 44 samples led to a shortened PFS, which should be validated and further investigated in
larger cohorts.
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4. Materials and Methods

4.1. Patients

Peripheral blood from 44 chemo-naïve CLL patients participating in a previously reported clinical
trial (AGMT-REVLIRIT trial, ClinicalTrials.gov Identifier: NCT00738829 and NCT01703364) [23]
receiving first line treatment with lenalidomide in combination with fludarabine and rituximab was
collected upon informed consent and ethical approval by the Ethics Committee of the Province of
Salzburg (415-E/1287/4–2011, 415-E/1287/8–2011). Sampling was performed prior to treatment starting,
and CLL cells were obtained by density gradient centrifugation and a B-CLL Cell Isolation kit (Miltenyi
Biotec, Bergisch Gladbach, Germany). The cell purity was >90% in all samples. The determination of
prognostic markers was performed routinely in our department as described previously [23].

4.2. miRNA Sequencing and Bioinformatics

miRNA purification from total RNA, library preparation and sequencing on the Illumina HiSeq
2000/2500 instrument with 1 × 50 bp single reads was performed at Eurofins Genomics (Ebersberg,
Germany). Demultiplexed fastq files were processed using the miARmaSeq software version 1.7
(http://miarmaseq.idoproteins.com). In brief, adapter trimming (TGGAATTCTCGGGTGCCAAGGAA
CTCCAGTCACCGATGTATCT) was performed with CutAdapt [47], sequences were aligned to the hg38
reference genome using STAR aligner v2.7 [48], and read counts were calculated with featureCounts [49]
using gencode v31 miRNA annotations as the target list. Differential miRNA expression was calculated
using the R package “edgeR” [50] with default miARmaSeq parameters (filter = yes, fc_threshold = 1).

miRNA sequencing data from normal B cells were accessed at the Sequence Read Archive (SRA)
(accession number, PRJNA429049). miRNA sequencing data from CLL samples were uploaded to SRA
(submission number, SUB6956031).

4.3. RNA Editing Analysis and Target Gene Prediction

The detection of A to I and C to T editing events was performed using the published pipeline
of Alon et al. [51] (detailed at www.tau.ac.il/~{}elieis/miR_editing/). In brief, adapter-removed fastq
files from the miARmaSeq analysis were aligned to the hg38 reference genome using bowtie1 [52]
(bowtie -n 1 -e 50 -a -m 1 –best –strata –trim3 2). Aligned reads were transformed to counts of each of
the four possible nucleotides at each position along the pre-miRNA sequence, for all pre-miRNAs,
using 30 as the minimum quality score allowed. Next, binomial statistics were performed in order
to separate sequencing errors from statistically significant modifications. Finally, known SNPs were
filtered from the statistically significant modifications by manually examining the sites obtained in the
UCSC genome browser.

DIANA tools MR-microT target prediction for custom miRNAs [53] (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=mrmicrot/index) was used to detect the targets of edited and
unedited mature miRNA sequences of significantly modified miRNAs. Targets with a score of 0.9 or
higher were considered.

5. Conclusions

Our study shows the first thorough miRNA-editing analysis in CLL and normal B cells. As a
main finding, we show that two miRNAs (hsa-miR-3157 and hsa-miR-6503) are edited within the seed
region in a subset of CLL samples but not in B cells. These editing events alter miRNA target specificity
and likely affect the pathogenesis of the disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1159/s1,
Figure S1: Kaplan-Meier plots for progression free survival (PFS) and time to first treatment (TTT) for individual
editing events in CLL, Table S1: miRNA expression in CLL versus normal B cells, Table S2: miRNA expression in
CLL according to IGHV status, Table S3: C to U editing frequencies in CLL and normal B cells, Table S4: A to
I editing frequencies in CLL and normal B cells, Table S5: targets of edited and non-edited miRNAs, Table S6:

http://miarmaseq.idoproteins.com
www.tau.ac.il/~{}elieis/miR_editing/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mrmicrot/index
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characteristics of patients with miRNA editing, Table S7: characteristics of patients with miR-184 or miR-3157
editing, Table S8: multivariate analysis for patients with edited miR-3157.

Author Contributions: Conceptualization, R.G. (Roland Geisberger) and F.J.G.; Methodology, F.J.G.; Software,
F.J.G.; Validation, all authors.; Formal Analysis, F.J.G. and D.F. Investigation, all authors.; Resources, all authors.;
Data Curation, F.J.G., R.G. (Roland Geisberger); Writing—Original Draft Preparation, R.G. (Roland Geisberger);
Writing—Review & Editing, all authors, Visualization, F.J.G., D.F. and R.G. (Roland Geisberger); Supervision,
R.G. (Roland Geisberger); Project Administration, R.G. (Roland Geisberger) and N.Z.; Funding Acquisition, R.G.
(Roland Geisberger), N.Z. and R.G. (Richard Greil). All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the SCRI-LIMCR, the City of Salzburg, the Province of Salzburg
(20102-P1509466-FPR01-2015 and 20102-P1601064-FPR01-2017 to R. Greil), by the K1-COMET Center
Oncotyrol—Center for personalized Cancer Medicine (Project 2.1.3) of the Austrian Research Promotion Agency
(FFG) to R. Greil, a grant from the Paracelsus medical University (PMU-FFF E-19-29-156-ZAB to NZ) and a grant
from the Austrian Science Fund (FWF; P28201 to R. Geisberger). Open Access Funding by the Austrian Science
Fund (FWF).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pleyer, L.; Egle, A.; Hartmann, T.N.; Greil, R. Molecular and cellular mechanisms of CLL: Novel therapeutic
approaches. Nat. Rev. Clin. Oncol. 2009, 6, 405–418. [CrossRef] [PubMed]

2. Hamblin, T.J.; Orchard, J.A.; Gardiner, A.; Oscier, D.; Davis, Z.; Stevenson, F.K. Immunoglobulin V genes and
CD38 expression in CLL. Blood 2000, 95, 2455–2457. [CrossRef] [PubMed]

3. Puente, X.S.; Beà, S.; Valdés-Mas, R.; Villamor, N.; Gutiérrez-Abril, J.; Martin-Subero, J.I.; Munar, M.;
Rubio-Perez, C.; Jares, P.; Aymerich, M.; et al. Non-coding recurrent mutations in chronic lymphocytic
leukaemia. Nature 2015, 526, 519–524. [CrossRef] [PubMed]

4. Landau, D.A.; Carter, S.L.; Stojanov, P.; McKenna, A.; Stevenson, K.; Lawrence, M.S.; Sougnez, C.; Stewart, C.;
Sivachenko, A.; Wang, L.; et al. Evolution and impact of subclonal mutations in chronic lymphocytic
leukemia. Cell 2013, 152, 714–726. [CrossRef]

5. Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.;
Lawrence, M.; Böttcher, S.; et al. Mutations Driving Cll and Their Evolution in Progression and Relapse.
Nature 2015, 526, 525–530. [CrossRef]

6. Calin, G.A.; Cimmino, A.; Fabbri, M.; Ferracin, M.; Wojcik, S.E.; Shimizu, M.; Taccioli, C.; Zanesi, N.;
Garzon, R.; Aqeilan, R.I.; et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl. Acad.
Sci. USA 2008, 105, 5166–5171. [CrossRef]

7. Zenz, T.; Mertens, D.; Küppers, R.; Döhner, H.; Stilgenbauer, S. From pathogenesis to treatment of chronic
lymphocytic leukaemia. Nat. Rev. Cancer 2009, 10, 37–50. [CrossRef]

8. Balatti, V.; Acunzo, M.; Pekarky, Y.; Croce, C.M. Novel Mechanisms of Regulation of miRNAs in CLL.
Trends Cancer 2016, 2, 134–143. [CrossRef]

9. Croce, C.M. MicroRNA Dysregulation to Identify Novel Therapeutic Targets. Curr. Top. Microbiol. Immunol.
2017, 407, 191–203.

10. Rassenti, L.Z.; Balatti, V.; Ghia, E.M.; Palamarchuk, A.; Tomasello, L.; Fadda, P.; Pekarsky, Y.; Widhopf, G.F., 2nd;
Kipps, T.J.; Croce, C.M. Microrna Dysregulation to Identify Therapeutic Target Combinations for Chronic
Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA 2017, 114, 10731–10736. [CrossRef]

11. Javandoost, E.; Majd, E.F.; Rostamian, H.; Koosheh, M.K.-; Mirzaei, H.R. Role of microRNAs in Chronic
Lymphocytic Leukemia Pathogenesis. Curr. Med. Chem. 2020, 27, 282–297. [CrossRef] [PubMed]

12. Eisenberg, E.; Levanon, E.Y. A-to-I RNA editing—Immune protector and transcriptome diversifier. Nat. Rev.
Genet. 2018, 19, 473–490. [CrossRef] [PubMed]

13. Rayon-Estrada, V.; Papavasiliou, F.N.; Harjanto, D. RNA Editing Dynamically Rewrites the Cancer Code.
Trends Cancer 2015, 1, 211–212. [CrossRef] [PubMed]

14. Rosenberg, B.R.; Hamilton, C.E.; Mwangi, M.M.; Dewell, S.; Papavasiliou, F.N. Transcriptome-wide
sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol.
2011, 18, 230–236. [CrossRef]

http://dx.doi.org/10.1038/nrclinonc.2009.72
http://www.ncbi.nlm.nih.gov/pubmed/19488076
http://dx.doi.org/10.1182/blood.V95.7.2455
http://www.ncbi.nlm.nih.gov/pubmed/10787241
http://dx.doi.org/10.1038/nature14666
http://www.ncbi.nlm.nih.gov/pubmed/26200345
http://dx.doi.org/10.1016/j.cell.2013.01.019
http://dx.doi.org/10.1038/nature15395
http://dx.doi.org/10.1073/pnas.0800121105
http://dx.doi.org/10.1038/nrc2764
http://dx.doi.org/10.1016/j.trecan.2016.02.005
http://dx.doi.org/10.1073/pnas.1708264114
http://dx.doi.org/10.2174/0929867326666190911114842
http://www.ncbi.nlm.nih.gov/pubmed/31544709
http://dx.doi.org/10.1038/s41576-018-0006-1
http://www.ncbi.nlm.nih.gov/pubmed/29692414
http://dx.doi.org/10.1016/j.trecan.2015.10.008
http://www.ncbi.nlm.nih.gov/pubmed/27695712
http://dx.doi.org/10.1038/nsmb.1975


Cancers 2020, 12, 1159 9 of 10

15. Tan, M.H.; Li, Q.; Shanmugam, R.; Piskol, R.; Kohler, J.; Young, A.N.; Liu, K.I.; Zhang, R.; Ramaswami, G.;
Ariyoshi, K.; et al. Dynamic Landscape and Regulation of Rna Editing in Mammals. Nature 2017, 550,
249–254. [CrossRef]

16. Paz, N.; Levanon, E.Y.; Amariglio, N.; Heimberger, A.B.; Ram, Z.; Constantini, S.; Barbash, Z.S.; Adamsky, K.;
Safran, M.; Hirschberg, A.; et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res.
2007, 17, 1586–1595. [CrossRef]

17. Paz-Yaacov, N.; Bazak, L.; Buchumenski, I.; Porath, H.; Danan-Gotthold, M.; Knisbacher, B.A.; Eisenberg, E.;
Levanon, E.Y. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors.
Cell Rep. 2015, 13, 267–276. [CrossRef]

18. Han, L.; Diao, L.; Yu, S.; Xu, X.; Li, J.; Zhang, R.; Yang, Y.; Werner, H.M.; Eterovic, A.K.; Yuan, Y.; et al.
The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell 2015,
28, 515–528. [CrossRef]

19. Peng, X.; Xu, X.; Wang, Y.; Hawke, D.H.; Yu, S.; Han, L.; Zhou, Z.; Mojumdar, K.; Jeong, K.J.; Labrie, M.; et al.
A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. Cancer Cell 2018, 33, 817–828. [CrossRef]

20. Chen, L.; Lin, C.H.; Chan, T.H.M.; Chow, R.K.K.; Song, Y.; Liu, M.; Yuan, Y.; Fu, L.; Kong, K.L.; Qi, L.; et al.
Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 2013, 19, 209–216. [CrossRef]

21. Hu, X.; Chen, J.; Shi, X.; Feng, F.; Lau, K.W.; Chen, Y.; Chen, Y.; Jiang, L.; Cui, F.; Zhang, Y.; et al. RNA editing
of AZIN1 induces the malignant progression of non-small-cell lung cancers. Tumor Biol. 2017, 39. [CrossRef]
[PubMed]

22. Shigeyasu, K.; Okugawa, Y.; Toden, S.; Miyoshi, J.; Toiyama, Y.; Nagasaka, T.; Takahashi, N.; Kusunoki, M.;
Takayama, T.; Yamada, Y.; et al. AZIN1 RNA editing confers cancer stemness and enhances oncogenic
potential in colorectal cancer. JCI Insight 2018, 3. [CrossRef] [PubMed]

23. Egle, A.; Steurer, M.; Melchardt, T.; Weiss, L.; Gassner, F.J.; Zaborsky, N.; Geisberger, R.; Catakovic, K.;
Hartmann, T.N.; Pleyer, L.; et al. Fludarabine and Rituximab with Escalating Doses of Lenalidomide Followed
by Lenalidomide/Rituximab Maintenance in Previously Untreated Chronic Lymphocytic Leukaemia (Cll):
The Revlirit Cll-5 Agmt Phase I/Ii Study. Ann. Hematol. 2018, 97, 1825–1839. [CrossRef] [PubMed]

24. Pallasch, C.; Patz, M.; Park, Y.J.; Hagist, S.; Eggle, D.; Claus, R.; Debey-Pascher, S.; Schulz, A.; Frenzel, L.P.;
Claasen, J.; et al. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1
in chronic lymphocytic leukemia. Blood 2009, 114, 3255–3264. [CrossRef]

25. Calin, G.A.; Liu, C.-G.; Sevignani, C.; Ferracin, M.; Felli, N.; Dumitru, C.D.; Shimizu, M.; Cimmino, A.;
Zupo, S.; Dono, M.; et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic
leukemias. Proc. Natl. Acad. Sci. USA 2004, 101, 11755–11760. [CrossRef]

26. Lewis, B.P.; Shih, I.-H.; Jones-Rhoades, M.W.; Bartel, B.; Burge, C.B. Prediction of Mammalian MicroRNA
Targets. Cell 2003, 115, 787–798. [CrossRef]

27. Bazak, L.; Haviv, A.; Barak, M.; Jacob-Hirsch, J.; Deng, P.; Zhang, R.; Isaacs, F.J.; Rechavi, G.; Li, J.B.;
Eisenberg, E.; et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority
of human genes. Genome Res. 2013, 24, 365–376. [CrossRef]

28. Liddicoat, B.J.; Piskol, R.; Chalk, A.M.; Ramaswami, G.; Higuchi, M.; Hartner, J.C.; Li, J.B.; Seeburg, P.H.;
Walkley, C.R. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science
2015, 349, 1115–1120. [CrossRef]

29. Ishizuka, J.J.; Manguso, R.T.; Cheruiyot, C.K.; Bi, K.; Panda, A.; Iracheta-Vellve, A.; Miller, B.C.; Du, P.P.;
Yates, K.B.; Dubrot, J.; et al. Loss of Adar1 in Tumours Overcomes Resistance to Immune Checkpoint
Blockade. Nature 2019, 565, 43–48. [CrossRef]

30. De Sousa, M.C.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through
miRNA Editing. Int. J. Mol. Sci. 2019, 20, 6249. [CrossRef]

31. Shukla, G.C.; Singh, J.; Barik, S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory
Functions. Mol. Cell. Pharmacol. 2011, 3, 83–92. [PubMed]

32. Warf, M.B.; Shepherd, B.A.; Johnson, W.E.; Bass, B.L. Effects of ADARs on small RNA processing pathways
in C. elegans. Genome Res. 2012, 22, 1488–1498. [CrossRef] [PubMed]

33. Allegra, D.; Bilan, V.; Garding, A.; Döhner, H.; Stilgenbauer, S.; Kuchenbauer, F.; Mertens, D. Defective Drosha
Processing Contributes to Downregulation of Mir-15/-16 in Chronic Lymphocytic Leukemia. Leukemia 2014,
28, 98–107. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature24041
http://dx.doi.org/10.1101/gr.6493107
http://dx.doi.org/10.1016/j.celrep.2015.08.080
http://dx.doi.org/10.1016/j.ccell.2015.08.013
http://dx.doi.org/10.1016/j.ccell.2018.03.026
http://dx.doi.org/10.1038/nm.3043
http://dx.doi.org/10.1177/1010428317700001
http://www.ncbi.nlm.nih.gov/pubmed/28849733
http://dx.doi.org/10.1172/jci.insight.99976
http://www.ncbi.nlm.nih.gov/pubmed/29925690
http://dx.doi.org/10.1007/s00277-018-3380-z
http://www.ncbi.nlm.nih.gov/pubmed/29862437
http://dx.doi.org/10.1182/blood-2009-06-229898
http://dx.doi.org/10.1073/pnas.0404432101
http://dx.doi.org/10.1016/S0092-8674(03)01018-3
http://dx.doi.org/10.1101/gr.164749.113
http://dx.doi.org/10.1126/science.aac7049
http://dx.doi.org/10.1038/s41586-018-0768-9
http://dx.doi.org/10.3390/ijms20246249
http://www.ncbi.nlm.nih.gov/pubmed/22468167
http://dx.doi.org/10.1101/gr.134841.111
http://www.ncbi.nlm.nih.gov/pubmed/22673872
http://dx.doi.org/10.1038/leu.2013.246
http://www.ncbi.nlm.nih.gov/pubmed/23974981


Cancers 2020, 12, 1159 10 of 10

34. Shoshan, E.; Mobley, A.K.; Braeuer, R.R.; Kamiya, T.; Huang, L.; Vasquez, M.E.; Salameh, A.; Lee, H.J.;
Kim, S.J.; Ivan, C.; et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and
metastasis. Nature 2015, 17, 311–321. [CrossRef] [PubMed]

35. Blow, M.; Grocock, R.J.; Van Dongen, S.; Enright, A.; Dicks, E.; Futreal, P.A.; Wooster, R.; Stratton, M.R. RNA
editing of human microRNAs. Genome Biol. 2006, 7, R27. [CrossRef] [PubMed]

36. Lopez, J.G.; Hourcade, J.D.D.; Del Mazo, J. Reprogramming of microRNAs by adenosine-to-inosine editing
and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation embryos.
Nucleic Acids Res. 2013, 41, 5483–5493. [CrossRef] [PubMed]

37. Roberts, J.T.; Patterson, D.G.; King, V.M.; Amin, S.V.; Polska, C.J.; Houserova, D.; Crucello, A.; Barnhill, E.C.;
Miller, M.M.; Sherman, T.D.; et al. ADAR Mediated RNA Editing Modulates MicroRNA Targeting in Human
Breast Cancer. Processes 2018, 6, 42. [CrossRef]

38. Yang, W.; Chendrimada, T.P.; Wang, Q.; Higuchi, M.; Seeburg, P.H.; Shiekhattar, R.; Nishikura, K. Modulation
of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol.
2005, 13, 13–21. [CrossRef]

39. Li, L.; Song, Y.; Shi, X.; Liu, J.; Xiong, S.; Chen, W.; Fu, Q.; Huang, Z.; Gu, N.; Zhang, R. The landscape of
miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Res. 2017, 28, 132–143.
[CrossRef]

40. Ferreira, P.; Jares, P.; Rico, D.; Gómez-López, G.; Martínez-Trillos, A.; Villamor, N.; Ecker, S.; Gonzalez-Perez, A.;
Knowles, D.G.; Monlong, J.; et al. Transcriptome characterization by RNA sequencing identifies a major
molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 2013, 24, 212–226. [CrossRef]

41. Sharma, S.; Baysal, B.E. Stem-loop structure preference for site-specific RNA editing by APOBEC3A and
APOBEC3G. Peer J. 2017, 5, e4136. [CrossRef] [PubMed]

42. Sharma, S.; Patnaik, S.K.; Kemer, Z.; Baysal, B.E. Transient overexpression of exogenous APOBEC3A causes
C-to-U RNA editing of thousands of genes. RNA Biol. 2016, 14, 603–610. [CrossRef] [PubMed]

43. Sharma, S.; Patnaik, S.K.; Taggart, R.T.; Baysal, B.E. The double-domain cytidine deaminase APOBEC3G is a
cellular site-specific RNA editing enzyme. Sci. Rep. 2016, 6, 39100. [CrossRef] [PubMed]

44. Sharma, S.; Patnaik, S.K.; Taggart, R.T.; Kannisto, E.D.; Enriquez, S.M.; Gollnick, P.; Baysal, B.E. APOBEC3A
cytidine deaminase induces RNA editing in monocytes and macrophages. Nat. Commun. 2015, 6, 6881. [CrossRef]

45. Rebhandl, S.; Huemer, M.; Greil, R.; Geisberger, R. AID/APOBEC deaminases and cancer. Oncoscience 2015,
2, 320–333. [CrossRef]

46. Rebhandl, S.; Huemer, M.; Gassner, F.J.; Zaborsky, N.; Hebenstreit, D.; Catakovic, K.; Grössinger, E.M.;
Greil, R.; Geisberger, R. APOBEC3 signature mutations in chronic lymphocytic leukemia. Leukemia 2014, 28,
1929–1932. [CrossRef]

47. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011,
17, 10. [CrossRef]

48. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R.
STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [CrossRef]

49. Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence
reads to genomic features. Bioinformatics 2013, 30, 923–930. [CrossRef]

50. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [CrossRef]

51. Alon, S.; Mor, E.; Vigneault, F.; Church, G.M.; Locatelli, F.; Galeano, F.; Gallo, A.; Shomron, N.; Eisenberg, E.
Systematic identification of edited microRNAs in the human brain. Genome Res. 2012, 22, 1533–1540.
[CrossRef] [PubMed]

52. Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and Memory-Efficient Alignment of Short DNA
Sequences to the Human Genome. Genome Biol. 2009, 10, R25. [CrossRef] [PubMed]

53. Reczko, M.; Maragkakis, M.; Alexiou, P.; Grosse, I.; Hatzigeorgiou, A.G. Functional Microrna Targets in
Protein Coding Sequences. Bioinformatics 2012, 28, 771–776. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/ncb3110
http://www.ncbi.nlm.nih.gov/pubmed/25686251
http://dx.doi.org/10.1186/gb-2006-7-4-r27
http://www.ncbi.nlm.nih.gov/pubmed/16594986
http://dx.doi.org/10.1093/nar/gkt247
http://www.ncbi.nlm.nih.gov/pubmed/23571754
http://dx.doi.org/10.3390/pr6050042
http://dx.doi.org/10.1038/nsmb1041
http://dx.doi.org/10.1101/gr.224386.117
http://dx.doi.org/10.1101/gr.152132.112
http://dx.doi.org/10.7717/peerj.4136
http://www.ncbi.nlm.nih.gov/pubmed/29230368
http://dx.doi.org/10.1080/15476286.2016.1184387
http://www.ncbi.nlm.nih.gov/pubmed/27149507
http://dx.doi.org/10.1038/srep39100
http://www.ncbi.nlm.nih.gov/pubmed/27974822
http://dx.doi.org/10.1038/ncomms7881
http://dx.doi.org/10.18632/oncoscience.155
http://dx.doi.org/10.1038/leu.2014.160
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1101/gr.131573.111
http://www.ncbi.nlm.nih.gov/pubmed/22499667
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/19261174
http://dx.doi.org/10.1093/bioinformatics/bts043
http://www.ncbi.nlm.nih.gov/pubmed/22285563
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Identification of miRNAs Differentially Expressed between CLL and Normal B Cells 
	Identification of miRNAs Editing in CLL and Normal B Cells 
	Clinical and Biological Relevance of miRNA Editing in CLL 

	Discussion 
	Materials and Methods 
	Patients 
	miRNA Sequencing and Bioinformatics 
	RNA Editing Analysis and Target Gene Prediction 

	Conclusions 
	References

