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Cachexia is a debilitating comorbidity affecting many lung cancer patients. We have
previously found that cachectic mice with lung cancer have reduced serum ketone body
levels due to low PPARa activity in the liver. Restoring hepatic PPARa activity with
fenofibrate increased circulating ketones and delayed muscle and white adipose tissue
wasting. We hypothesized that the loss of circulating ketones plays a pathophysiologic
role in cachexia and performed two dietary intervention studies to test this hypothesis. In
the first study, male and female mice were randomized to consume either a very low
carbohydrate, ketogenic diet (KD) or normal chow (NC) after undergoing tumor induction.
The KD successfully restored serum ketone levels and decreased blood glucose in
cachectic mice but did not improve body weight maintenance or survival. In fact, there
was a trend for the KD to worsen survival in male but not in female mice. In the second
study, we compounded a ketone ester supplement into the NC diet (KE) and randomized
tumor-bearing mice to KE or NC after tumor induction. We confirmed that KE was able to
acutely and chronically increase ketone body abundance in the serum compared to NC.
However, the restoration of ketones in the circulation was not able to improve body weight
maintenance or survival in male or female mice with lung cancer. Finally, we investigated
PPARa activity in the liver of mice fed KE and NC and found that animals fed a ketone
ester supplement showed a significant increase in mRNA expression of several PPARa
targets. These data negate our initial hypothesis and suggest that restoring ketone body
availability in the circulation of mice with lung cancer does not alter cachexia development
or improve survival, despite increasing hepatic PPARa activity.
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INTRODUCTION

Lung cancer is one of the leading causes of death in the United States. Patients with lung cancer have
a high prevalence of cachexia, which independently predicts the length of survival, response to anti-
cancer therapy, and quality of life (1–4). Cancer cachexia is a systemic metabolic syndrome
characterized by the wasting of skeletal muscle and adipose tissue. It is thought to arise from tumor-
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secreted factors which alter host tissue metabolism and activate
catabolic signaling. In addition to the skeletal muscle and adipose
tissue, we and others have described the dramatic effects that
occur in the liver during cachexia (5–8).

The liver is a critical mediator of metabolic homeostasis
during health and disease. The liver is centrally involved in
regulating systemic carbohydrate metabolism by both storing
and releasing glucose in times of energy surplus and deficit,
respectively. The liver also regulates systemic fatty acid
metabolism and is the primary site of ketone body production.
Both glucose and ketone bodies alter skeletal muscle and adipose
tissue metabolism. For example, ketone bodies such as beta
hydroxybutyrate decrease amino acid degradation and promote
protein synthesis in human skeletal muscle (9). Therefore,
diseases that alter hepatic ketone metabolism can have a broad
impact on skeletal muscle and other peripheral organs.

Ketogenesis and fatty acid oxidation are primarily regulated
by peroxisome proliferator-activated receptor (PPAR)-a, a
nuclear receptor activated by several endogenous and dietary
polyunsaturated fatty acids (10). We and others have previously
found that mice with cachexia have reductions in hepatic fatty
acid oxidation and ketone metabolism, arising from inactive
PPARa (5, 6). When PPARa activity is therapeutically induced
with fenofibrate, a clinically approved PPARa agonist, the
deleterious changes in hepatic fatty acid metabolism are
reversed, blood ketone levels rise, and cachexia is prevented in
mice with lung cancer (5). Based on these data, we hypothesized
that fenofibrate preserves peripheral tissue mass and metabolism
during cachexia by increasing serum ketone levels. To test this
hypothesis, we conducted two prospective, randomized,
nutritional intervention trials that directly and indirectly
increased ketone body availability, and analyzed the
subsequent changes in body weight, survival, and relevant
markers of cachexia in mice with lung cancer.

MATERIALS AND METHODS

Cachexia Model and Lung Tumor Induction
KrasG12D/+;Lkb1f/f mice have been previously described (11).
Mice were housed in a 12-h light/dark cycle and 22°C ambient
temperature and had free access to normal chow (PicoLab
Rodent 20 5053; Lab Diet) and drinking water. Tumors were
induced in adult (12- to 20-wk-old) male and female mice via
intranasal administration of 75 mL of PBS containing 1 mM
CaCl2 and 2.5 × 10 (7) pfu of Adenovirus CMV-Cre (Ad5CMV-
Cre) purchased from the University of Iowa Gene Transfer
Vector Core (Iowa City, IA). A detailed description of the
cachectic phenotype in these mice, its time-course, and its
severity have been published previously (5). Briefly, the
animals develop a cachectic phenotype that comprises
progressive atrophy in type II myofibers, reduced muscle and
total body mass, and worsened spontaneous and forced activity
about 6 weeks after tumor induction. The duration of the cohorts
are 9-12 weeks and mice are euthanized if they reach the
following humane endpoints: >30% loss from peak body

weight or poor body composition score (<2). All animal
studies were approved and maintained as approved by the
Institutional Animal Care and Use Committee (IACUC) of
Weill Cornell Medicine under protocol number 2013-0116.

Interventional Study Design
Intervention 1
Mice (15 male and 8 female) were induced with Ad5CMV-Cre.
Four weeks after induction, mice were stratified by sex and
randomized to continue normal chow or start a very low
carbohydrate (ketogenic) diet (BioServ S3666) for the duration
of the study. Animals were assessed and weighed weekly.
Animals were euthanized if they exceeded a weight loss of 30%
from their peak weight during the study or if they developed a
poor body composition score (<2). All remaining animals were
euthanized at 12 weeks after tumor induction if they did not yet
meet euthanasia criteria.

A pilot study was performed on mice (9 male and 8 female)
that did not undergo tumor induction to test the safety and
efficacy of the ketone ester diet. A subset of the mice (6 male and
5 female) was fed normal chow infused with 10% (v/w) ketone
ester (1,3-butanediol-acetoacetate provided by Disruptive
Enterprises, LLC). The ketone ester diet was compounded,
pelleted, and irradiated by LabDiet (St. Louis, MO). The
remaining mice continued the standard normal chow diet.
After 3 days of acclimation, blood was sampled from the tail
vein every 4 hours for 20 hours to measure beta hydroxybutyrate
levels using a point-of-care ketone meter (Precision Xtra). The
mice were then euthanized.

Intervention 2
Mice (11 male and 10 female) were induced with Ad5CMV-Cre.
Four weeks after tumor induction, mice were randomized to
continue normal chow or start the ketone ester diet. The
remainder of the study was the same as Intervention 1.

Tissue Collection Protocol
Prior to euthanasia, mice were food-deprived for 3 h and then
glucose was measured from tail vein blood using a handheld
point-of-care glucose meter (OneTouch). Euthanasia was
performed using CO2 asphyxiation. Following euthanasia,
whole blood was collected via cardiac puncture and placed into
serum separator tubes on ice. Subsequently, the whole liver was
removed, weighed, and frozen in liquid nitrogen. The white
adipose tissue, lungs, spleen and skeletal muscles were dissected,
weighed, and flash-frozen in liquid nitrogen or fixated in
paraformaldehyde. All tissues were subsequently stored at −80°
C until further processing.

Serum Metabolites and Corticosterone
Blood was centrifuged (10,000 × g for 10 min at 4°C), and serum
was stored at −20°C. Serum b-hydroxybutyrate, Triglycerides
(Stanbio Laboratory), non-esterified fatty acids (Wako Life
Sciences), were determined using commercially available kits.
Serum corticosterone was quantified by ELISA (ALPCO
Diagnostics). The number of samples per cohort that we were
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able to include in our serum analysis varied on the basis of
available blood volume and sensitivity of the kits.

RT-qPCR
Total RNA was extracted from liver tissue (30–50 mg) using
TRIzol (Invitrogen) and a tissue homogenizer (Wuhan
Servicebio technology) at 70 hz for two rounds of 70 s. After
confirming purity, the samples underwent reverse transcription
using VILOMaster Mix (Thermo Fisher). Samples were stored at
-80°C before the qPCR step was conducted on the next day.
Transcripts were amplified using Applied Biosystems TaqMan
Gene Expression Assays (Thermo Fisher) with the following
primers: Acox1 (Mm01246834_m1), Actb (Mm00607939_s1),
Bdh1 (Mm00558330_m1), Ehhadh (Mm00619685_m1),
Hmgcs2 (Mm00550050_m1), Rer1 (Mm00471276_m1), Rplp0
(Mm00725448_s1), Rpl7l1 (Mm00786031_s1). The mRNA
expression levels of the genes of interest were normalized to
the arithmetic mean of the four housekeeping-genes and
calculated according to the delta-delta ct method (12). All
animals included in the analysis were tumor bearing and
displayed a weight loss of >10% from peak weight.

Statistics
Statistical analysis was carried out using Prism 9.3.1 (GraphPad
Software). Individual data points are provided for every graph
and assay with exception of time-course graphs (survival curves,
acute ketone ester experiment). The mean ± SEM is displayed in
addition to the individual data. The statistical test applied was
dependent on the analysis performed and is indicated in each
legend. Unless otherwise stated, a two-way ANOVA was
performed to detect main effects for the dietary intervention,
sex differences and any potential interactions between diet and
sex. Sidak’s multiple comparison test was run post-hoc to
investigate individual differences in the diet response for each
sex. The time course of the acute ketone ester experiment was
investigated using a repeated measures two-way ANOVA and
Holm-Sidak’s multiple comparison test. Survival curves were
compared by a Log-rank (Mantel-Cox) test. Samples from male
and female mice from the ketone ester cohorts were clustered for
RT-qPCR analysis and group differences assessed by an unpaired
t-test. A p-value of <0.05 was deemed as statistically significant,
values between 0.05 and 0.1 are referred to as trends.

RESULTS

A Ketogenic Diet Increases Ketone Bodies
and Decreases Glucose Levels in
Cachectic Mice With Lung Cancer
If ketones are essential to preventing the loss of skeletal muscle
and adipose tissue mass during cachexia, then reactivating
ketogenesis with a dietary intervention should prevent
cachexia. This theory was tested using a high-fat, moderate-
protein, very low carbohydrate (ketogenic) diet, which is known
to initiate ketone body production in the liver (13). The diet was
started four weeks after tumor induction to allow for normal

tumor development. At this time, mice (15 male and 8 female)
were stratified by sex and randomized to continue normal chow
(NC) or start a very low carbohydrate (ketogenic) diet (KD) until
they met endpoint criteria (30% weight loss, a body composition
score <2, or survival at 12 weeks after induction). Beta
hydroxybutyrate levels in the serum of male mice on KD were
elevated to 1.3 mmol/l compared to 0.3 mmol/l in male mice on a
standard chow diet. Similarly, female mice on a ketogenic diet
had mean beta hydroxybutyrate levels of 1.8 mmol/l compared to
0.1 mmol/l in female mice on the control diet. These differences
resulted in a significant main effect for the diet intervention
(p<0.01), and significant post-hoc differences for both sexes
compared to the control groups (p<0.05) (Figure 1A). Glucose
levels were decreased by 47% in male mice on a ketogenic
diet and by 16% in female mice on a ketogenic diet compared
to the control groups, resulting in a significant main effect for
the dietary intervention (p<0.05) and a post-hoc difference
between the male cohorts (p<0.05) (Figure 1B). There was a
main effect for a sex indicating lower levels of circulating
triglycerides in female mice (p<0.01) but no effect of the diet
(p=0.52) (Figure 1C). The ketogenic diet reduced circulating
corticosterone levels by 87 ng/ml in male and by 123 ng/ml in
female mice, but this effect failed to reach statistical significance
(p=0.15) (Figure 1D).

Increased Ketone Availability
and Decreased Glucose Do Not
Improve Survival in Cachectic Mice
With Lung Cancer
Despite the changes in serum beta hydroxybutyrate and blood
glucose, the median survival of male mice on a ketogenic diet was
two weeks shorter than mice on a standard diet (KD: 7.6 weeks,
NC: 9.6 weeks, p=0.07) (Figure 2B). Median survival in female
mice on a ketogenic diet was 8.3 weeks compared to 9.1 weeks for
mice on the control diet (p=0.8) (Figure 2D). Lung mass, a
surrogate for tumor burden, was 59% greater in male animals fed
a ketogenic diet compared to the normal chow group, but there
were no statistically significant main effects for diet (p=0.58), sex
(p=0.3), an interaction between diet and sex (p=0.12), or post-hoc
for the male mice specifically (p=0.17) (Figure 2E). White
adipose tissue showed no main effect for the diet (p=0.11) or
sex (p=0.2) but a trend toward an interaction between diet and
sex (p=0.05), and a trend toward more white adipose tissue in
female mice fed a ketogenic diet (p=0.07) (Figure 2F). For the
gastrocnemius, there was no main effect for the diet (p=0.89) but
a significant effect for sex (p<0.001), a trend for an interaction
effect between diet and sex (p=0.05), and a post-hoc trend toward
a significant decrease in muscle mass for male mice fed a
ketogenic diet (p=0.09) (Figure 2G).

Ketone Ester Supplementation
Acutely and Chronically Elevates
Ketone Body Levels
Ketogenic diets modulate a broad array of metabolic hormones
and metabolites in addition to serum ketones. To directly assess
the role of the ketone body in cachexia, we fed mice a ketone
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FIGURE 1 | A ketogenic diet increases ketone bodies and decreases glucose levels in cachectic mice. Serum beta hydroxybutyrate (A), glucose (B), triglycerides
(C), and corticosterone (D) levels from male and female mice consuming a normal chow diet (NC) or a ketogenic diet (KD). Bars denote mean +/- SEM. # denotes a
significant main effect (p < 0.05) of diet or sex of the animals via a two-way ANOVA, while a * denotes a p-value of < 0.05 for post-hoc analysis comparing NC vs KD
within each sex. We omitted the post-hoc serum analysis for the female cohorts based on the lack of an appropriate sample size in the KD group. Out of originally
four animals in the cohort, two died prematurely leaving us unable to collect sufficient blood for serum analysis.
ester supplement (1,3-butanediol-acetoacetate), which is
metabolized to beta hydroxybutyrate and acetoacetate by the
liver (14). Ketone ester supplements increase the blood ketone
levels without global distortions in systemic metabolism (15, 16).
To confirm the efficacy and safety of feeding mice a ketone ester
supplement, we performed a short pilot study in non-tumor
bearing mice to measure the abundance of beta hydroxybutyrate
in the circulation over a 24-hour period. In male mice, we found
a significant main effect for the diet to elevate beta
hydroxybutyrate levels (p<0.001). Post-hoc analysis determined
that beta hydroxybutyrate levels were elevated with the ketone
ester diet for every single time-point (p<0.05) (Figure 3A).
Similarly, in female wildtype mice beta hydroxybutyrate levels
were significantly increased for the ketone ester diet group
(p<0.05) while post-hoc analysis did not reveal significant
differences for individual time points (Figure 3B). In a 2-week
pilot study using non-tumor bearing mice, the ketone ester diet
had no deleterious effects on food intake, body weight, or
spontaneous activity (Supplementary Figure) so we proceeded
to perform an intervention study in tumor bearing mice.

Like the ketogenic diet intervention study, we induced mice
(11 male and 10 female) with Ad5CMV-Cre and then, 4 weeks
later, stratified by sex and randomized to continue normal chow
or start the ketone ester diet until endpoint criteria. Beta

hydroxybutyrate levels in the serum of tumor bearing mice
showed a significant main effect for the ketone ester diet to
elevate circulating ketones (p<0.01) (Figure 3C). Serum glucose
levels were not significantly impacted by the ketone ester
supplementation (p=0.18) (Figure 3D). We observed no
significant main effects of the diet or the sex of the animals
for circulating triglyceride (Figure 3E) or corticosterone
levels (Figure 3F).

Increased Ketone Availability via Dietary
Supplementation Does Not Improve
Survival in Mice With Lung Cancer
Despite the combination of a balanced diet with increased ketone
availability, male mice on a ketone ester supplemented diet lived
just as long (a median of 9.7 weeks) as mice on a standard diet (a
median of 9.4 weeks) (p=0.62) (Figure 4B). Similarly, female
mice on a ketone ester supplemented diet lived a median of 8.9
weeks after induction of the virus, while animals on the control
diet lived a median of 10.6 weeks (p=0.77) (Figure 4D). There
was no main effect for the diet (p=0.58), sex (p=0.3), or the
interaction between diet and sex (p=0.12) for lung weight
(Figure 4E). For white adipose tissue we found a significant
difference for sex of the animals (p<0.01) with white adipose
tissue mass being on average about 82% lower in female
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FIGURE 2 | Increased ketone availability and decreased glucose do not improve survival in cachectic mice with lung cancer. Individual body weight changes of male
(A) and female (C) mice on a normal chow (NC) or ketogenic diet (KD) normalized to peak body weight over the course of the study. The corresponding overall
survival curves (B, D), lung mass (E), white adipose tissue (WAT) mass (F), and gastrocnemius mass (G) are shown. For the WAT and gastrocnemius, the individual
data points on the graph include biological replicates in the form of bilateral tissues from the same animal. There was no significant main effect for the diet on survival
but a trend for animals on the KD to live a shorter duration (p=0.07). Statistical analysis for E, F, and G was performed via two-way ANOVA. # denotes a significant
main effect (p < 0.05) of sex of the animals. Sample size is indicated in parentheses in the legends of (A–D). The arrows indicate the start of the dietary intervention.
We omitted the post-hoc analysis for tissues of the female cohorts based on the lack of an appropriate sample size in the KD group. Out of originally four animals in
the cohort, two died prematurely leaving us unable to collect the tissue.
compared to male mice (Figure 4F). There was no effect of the
diet (p=0.84) or an interaction between diet and sex (p=0.86) for
white adipose tissue. While there was no main effect of the diet
(p=0.72) on gastrocnemius mass, there was a main effect for sex
differences (p<0.05) and a trend toward an interaction effect
between the sex and the diet (p=0.06), with mass tending to
increase in male- and decrease in female mice (Figure 4G). There
was a significant sex difference for spleen mass (p<0.05) but no
effect of the diet (p=0.79) and no interaction effect
(p=0.13) (Figure 4H).

Ketone Ester Supplementation Activates
Hepatic PPARa
We examined PPARa activity in the liver of mice fed normal
chow and the ketone ester diet. We found that the ketone ester
supplementation increased the mRNA expression of hepatic
PPARa targets. Acox1 mRNA expression increased by 66% in
the liver of mice on the ketone ester diet compared to the control
diet (p<0.05) (Figure 5A). Similarly, Bdh1 expression increased
by 70% in mice fed a ketone ester diet (p<0.05) (Figure 5B). In
line with these observations, we observed trends for increased

Ehhadh and Hmgcs2 expression. Ehhadh increased to 2.5-fold
(p=0.05) (Figure 5C) and Hmgcs2 by 85% (p=0.07) (Figure 5D)
in mice on a ketone ester diet compared to a standard chow diet.

DISCUSSION

In this study, we used two dietary interventions to test the
hypothesis that circulating ketones protect peripheral tissue
mass during cachexia. Both the ketogenic diet and ketone ester
supplement significantly increased blood ketones in mice with
lung cancer, however this increase did not prevent or delay the
onset of cachexia. Furthermore, there was no preservation of
skeletal muscle or adipose tissue mass, and overall survival did
not change. These data clearly negate our hypothesis.

The ketogenic diet has been suggested as a treatment for a
wide range of medical conditions, including migraines (17),
epilepsy (18), multiple sclerosis (19), Alzheimer’s disease (20),
diabetes (21), aging (22), cancer (23), and cancer associated
cachexia (24). One of the primary mechanisms underlying the
purported benefits of the ketogenic diet is the switch from
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FIGURE 3 | Ketone ester supplementation acutely and chronically elevates ketone body levels. Non-tumor bearing mice were fed normal chow (NC) or NC
supplemented with a ketone ester (KE). The resulting serum beta hydroxybutyrate levels over the course of 20 hours are shown for male (A) and female (B) mice.
Tumor-bearing mice were fed NC or KE and the resulting serum beta hydroxybutyrate (C), glucose (D), triglycerides (E), and corticosterone (F) levels are shown.
Statistical analysis for A and B were performed using a two-way repeated measures ANOVA (p < 0.001 for male and p<0.05 for female), with post-hoc testing
showing that serum BHB levels were significantly elevated at every time point in KE males (p<0.05) but not females. For (C–F) statistical testing was performed via
two-way ANOVA. # denotes a significant main effect (p < 0.05) of the diet of the animals. Sample size is indicated in parentheses in the legends of (A, B).
glucose as a primary fuel to fatty acids and ketone bodies.
In support of this concept, we previously reported decreased
levels of beta hydroxybutyrate in mice with lung cancer
induced cachexia, and significant anti-cachectic benefits
when ketogenesis was restored with the PPARa agonist,
fenofibrate (5).

In this study, we anticipated that the ketogenic diet would
activate PPARa, restore ketogenesis, and protect against
cachexia; however, this was not the case. While animals on a
ketogenic diet have substantially higher circulating levels of
ketones, this response did not preserve skeletal muscle mass or
body weight. Furthermore, we observed several worrisome

trends when mice with lung cancer were fed a ketogenic diet.
Male mice tended to have increased tumor burden, decreased
skeletal muscle and adipose tissue mass, and worse survival.
These effects were not observed in the mice fed the ketone ester
supplement, which suggests that the ketone body itself is not
directly involved in these responses. There are numerous
differences between the ketogenic diet and normal chow that
could be contributing to these effects, including the low
carbohydrate and fiber content, the moderate protein
restriction, and large amount of dietary lipids. Bhatt et al.
previously described how loss of Lkb1 makes lung tumors
dependent on fatty acid oxidation, so we speculate that the
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FIGURE 4 | Increased ketone ester availability does not improve survival in mice with lung cancer. Individual body weight changes of male (A) and female (C) mice
consuming a normal chow (NC) or NC supplemented with a ketone ester (KE) normalized to peak body weight over the course of the study. The corresponding
overall survival curves (B, D), lung mass (E), white adipose tissue (WAT) mass (F), gastrocnemius (G), and spleen mass (H) are shown. For the WAT and
gastrocnemius, the individual data points on the graph include biological replicates in the form of bilateral tissues from the same animal. There was no significant
main effect for the diet on survival. Statistical analysis for (E-G) was performed via two-way ANOVA. # denotes a significant main effect (p < 0.05) of sex of the
animals. Sample size is indicated in parentheses in the legends of (A-D). The arrows indicate the start of the dietary intervention.
excess dietary lipids are a major contributor to the worsened
survival (25).

In an attempt to avoid large changes in dietary macronutrient
content, we created a well-balanced dietary formulation that
contains exogenous ketones in the form of a ketone ester. This
diet increased the availability of ketones in the circulation of mice
with and without lung cancer. Nevertheless, the ester had no
effect on survival, body weight, nor skeletal muscle and adipose
tissue mass when it was fed to tumor-bearing mice. These data
suggest that “ketone replacement therapy” using a ketone ester
supplement or ketogenic diet is not a useful strategy to prevent
cachexia in mice with lung cancer.

Previously, we found that mice with lung cancer induced
cachexia have decreased PPARa activity in the liver (5).
Restoring hepatic PPARa with fenofibrate was associated with
an improved disease course and preserved muscle and adipose
tissue mass. To investigate whether PPARa activity plays a
pathophysiologic role in cancer cachexia in this model, we
examined PPARa activity in the liver of mice fed normal chow
and the ketone ester diet. Interestingly, we found that the ester-
fed mice had increased expression levels of PPARa gene targets
in the liver. To our knowledge, this is the first study to show this
effect and it remains unclear how the ester amplifies

PPARa activity. The ester may increase the total abundance of
PPARa by stimulating short-chain fatty acid receptors such as
GPR41/FFA3 (26), GPR43/FFA2 (27) or other G protein-
coupled receptors like GPR109A/HCA2 (28), as has been
shown in neuronal tissue (29). Beta hydroxybutyrate can also
activate AMPK in the livers of rats and AMPK is known to be an
upstream regulator of PPARa in various tissues (30–35).
Nevertheless, the activation of PPARa was not associated with
improved tissue preservation or survival in our model. These
data suggest that the restoration of PPARa in the liver was not
driving the beneficial effects of fenofibrate in our prior study (5).

Our results are in contrast to other reports that describe
improvements in weight and survival in mouse models of cancer
fed ketogenic diets (36–38) and ketone ester supplements (39).
These disparate effects may be due to the inherent differences in
tumor location and molecular drivers of tumor growth in each
pre-clinical model. In this study, we used a genetic model of lung
cancer driven by an activating mutation in Kras and loss of the
tumor suppressor gene, Lkb1 (Stk11). This combination of
genetic alterations enhances tumor fatty acid oxidation and, in
some instances, upregulates ketolytic enzymes (25, 40, 41). In
this setting, the ketogenic diet may enhance tumor progression
by stimulating tumor growth and create deleterious changes to
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FIGURE 5 | Ketone ester supplementation activates hepatic PPARa. Hepatic mRNA expression of the PPARa target genes Acox1 (A), Bdh1 (B), Ehhadh (C), and
Hmgcs2 (D) in mice fed a normal chow diet (NC) or NC supplemented with a ketone ester supplement (KE). Male and female tissues were combined as no sex-
dependent effects were observed. Statistical comparisons between NC and KE were made using a student’s t-test and * denotes a significant difference (p<0.05).
the tumor microenvironment (42). An additional reason for the
discrepancies to other studies could be the composition of our
diet and dosage of the ketone esters, as other studies with
successful outcomes have used a higher dietary content of
ketones in the diet (39).

One limitation of our study is the small sample size of the
female mice in the ketogenic diet cohort, which limits our ability
to detect sex-specific effects. The data were separated by sex to
highlight the known differences in muscle mass and distinct
changes in white adipose tissue that occur in response to diet.
To that end, we observed that female mice with lung cancer
maintained more white adipose tissue on a ketogenic diet than
male mice; however, this change had no positive effect on survival
nor body weight. These observations add to the recent and
important appreciation for sex differences in the field of cancer
cachexia (43–47). Another limitation is the lack of a functional
analysis of the skeletal muscle tissue, which would have allowed us
to investigate whether there had been changes in performance
that were independent from changes in muscle mass.

In summary, increasing ketone body availability and hepatic
PPARa activity through a ketogenic diet or ketone ester
supplementation in mice with lung cancer did not increase
survival, nor did it improve the maintenance of body weight
and muscle mass. Future research needs to delineate the primary
mechanism through which tissue wasting is driven in this model
to improve the design of adequate therapeutical interventions.
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