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Abstract: Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly im-
portant factor affecting the prognosis of patients with head and neck tumor. With the delivery of
high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype,
upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently ac-
tivated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain
neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI.
Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after
irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI
and subsequent neurological and neuropsychiatric disorders.

Keywords: microglia; brain injury; ionizing radiation; cognitive effects; therapy

1. Introduction

Radiotherapy is the mainstay of first-line treatment in primary and metastatic brain
tumors [1]. Unfortunately, irradiated areas always include normal brain tissue that sur-
rounds the tumor, and as a result, many patients experience progressive and irreversible
side effects. At the early stage after radiotherapy, patients may have transient, self-healing
symptoms, including headache, lethargy, fatigue, and attention deficits, whereas more than
50% of oncology patients who survive more than 6 months after whole-brain radiation
develop irreversible cognitive impairment [2–5]. The molecular and cellular mechanisms
behind these effects are complex, involving the production of proinflammatory factors
from microglia, cascades of signal transduction, gliosis, altered neurogenesis, and injury
of endothelial cells (ECs) [6,7]. Currently, multiple radiation strategies that limit normal
tissue toxicity such as hippocampal avoidance radiotherapy, proton beam therapy, and
ultra-high-dose-rate irradiation, have been shown to moderate RIBI in clinical or preclin-
ical studies [8–11]. However, the lack of understanding of cellular responses to ionizing
radiation (IR) in the central nervous system (CNS) has limited the development of new
therapeutic approaches.

Microglia exert various effects in brain development and homeostasis, including neuro-
genesis, phagocytosis of dying or apoptotic neurons, synaptic pruning, formation of neural
circuits, and myelinogenesis (Figure 1A) [12]. Under physiological conditions, microglia are
in a resting state, as neurons express a range of inhibitory factors, such as CD200, CX3CL1,
CD22, CD47, and CD55 [13–15]. They often display a ramified morphology characterized
by small somas and elongated processes and monitor the surrounding microenvironment
with constantly moving processes in all directions [16]. Upon stimulation of the CNS by

Int. J. Mol. Sci. 2022, 23, 8286. https://doi.org/10.3390/ijms23158286 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158286
https://doi.org/10.3390/ijms23158286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2022-117X
https://orcid.org/0000-0002-0699-3424
https://orcid.org/0000-0003-2462-1787
https://doi.org/10.3390/ijms23158286
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158286?type=check_update&version=3


Int. J. Mol. Sci. 2022, 23, 8286 2 of 30

insult such as IR exposure, microglia are in an activated state. Although the phagocy-
tosis of dead cells by activated microglia is vitally important for maintaining the brain
microenvironment homeostasis, persistent activation leads to chronic neuroinflammation
and cognitive impairment in late RIBI [17,18].
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Figure 1. Overview of the role of microglia in healthy brain and radiation-induced brain injury (RIBI).
(A) Physiological functions of microglia in healthy brain. (B) The interaction of activated microglia
with central nervous system (CNS) cell populations mediates the development of RIBI. Ionizing radi-
ation (IR) directly induces microglial activation, while irradiated neurons and endothelial cells (ECs)
release “danger” signals (high mobility group box 1, adenosine triphosphate, uridine diphosphate,
and so on) to exacerbate microglial activation. By participating in complement cascade and secreting
pro-inflammatory mediators such as TNF-α, interleukin-1 (IL-1), and prostaglandin E2 (PGE2), acti-
vated microglia can trigger the astrocytes activation, prevent neurogenesis and neural progenitor cell
(NPC) differentiation, and stimulate the expression of intercellular adhesion molecule 1 (ICAM-1) in
endothelial cells. ICAM-1 accumulation and blood–brain barrier (BBB) damage induced by IR cause
the increased infiltration of peripheral immune cells, and this is exacerbated by monocyte chemoat-
tractant protein-1 (MCP-1/CCL2) secreted by microglia. Subsequently, matrix metalloproteinases
(MMPs) secreted by microglia and infiltrating cells further aggravate BBB damage.
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Traditionally, dichotomous classification was applied to microglia, and activated
microglia was categorized as either in the M1 or M2 state, which represent pro- and
anti-inflammatory states, respectively [19]. Microglia are considered to be in the M1
state after high-dose radiation exposure. They assume an amoebic morphology with
larger soma and shorter protrusions, accompanied by enhanced phagocytosis and the
release of a variety of proinflammatory mediators such as interleukin 1β (IL-1β), IL-6,
reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), etc [17,20]. M2 microglia
phagocytose dead cells and produce anti-inflammatory cytokines and neurotrophic factors.
The M1/M2 definitions were derived from cultured microglia stimulated by a single
cytokine in vitro, which fails to reflect the subtler phenotype of microglia in vivo. Hence,
based on the microglial functional endpoints, rather than on transient morphological
changes or microglial activation markers, we used terms such as “neuroprotective” and
“neurodestructive” to describe the different functional activation states of microglia in this
review paper. Notably, better ways to define microglial activated states should consider
not only different exogenous or endogenous stimuli such as trauma, infection, tumors,
neurodegeneration, etc., but also differences inherent to the organism, including but not
limited to age, sexual dimorphism, regional heterogeneity, and functional status of the
nervous system [19]. In this review, we described the classical and more recent studies of
the contribution of microglia to RIBI, in particular, the molecular mechanisms by which
microglia mediate secondary injury after RIBI. We then highlighted the potential therapeutic
targets that regulated microglia activation and functional diversity, and based on these
findings, we discussed major obstacles for preclinical studies and clinical translation.

2. Overview of Microglia Physiological Functions

Fate mapping revealed that microglia originated from myelo-erythroid progenitor
cells in the mammalian yolk sac. These progenitor cells migrate into the brain between
embryonic day 9.5 and 14.5 in mice [21–23]. In humans, microglia begin to invade and
colonize in the brain around 4.5 to 5.5 weeks of gestation, prior to the formation of the
vascular system and blood–brain barrier (BBB), and the development of astrocytes and
oligodendrocytes [24]. In contrast to macrophages in other tissues, microglia density
remains stable over the lifetime of mice and humans, which relies on microglia local
proliferation. They renew themselves at a low rate via coupled apoptosis and proliferation
without the supplement of circulating progenitors from blood or bone marrow [25,26].
In addition, microglia generation is dependent on multiple cytokines such as colony
stimulating factor 1 (CSF-1), IL-34, and IL-1 [27,28], as well as transcription factors PU.1
and interferon regulatory factor 8 (IRF8) [29].

The heterogeneity of microglia in terms of temporal, spatiality, and gender has been
extensively studied. Nowadays, the application of bulk RNA-sequencing (RNAseq) and
single-cell RNAseq in transcriptomics further indicates diversity in microglia gene char-
acteristics due to regional microenvironment and age differences [30,31]. Studies at the
microglial transcriptome level have revealed distinct gene expression profiles and func-
tional characteristics at different stages of brain development [32,33]. For example, early
microglia exhibit an amebic morphology akin to the activated states and are enriched
for a variety of expressed genes associated with cell proliferation, DNA replication, and
lysosome, which may reflect the enhancement of microglia proliferation and synaptic prun-
ing at the embryonic and early postnatal stage [31,33,34]. In contrast, single-cell RNAseq
exhibits less than 20 genes differentially expressed by adult microglia distributed across
different brain regions, implying the homogeneity of adult steady-state microglia [32].

During embryogenesis, microglia participate in shaping functional structures of neu-
ronal networks by removing excess neurons and guiding neuronal migration [12]. Adult
microglia maintain the homeostasis of the adult neurogenic niches by phagocytosis of
apoptotic neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) that are not
integrated into the hippocampal circuit [35]. Partial ablation of microglia reduced the
survival ratio of neuroblasts in the DG [36]. Neurotrophic factors derived from microglia,
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such as brain-derived neurotrophic factor (BDNF) [37], transforming growth factor-β
(TGF-β) [38], and insulin-like growth factor-1 (IGF-1) [39,40], play an irreplaceable role
in neurogenesis and neuron survival. In particular, IGF-1 promoted neurogenesis in the
SVZ and maintained the survival of cortical neurons in cerebral ischemic injury, while
the administration of IGF-1 inhibitors caused significant death of cortical neurons [40,41].
CX3CR1 is a chemokine receptor belonging to the G protein-coupled receptor family and is
almost exclusively expressed by microglia in the CNS [42]. The disruption of fractalkine
(FKN)/CX3CR1, as one of the signaling pathways for microglia–neuron communication,
reduced the survival and proliferation of neural progenitor cells. This aftermath pos-
sibly results from the fact that CX3CR1 blockade or knockout alters the generation of
neurogenesis-promoting cytokines from microglia [43,44]. In addition, a study of SVZ
microglia suggested that depletion of microglia impairs migration of neuroblasts to the
olfactory bulb through a rostral migratory stream [45].

Microglia with robust phagocytosis shape neural networks by eliminating redun-
dant synapses selectively through axonal and dendritic pruning during postnatal brain
development [46,47]. Synaptic components have been found in the cytoplasm of mi-
croglia, especially in lysosomes [47,48]. More importantly, with the observation of slices of
organotypic hippocampal cultures with focused ion beam scanning electron microscopy,
time-lapse images show processes by which microglia actively engulf synaptic compo-
nents [49]. The complement system is typically involved in synaptic pruning. Complement
protein C1q initiates complement cascade and C3 aggregates at redundant synapses, fol-
lowed by phagocytosis of labeled synapses by microglia expressing complement receptor-3
(CR3) [48]. Wang et al. reported that in the hippocampus of adult mice, microglial involve-
ment in the elimination of remote memory-related synapses is mediated by the complement
pathway [50]. Depletion of microglia by diphtheria toxin or PLX3397 or inhibition of the
classical and alternative complement pathways by CD55 significantly improved memory
amnesia in mice subjected to contextual fear conditioning, suggesting that elimination of
synapses via the microglial complement pathway exacerbates memory amnesia [50]. In
addition to the complement system, microglial surface receptors CX3CR1 and triggering
receptor expressed on myeloid cells 2 (TREM2) have a positive effect on synaptic pruning,
which is inhibited in mice with relevant gene knockout [47,51,52].

In contrast to synaptic pruning, microglia also promote synapse formations. In the
mouse somatosensory cortex of the first two postnatal weeks, the contact of microglia with
dendritic spines induced Ca2+ transients and actin accumulation at the contact sites, which
promoted the formation of filopodia that were required for synaptogenesis [53]. In adult
mice, neuron-derived IL-33 can incite microglia to remodel the extracellular matrix, thereby
enhancing synaptic formation and memory consolidation [54]. Microglia also release IL-10
to increase the number of dendritic spines of hippocampal neurons, as well as BDNF to
promote learning-dependent synapse formation [55,56]. Genetic depletion of BDNF from
microglia of mice lessened synapse remodeling and caused deficits in multiple learning
tasks [56]. In short, the effects of microglia on synapses are bidirectional. They not only
promote formations of functioning synapses but also remove superfluous synapses, shape
neural circuits, and therefore affect advanced brain function such as memory and learning.

For myelinogenesis, microglia create a microenvironment conducive to oligodendrocyte
progenitor cell (OPC) recruitment and maturation by phagocytosing myelin debris, modifying
the extracellular matrix, and secreting IGF1, IL-1β, activin A, and galectin 3 [57–60]. Before and
after myelination, clearance of dead and partially surviving oligodendrocytes in a microglial
phagocytosis-dependent manner maintains proper myelination [59,61]. In a neuronal activity
study in zebrafish, microglial, under the regulation of neuronal activation, also specifically
engulf myelin sheaths [57]. Microglial depletion or phagocytosis inhibition by knockdown
CX3CR both increase the incidence of ectopic myelin, abnormal myelin structure, and excessive
OPC population [57,61].
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3. Microglia in Radiation-Induced Brain Injury

Following IR, microglia sense microenvironmental changes immediately and react
accordingly. By interacting with neurons, ECs, astrocytes, and oligodendrocytes, these
cells mediate brain pathogenesis, including BBB disruption, infiltration of peripheral im-
mune cells, neuronal death, inhibition of neurogenesis, and structural damage of synapses
(Figure 1B) [62–65].

3.1. Microglial Activation

DNA damage caused by IR is an important activator of microglia. High LET directly
ionizes DNA molecules, while low LET tends to indirectly damage DNA through ROS and
free radicals originating from water radiolysis [6,66,67]. Damaged DNA can quickly trigger
the activation of transcription factors such as nuclear factor κB (NF-κB), cAMP response
element-binding protein (CREB), and activating protein 1 (AP-1), which control intracellular
ROS generation and gene expression of inflammatory factors including IL-1β, TNF-α,
cyclooxygenase 2 (COX-2), and monocyte chemoattractant protein-1 (MCP-1/CCL2) [18,68].
While healthy neurons release factors that inhibit microglial activation, radiation-induced
damaged or dead neurons reduce this inhibition and increase the production of various
chemokines, cytokines, reactive oxygen species, and ATP [13,63,69]. By virtue of abundant
receptors on their cell membrane, microglia sense and respond to the changes of “danger”
signals in the surrounding environment. For instance, high mobility group box 1 (HMGB1)
from neurons or ECs and microglial toll-like receptor 4 (TLR4) expression were upregulated
after IR, and the combination of both promoted microglial activation [70,71]. Peripheral
immune cells infiltrate the brain tissue following radiation-induced damage to the BBB,
and they produce ROS, which in turn activates microglia [3].

Once activated, microglia move towards the injury site, phagocytose apoptotic neu-
rons and cell debris, and produce large amounts of pro-inflammatory mediators [72]. It was
shown that following in vivo or in vitro irradiation higher than 7 Gy, microglia produced
high levels of ROS, NO, IL-1, TNF-α, IL-6, COX-2, MCP-1, and intercellular adhesion
molecule 1 (ICAM-1) [20,62,73–76]. These pro-inflammatory mediators exacerbated RIBI.
Studies in rodents have also shown that activated microglia and TNF-α remained at high
levels for at least 6 months after a single high dose of irradiation [77,78]. Such persistently
activated microglia continuously release pro-inflammatory factors, which maintain the
inflammatory status of the brain microenvironment and further inflict neuronal and pro-
genitor cell death, leading to a vicious circle characterized by microglial activation, release
of inflammatory factors, and neuronal death [79]. Persistent inflammation also inhibits neu-
rogenesis in the juvenile and adult hippocampus as X-ray irradiation with 2 Gy at postnatal
day 10 induces impairment of neurogenesis, even when animals are six month old [80].
X-ray irradiation of adult mice with 10 Gy suppressed the proliferative capacity of neural
progenitor cells (NPCs) in the DG region and induced NPCs to differentiate towards glial
cells, which was attributed to an inflammatory response, as aggressive anti-inflammatory
strategies partially restored the proliferative capacity of NPC to neurons. Importantly,
cognitive and behavioral modifications correspond with increased microglial activation,
and administration of anti-inflammatory agents also reduced cognitive impairment in
rodent [65,79,80]. It should be noted that factors affecting microglia activation, such as
age, gender, environment, and cell interactions with microglial cells, and expression and
activation of different receptor on microglia may affect the efficacy of anti-inflammatory
strategies [19]. Furthermore, recent research suggests that radiation-induced enhance-
ment of microglial phagocytosis causes alteration of synaptic plasticity, partly resulting in
cognitive impairment. These are further discussed in detail in Sections 4 and 5.

3.2. ROS/RNS Production and Oxidative Stress

A delicate balance between reactive oxygen/nitrogen and antioxidants is essential for
the maintenance of normal physiological function of the CNS. In RIBI, the disruption of
equilibrium often means the excessive accumulation of ROS/RNS in the cell, leading to lipid
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peroxidation, protein degradation, and DNA damage reactions [81]. Microglia respond to
the pathogen- and stressors-associated molecular patterns through the production of ROS
and protect normal tissues from insults [81,82]. However, high doses of IR induce excess
ROS production, which is further amplified with increasing radiation doses [83,84].

Enzymatic and non-enzymatic reactions are the main pathways of ROS production.
After radiation exposure, non-enzymatic ROS are generated in large amounts along with
mitochondrial respiration of microglia [84]. NADPH oxidase (NOX) consists of Nox1 to
5 and dual oxidases 1 and 2 and promotes enzymatic ROS production in most cells [85].
Microglia express high levels of NOX, particularly NOX-2 [86]. NOX-2 expression is
significantly elevated in the brain within hours after IR, and the NOX-2 inhibitors apocynin
and diphenylene iodonium, or the neutralizing antibody to NOX-2 significantly reduced
radiation-induced ROS production [87]. In irradiated microglia, NOX activation-mediated
ROS production is modulated by the mitogen-activated protein kinases (MAPKs) signaling
cascade through phosphorylation of c-Jun, a component of AP-1 transcription factors [88,89].
Mitochondrial translocator protein 18 kDa (TSPO) is located on the outer mitochondrial
membrane, similar to NOX2, and it is upregulated in reactive microglia [90,91]. It has
been shown that gamma irradiation with 2 Gy upregulated TSPO expression in primary
microglia [90]. TSPO is associated with ROS generation and subsequent oxidative stress.
Stimulation of primary microglia with TSPO typical ligands PK11195 and Ro5-4864 induced
ROS production, and prior application of a NOX inhibitor reversed this effect [92]. Two
recent studies have revealed more details on this interaction between TSPO and NOX in
microglial ROS production [93,94]. In mice with selective deletion of TSPO in microglia, it
has been demonstrated that TSPO-mediated ROS generation is Nox1 dependent in reactive
microglia, and an increase in cytosolic calcium concentrations is necessary for functional
coupling between TSPO and NOX-1 [93]. On the other hand, TSPO interacts with NOX2
subunits gp91Phox and p22Phox in resting microglia. This interaction is disrupted after
endotoxin exposure, resulting in upregulation of TSPO at the mitochondria and plasma
membrane, which provided a biophysical foundation for their interaction that regulates
ROS production under radiation conditions [94]. In addition to affecting mitochondria-
associated oxidative stress, TSPO also affects the microglial genomic function. TSPO is
involved in inflammatory transcriptional programs, including NLRP3 inflammasome, NF-
κB, and MAPK [95–97], leading to the release of multiple cytokines. In primary human,
mouse, and rat microglia, PK11195 has been shown to inhibit LPS-induced production
of inflammatory factors such as TNF-α, IL-6, and NO [98–101]. Recently, treatment of
microglia with the new generation TSPO ligands 2-cl-mgv-1 and mgv-1 also reduced the
production of COX2, iNOS, and NO after LPS stimulation [101,102].

Another cause of ROS accumulation is dysregulation of complex antioxidant systems.
Microglia contain superoxide dismutase, catalase, and NADPH-regenerating enzymes, as
well as a high concentration of glutathione and enzymes necessary to generate glutathione,
which confer high antioxidant activity to these cells. A single dose of more than 2 Gy
significantly reduces the activity of antioxidant enzymes, including superoxide dismutase
(SOD), glutathione, and catalase [103–105].

ROS derived from NOX and mitochondria may underlie radiation-induced excessive
inflammation. There is ample evidence that enzymatic ROS promotes the release of proin-
flammatory factors in microglia, and both direct inhibition of NOX-2 and elimination of
NOX-2-dependent ROS production reduce the expression of pro-inflammatory factors in
microglia [106,107]. Indeed, as the first messenger of intercellular communication, ROS
released by microglia change the redox state of adjacent cells [108,109]. On the other hand,
increased ROS, as second messengers, through affecting the activation of kinase path-
ways and transcription factors, promote microglial immune activation, and subsequently
amplify and perpetuate neuroinflammation [110]. For instance, ROS could directly react
with IκB kinase, which inhibits NF-κB activity or catalyzes the release of NF-κB subunit
from the IκB binding state through redox activation of upstream kinases, thereby initiating
the expression of pro-inflammatory genes in microglia [111,112]. Co-incubation of BV-2



Int. J. Mol. Sci. 2022, 23, 8286 7 of 30

cells with PPARδ agonist suppressed the radiation-induced increase in intracellular ROS
generation to reduce NF-κB and AP-1 activation and inflammatory factor gene expres-
sion [18]. Limiting mitochondrial ROS accumulation with mitoTEMPO suppressed MAPKs
activation and nuclear translocation of NF-κB, accompanied by the reduced expression
of different proinflammatory factors, such as TNF-α, IL-1β, IL-6, iNOS, and COX-2 [113].
The peak of radiation-induced ROS production precedes IL-1, TNF-α, COX-2, and MCP-1
in microglia [18,20]. After fractionated whole-brain irradiation, the production of ROS
peaks at 4 h after radiation, whereas protein levels of TNF-α and MCP-1 are significantly
increased at 8 h after radiation [87]. Therefore, radiation-induced ROS may be an important
cause for the subsequent occurrence of pro-inflammatory events in RIBI.

3.3. Regulation of BBB Integrity

BBB is composed of ECs, basal lamina, and astroglial end-feet. With highly selective
permeability, BBB selects and controls the entry of most molecules from the circulating
blood into the CNS [6]. In physiological conditions, perivascular microglia physically
contact with ECs and monitor the passage of blood solutes through the BBB. Microglia
also express tight junction protein claudin-5 to maintain tight-junction integrity between
ECs [114,115]. So far, only a few studies have investigated the interaction of microglia with
the BBB after IR exposure.

Following a single whole-brain irradiation with 20–60 Gy, an acute increase in BBB
permeability was detected with the application of BBB permeable tracers. This BBB collapse
is reversible and can be restored within weeks [64,116]. Although radiation at a dose of
10 Gy does not significantly damage BBB in mice, minor BBB permeability alterations may
occur [117,118]. Fractioned-irradiation with a total dose of 40 Gy (2 Gy per fraction) for
four weeks results in an increase in BBB permeability, which may last for 180 days [119].
Moreover, as a major trigger of increased BBB permeability, radiation-induced EC apoptosis
increases with time and dose [3]. Irradiated ECs secrete cellular signals through the
NF-κB pathway to activate microglia and attract microglia migration toward adjacent
blood vessels [120,121]. Irradiation of isolated and co-culture systems show that astrocyte
activation requires microglia-derived factors, including prostaglandin E2 (PGE2) [62]. An
in vivo experiment also confirmed that radiation-induced astrocyte activation is medicated
by C1q, which is produced by microglia [71]. In such a way, microglia and astrocytes exert
synergistic effects to co-release proinflammatory cytokines, such as TNF-α and IL-6, which
stimulate surviving ECs to upregulate their intercellular adhesion molecule 1 on the luminal
surface of blood vessels [7,64,122]. Irradiated microglia can produce ICAM-1 directly or
release TNF-α and IL-6 to activate astrocytes to produce ICAM-1 [123]. In response,
peripheral leukocytes are recruited onto ECs and, along with microglia, secrete matrix
metalloproteinases (MMPs) that break down the BBB, which then allows peripheral immune
cells to enter the brain parenchyma and exacerbate brain damage [7,124]. In addition,
activated microglia could downregulate claudin-5 expression via TNF-α production, which
contributed to the radiation-induced early BBB disruption [64]. Anti-TNF-α treatment
reduced BBB permeability and ICAM-1-dependent leukocyte adhesion in mice exposed to
X-ray radiation with 20 Gy [125].

3.4. Immune Cell Infiltration in the Brain

Although microglia are innate immune cells in the brain, peripheral immune cells
migrate into the brain due to disruption of BBB after high doses of ionizing radiation [126].
CD3+ cells infiltrate to brain tissues within 7 days after irradiation and stay there for
12 months, whereas penetration by CD11c+ and MHC II+ cells occurs at the late stage
after 7 days. However, distinguishing peripherally infiltrated immune cells from resident
microglia is difficult, as these two groups of cells express many identical immune markers,
such as CD11c, CD 68, and MHC II [127]. With the identification of characteristic mark-
ers for microglia, the application of transgenic and bone marrow chimeric animals and
experimental techniques, such as flow cytometry and two-photon imaging, identification,



Int. J. Mol. Sci. 2022, 23, 8286 8 of 30

and functional investigation of infiltrating immune cells became feasible. Using bone
marrow chimeric mice, the dose-dependent recruitment of bone marrow-derived (BMD)
cells and their differentiation into inflammatory cells and microglia were demonstrated
in the irradiated brain region [128]. This recruitment can persist up to 6 months after
irradiation with doses above 15 Gy [129]. Mildner et al. identified a specific monocyte
population that penetrated the brain and presented a microglia phenotype after cranial
radiation [117]. Even in the absence of radiation-induced detectable BBB damage, blood-
derived macrophages are recruited to the brain and express CX3CR1, a marker unique
to microglia [117,118]. This recruitment without BBB damage may be a consequence of
increased levels of adhesion molecules, chemokines, and their receptors associated with
immune cell infiltration in the postradiation brain [118,130]. Among them, CCL2-CCR2
signaling has been shown to participate in this process. Irradiated microglia can secrete
CCL2, but barely express CCR2 [131,132]. Several studies have reported that high doses of
IR (≥9 Gy) caused increased levels of CCR2 + macrophages and CCL2 in the mouse brain
parenchyma [71,118,133]. CCR2 deficiency reduced colonization of BMD immune cells into
the brain 6 months after cranial radiation [130]. Interestingly, under relatively low-dose
irradiation (doses below 2 Gy), CCR2 knockout mice exhibited preservation of survival
NPCs in the hippocampus and improvement of spatial memory and learning deficits [134].
After a high dose of radiation (10 Gy), this protection afforded by CCR2 deficiency against
cellular and behavioral deterioration was also identified [130]. These studies suggest that
infiltrating cells may potentially exacerbate RIBI, although work remains to distinguish
resident microglia and infiltrating immune cells. The expression of CCR2 in NPCs, granule
cells, and pyramidal neurons after irradiation may also shift the researcher’s attention to the
role of infiltrating cells in RIBI [135]. Dietrich et al. demonstrated that BMD macrophages
and monocytes were chronically increased in the irradiated site and communicated with
the cellular microenvironment where they existed perpetually, which reduced the inhi-
bition of radiation on neuro-glial progenitor cell proliferation and improved cognitive
function [136]. In summary, there are only a few RIBI models that investigate the functional
roles of infiltrating cells. Since treatment that pharmacologically targets CNS microglia
to prevent RIBI may also affect the survival, proliferation, and functional transitions of
peripheral immune cells, further examination of the contributions of infiltrating cells to
RIBI and their recruitment mechanisms is highly warranted.

4. Modulation of Microglia for RIBI Therapy

Many different biochemical mediators, their receptors, and downstream signaling
pathways are involved in microglial reaction to RIBI (Figure 2). Inhibition or activation of
these pathways may prevent RIBI (Table 1).

4.1. Colony Stimulating Factor 1 Receptor (CSF1R)

Colony stimulating factor 1 (CSF1) and its receptor CSF1R are key regulatory signals in
myeloid cell development [137]. CSF1R is mainly expressed by microglia in the CNS. This
signaling axis regulates the proliferation, differentiation, and survival of microglia, which
is crucial for early brain development. Mice with mutations in the CSF1R gene exhibit loss
of microglia, severe brain defects, and a shortened life span [138,139]. Genetic ablation or
pharmacological approaches to inhibit CSF1R related signal transduction pathway leads to
the almost complete elimination of microglia [140,141].

Depletion of microglia with a dietary inhibitor of CSF1R reduced the release of pro-
inflammatory factors and the number of activated microglia in the hippocampus of mice
after brain injury induced by acute ionizing radiation [141]. Animal memory deficits, spatial
exploration, and fear extinction deficits were also improved one month after the treatment.
Similarly, in the mouse model of fractionated whole-brain cesium-137, helium, or cosmic
irradiation, CSF1R blockage attenuated neuroinflammation and improved learning and mem-
ory [142–144]. Neuroanatomical study indicated that IR could affect the density and integrity
of synapses. For instance, exposure to doses higher than 1 Gy of γ- or X-rays causes a pro-
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longed decrease in density, length, and area of dendritic branches, as well as the number of
dendritic branch points in the hippocampus [145–147], whereas developing hippocampal
dendritic spines and excitatory synapses increased one hour after radiation [147]. High-LET
heavy particle irradiation or low-LET γ irradiation also induced alterations of synaptic pro-
tein, post-synaptic density protein 95 (PSD-95), and synapsin-1 [143,144,146,148,149], which
were involved in spatial choice and recognition memory, respectively [150,151]. However,
microglial depletion prevented loss of dendritic spines, especially matured mushroom spines,
and improved learning and memory [142]. The rescue of spine density may result from
diminished phagocytic function of repopulated microglia, as microglia mediate synapse elimi-
nation by the complement system, and repopulated microglia reduce the phagocytic marker
complement component 5a receptor 1 (C5aR) and lysosomal associated membrane protein 1
(LAMP-1) [144]. These findings strongly support microglial involvement in radiation-induced
synaptic damage and cognitive impairment or RIBI.
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inflammatory gene expression in microglia. Activation of P2Y6 receptor (P2Y6R) and C3 receptor
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Moreover, the introduction of exogenous molecules such as microRNA (miRNA), long non-coding
RNAs (LncRNA), and extracellular vesicles (EVs) also enhance the therapeutic efficacy of RIBI.
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As mentioned earlier, microglia play an irreplaceable role in maintaining physiological
functions of the nervous system, such as supporting neuronal generation, clearing cell de-
bris, promoting myelination, pruning synapses, and refining neural circuits. Interestingly
long-term depletion of microglia by CSF1R inhibitors does not affect the cognitive function
or basic motor ability in mice [141,152]. Morphological and electrophysiological features
of neurons also remain relatively normal [143]. Even prolonged depletion of microglia lim-
ited the expression of proinflammatory chemokines, cytokines, and reactive oxygen species
(ROS), thereby attenuating chronic neuroinflammation in mice [153]. Furthermore, microglia
proliferate rapidly and refill into the brain after discontinuation of the inhibitors, and the
re-proliferated microglia present fewer pro-inflammatory phenotypes [143,152,154,155]. Nev-
ertheless, elimination of microglia early in stroke enlarged the size of the infarct [156]. The
depletion of microglia before spinal cord injury caused the mice to show more severe motor
impairment [153]. In mouse models of Parkinson’s [157] and viral encephalitis [158], microglia
depletion was also observed to have a counterproductive effect. Therefore, more studies
are required to elucidate the time windows, mechanisms, and safety of CSF1R inhibition
therapy. Notably, neural progenitor cells and cortical neurons also express CSF1R. Whether
the non-binding effect caused by the depletion of microglia cells with CSF1R inhibitors will
affect the function of these cells remains to be further investigated.

4.2. Complement Receptors and Complement Components

The complement system is an innate immune-surveillance system and consists of
more than 40 serum proteins, cell surface receptors, and regulators [159]. It also performs
non-immune functions in the CNS, for example, marking synapses for elimination [160].
Microglia can express complement components C1q and complement receptor-1 and,
upon activation, facilitate the presentation of their own complement receptor-3 (CR3)
and upregulate C3 release [161–163]. As such, activated microglia are bound to enhance
complement cascade and vigorous production of immune effector molecules, leading
to immune reactions, inflammatory processes, and engulfment of substances flagged by
complement [48,160].

Early after exposure to IR, the complement proteins C1q, C3, C3a, and C5aR increase
dramatically in the hippocampus of mice [145,163–166]. C1q is an upstream component
of the complement cascade, and its biosynthesis in the brain is mainly dependent on
microglia [163]. In order to avoid the effects of global knockout or pharmacological inhibi-
tion on the peripheral complement cascade in vivo, Mineh and colleagues evaluated the
contribution of microglial-specific proximal cascade component C1q on RIBI by selective
knockout of C1q in mouse microglia [71]. Four weeks following exposure, C1q-deficient
mice showed lower levels of inflammatory factors and activation of microglia and astro-
cytes than did wild-type (WT) mice after radiation. C1q deficiency also prevented C3
accumulation on astrocytes and downregulated the protein levels of C5aR1 and microglial
TLR4, partially accounting for the attenuated inflammatory response in the hippocampus of
C1q-deficient mice, as C5aR1 signaling promotes microglial inflammatory polarization and
synergizes with the TLR4 in the acute inflammatory response to endotoxin [167,168]. These
changes were followed by a reduction in dendric spine loss and high immunoreactivity
of synaptophysin and synaptic vesicle glycoprotein 2, suggesting the preservation of the
synaptic structure, which coincided with better performance in the place recognition test
for mice lacking C1q compared to WT mice [71].

C3, a downstream component of the complement cascade, integrates three pathways
of the complement system (classical, alternative, and lectin pathways). Several activated
fragments (C3b, iC3b, C3c) of C3 cleaved by proteolysis acutely promote the extent and
duration of the inflammatory response and remarkably enhance phagocytosis of microglia
expressing multiple complement receptors in the context of neurological disorders [48,169].
Hinkle et al. showed that the genetic deletion of C3 rescues proliferating cell loss in the
hippocampus of mice exposed to a single γ-irradiation of 8 Gy at postnatal day 10, as well
as cognitive performance in hippocampal-dependent behavioral tasks [165]. Moreover,
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pharmacological blockade of the C3 receptor (CR3) improves cognitive dysfunction and
reduces spine loss and the number of microglia CD11 in male mice exposed to 10 Gy γ

irradiation [166]. This reduction also occurs in irradiated mice with CR3 knockout [145].
Strikingly, two studies reported that only male but not female mice exhibited reduced
dendritic spine density and behavioral defects [145,166]. Consistent with these results,
mice that received mixed or single-particle-radiation also exhibited sex-dependent synaptic
alterations and cognitive impairments [170,171]. Because higher phagocytosis activity
of microglia appears in the male mouse brain than in females after radiation [144,170],
these sex-specific findings again underline the possible relationship between microglia
phagocytosis, impaired synaptic structure, and cognitive deficits.

Previous studies have shown that C1q and C3 were located at synapses, directing
microglial pruning of synapses during the development of neural circuits [48,160]. In a
mouse model of multiple sclerosis (MS), C1q and activated C3 appeared in microglial
processes and lysosomes, suggesting that synaptic components were phagocytosed by
microglia [172]. Additionally, synapse loss and cognitive dysfunction are restored in AD
model mice when C1q, C3, or CR3 are inhibited [173,174]. Taken together, these results
suggest that radiation-induced C1q production by microglia may activate the complement
cascade and multiple complement proteins and receptors, including C3 and CR3, which is
a deviation from their normal expression pattern, thus mediating microglial engulfment of
synapses and inflammatory response in the hippocampal microenvironment, ultimately
leading to hippocampal-dependent cognitive impairment [145,163,165,166].

4.3. Purinergic Receptors

In RIBI, ATP is released through lytic, i.e., cell death, and non-lytic, such as exocytosis,
ion channels, transporters, and lysosome pathways [175]. Large amounts of ATP bind
to purinergic receptors on the surface of neurons and glial cells, especially microglia, as
a “danger” signal, prompting microglia to release pro-inflammatory mediators, leading
to neurotoxicity [69,176]. A positive correlation was found between elevated ATP levels
and the severity of RIBI and the levels of inflammatory factors (COX-2, IL-6, and TNF-a)
in CSF [69]. Microglia sense the changes of ATP and its derivatives in the surrounding
environment by P2X and P2Y purinergic receptors [175]. Two studies have investigated the
role of the microglial P2X7 receptor (P2X7R), an ATP-gated cationic channel and the P2Y6
receptor (P2Y6R), a metabolic G protein-coupled receptor in RIBI [177].

β-ray radiation with 10 Gy is sufficient to induce increased P2X7R expression both
in cultured and in vivo microglia [69]. Inhibition of P2X7R with a P2X7R antagonist or
short interfering RNA (siRNA) significantly reduced the number of activated microglia, the
secretion of inflammatory factors, and the loss of neurons, indicating that the ATP-P2X7R
signaling axis is involved in radiation-induced microglial activation and brain injury [69].
The mechanism involves NF-κB and PI3K-Akt signaling pathways downstream of P2X7R.
Furthermore, reducing extracellular ATP levels or antagonizing P2X7R may result in
the receptor changing from an inflammation-induced phenotype to a scavenger receptor
phenotype, characterized by increased phagocytic activity and decreased lysosomal pH.
The acidification of lysosomes is indicative of a high rate of clearance for endocytosed
material [178–181]. Importantly, microglia with enhanced phagocytosis prevent secondary
inflammatory responses by clearing debris, neurite outgrowth inhibitor (Nogo)-A, and
potentially toxic products [182–184]. Therefore, further investigation of the regulatory
mechanism of the P2X7R receptor on this clearance may help to establish novel therapeutic
targets for neuroinflammation caused by increased waste material in RIBI.

Contrary to P2X7R, blockade or knockout of P2Y6R appears not to affect the release of
inflammatory mediators from microglia [182,185]. Radiation has been found to enhance
microglial phagocytosis in vitro and in vivo, accompanied by an increase in P2Y6R expres-
sion [182]. Xu et al. reported that P2Y6R activation mediates increased phagocytosis of
microglia via the Ras-related C3 botulinum toxin substrate 1 (Rac1)-myosin light chain
kinase (MLCK) signaling pathway, which allows microglia to clear apoptotic neurons and
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myelin debris Nogo-A, thereby promoting remyelination and microenvironment recovery
in the RIBI animal model [182].

4.4. CX3CR1

FKN, the ligand of CX3CR1, is expressed mainly in neurons, with some from mi-
croglia, astrocytes, and ECs as well [42,186]. Fractalkine binding to CX3CR1 can maintain
microglia in a quiescent state and inhibit the release of inflammatory cytokines. Therefore,
in animal models with neurodegenerative diseases and traumatic brain injury, the impaired
FKN/CX3CR1 signal axis is often accompanied by abnormal activation of microglia and
the deterioration of the disease [187–190].

Recently, the importance of the FKN/CX3CR1 axis was confirmed in radiation-induced
microglial activation and brain injury [20]. Following IR, artificially increased FKN reduced
the release of IL-1β and TNF-α in BV-2 cells. In mice exposed to whole-brain radiation,
increased FKN promoted microglia to shift from neurodestructive to neuroprotective via
FKN lentivirus to prevent the decline of the number of neural stem cells in the hippocampus.
In contrast, the knockdown of CX3CR1 resulted in the partial reversal of FKN-mediated
neuroprotection. Considering that CX3CR1 is exclusively expressed in microglia in the
CNS, showing exactly how FKN/CX3CR1 regulates microglial activation may provide a
microglia-specific means to control the inflammation in RIBI.

4.5. Peroxisome Proliferator-Activated Receptors (PPARs)

PPARs are a class of ligand activated receptors in the hormone superfamily of nuclear
receptors, including three subtypes of PPAR-a, PPAR-β/γ, and PPAR-δ [191]. It is initially
believed that PPARs signaling pathway is involved in cell metabolism. They can be activated
by some natural ligands, such as certain essential fatty acids, phytanic acid, eicosanoids, etc.,
thereby regulating fatty acid oxidation, glucose homeostasis, and various other metabolic
pathways [192]. Studies on PPAR agonists have shown that PPAR agonists inhibit the acti-
vation of inflammatory transcription factors, such as NF-κB, AP-1, and STAT [83,193–195]
and enhance the expression of catalase and superoxide dismutase [195,196]. Thus, activating
PPARs can exert neuroprotective effects in a range of neurological disorders by regulating
oxidative stress and inflammatory processes [197–199].

Microglia can express three PPAR subtypes including PPAR-a, PPAR-β/γ, and PPAR-
δ [200]. Pretreatment of BV-2 cells with PPARα agonist GW7647 or fenofibrate decreased the
mRNA level of TNF-α and IL-1 and the protein level of COX-2 induced by radiation, which
depended on PPARα negatively regulating the activity of AP-1 and NF-κB by inhibiting nu-
clear translocation of the p65 subunit and phosphorylation of nuclear c-Jun, respectively [83].
Administration of fenofibrate promoted newborn neuron survival and prevented microglial
activation in mouse hippocampus after whole-brain radiation with 10 Gy [201]. Further-
more, radiation-induced perirhinal cortex-dependent cognitive impairment was prevented,
although fenofibrate failed to significantly ameliorate these pathological characteristics in
the hippocampus of rats receiving fractionated whole-brain radiation [78]. The study on
PPARδ showed that pretreatment BV-2 with PPARδ agonist also reduced radiation-induced
increases in TNF-α and IL-1 mRNA, COX-2 protein, and ROS production [18]. This inhibi-
tion of proinflammatory factors was attributed to the weakened DNA-binding activity of
NF-κB via the physical interaction between PPARδ and the P65 subunit, and to the inhibition
of PKCα/MEK1/2/ERK1/2/AP-1 pathway activation [18,202]. Likewise, dietary PPARδ
agonist GW0742 downregulates the expression of neuroinflammation and the number of
activated microglia in the hippocampus of the whole-brain irradiated mouse [203]. PPAR-γ
is the highest expression subtype in microglia. Once activated by the agonist pioglitazone,
PPAR-γ blocked p38 MAPK signaling and in turn led to decreased microglia activation and
lower levels of STAT-1 and NF-κB activation [204,205]. Continuous administration of pioglita-
zone before, during, and for 4 or 54 weeks after exposure significantly reduced short-term or
long-term hippocampus-dependent cognitive impairment [206].
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Although in vitro experiments highlighted the role of agonists of PPARs in attenuating
the radiation-induced release of proinflammatory factors from microglia [18,83], it remains
unclear whether the effects of PPAR agonists result directly/indirectly from microglia in
rodent models, as PPARs is widely expressed by a variety of cell types in the CNS [207]. In
addition, neither PPARα nor PPARδ activation improved hippocampal-dependent cogni-
tive impairment in rats [78,203], which is not compatible with reduced neuroinflammation
and fewer activated microglia in the hippocampus. Therefore, further research is needed
to explore the effect of PPARs on other cells in the CNS and clarify whether the effects of
PPAR activation are subtype-dependent in the RIBI.

4.6. Kv1.3 Channel

Kv1.3, a voltage-gated potassium channel with six transmembrane segments, was
first found in human T lymphocytes in 1984 [208]. Since then, it has been realized that
Kv1.3 is highly expressed in a variety of immune cells, including microglia cells, and that
Kv1.3 plays an important physiological role in regulating microglia membrane potential,
calcium signal transduction, cytokine production, and proliferation [209,210]. Many studies
have shown that genetic deletion or pharmacological blockade of Kv1.3 attenuates the
activation of microglia cells and the release of pro-inflammatory factors following stimu-
lation with Aβ, ischemic stroke, aggregated α-synuclein (αSynAgg), or LPS, suggesting
that the expression of voltage-gated potassium channel Kv1.3 is one of the prerequisites
for microglia activation [208,211–213]. Hence, the increased expression of Kv1.3 has been
observed in AD, ischemic stroke, and Parkinson’s disease, and with the pharmacological or
genetic inhibition of Kv1.3, both pathological and neurological outcomes have improved in
relevant animal models [208,212,213].

In a cell model of radiation exposure, transfection of microglia with kv1.3-specific
shRNA restrained the radiation-induced increase of COX-2 and IL-6 mRNA and protein.
Blockade of Kv1.3 with Stichodactyla helianthus (Shk)-170, a selective peptide inhibitor
of Kv1.3, inhibited the apoptosis of primary hippocampal neurons induced by irradiated
BV2 microglia in the co-culture system [74]. Moreover, mice injected intraperitoneally
with Shk-170 at 3 days post-irradiation also exhibited significantly reduced inflammatory
factors and microglial activation but increased proliferation of neural progenitor cells in
the hippocampus [74]. Studies have shown that the neuroprotective effect of the Kv1.3
blocker is achieved partly through disrupting P2X4-mediated calcium influx, thus reducing
microglia activation [214,215]. Moreover, microglial Kv1.3 blockade also reduced αSynAgg,
LPS, or Aβ-induced p38MAPK phosphorylation and NF-κB activation [212,213]. However,
the basic molecular mechanism and the exact signal transduction pathway of limiting RIBI
by Kv1.3 blockade remain unclear.

4.7. MicroRNAs (miRNAs)

miRNAs are single-stranded noncoding RNAs with 20 to 25 bases. By binding to the
3’-untranslated region of the target messenger RNA, miRNAs promote the direct degrada-
tion of mRNA by nuclease or prevent the translation process of mRNA, thereby extensively
regulating gene expression at the post-transcriptional level [216,217]. MicroRNA sequenc-
ing has increasingly demonstrated a variety of differentially expressed miRNAs involved in
the development of RIBI by affecting multiple processes, such as inflammatory responses,
DNA damage, apoptosis, proliferation, etc., and the dysregulation of some miRNAs may
lead to overactivation and increased radiation sensitivity of microglia [218–221].

Dicer has endoribonuclease activity and can cleave miRNA precursors into mature
miRNAs [222]. Bioinformatics analysis of miRNA suggests the loss of some stable main-
tenance and anti-inflammatory miRNAs in Dicer-deficient microglia [223]. In line with
the prediction, Dicer-deficient microglia exhibit DNA damage and spontaneous activation
in perinatal period and excessive activation stimulated by peripheral toxins in adult-
hood [222,224]. Despite the strong resistance of microglia to IR [76], selective deletion
of Dicer in mouse microglia produced significantly increased DNA damage and apop-
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totic microglia after radiation, implicating a critical role for miRNA in DNA repair and
maintenance of the resting state for microglia [223].

miR-741-3p is a member of the fragile-X miRNA cluster [225] and was dramati-
cally upregulated in rat models of nonalcoholic fatty liver disease [226] and attention-
deficit/hyperactivity disorder [227]. A previous study showed protection of miR-741-3p
against radiation-induced injury of bone mesenchymal stem cells [228]. Recently, Ou
et al. indicated that miR-741-3p expression is significantly upregulated in the mouse hip-
pocampus from 1 day to 6 weeks after 30 Gy radiation. Furthermore, nasal delivery of
antagomiR-741 (an inhibitor of miR-741-3p) improved the pathological characteristics of
RIBI, presenting less neuronal injury and microglia-related inflammation compared with
the radiation-only group, which may be responsible for the improvement of spatial memory
at 6 weeks after radiation [229].

RNA sequencing both in blood samples of nasopharyngeal carcinoma patients under-
going radiotherapy and in hippocampus of mice with RIBI revealed significant upregulation
of mir-122-5p [230]. Inhibition of miR-122-5p expression in the brain through nasal delivery
of antagomiR-122-5p resisted hippocampal neuronal damage and cognitive impairment,
and these processes may be achieved partly by regulating inflammatory factors generation
and microglial activation [230]. AntagomiR-122-5p also decreased radiation-induced re-
lease of TNF-α, IL-6, and IL-1ß in BV-2 cells in vitro and thereby repressed the apoptosis of
co-cultured SH-SY5Y cells. In addition, miR-122-5p can negatively regulate relative mRNA
and protein expressions of tensin 1 (TNS1) in irradiated human microglia clone 3 (HMC3),
and whether TNS1 is a downstream target of miR-122-5p to regulate microglial polarization
in RIBI requires further validation [230].

In a mouse receiving 10 Gy of γ irradiation, miR-124 overexpression through hip-
pocampal injection of adenoviral particles with miR-124 sequences reduced CD68-positive
microglia and ameliorated cognitive impairment after five weeks of radiation [231]. In
other models of CNS diseases, multiple signaling, including TLR4 [232], mammalian tar-
get of rapamycin (mTOR) [233], CCAAT enhancer binding protein (C/EBP)-α [234], and
vesicle-associated membrane protein (VAMP3) [235], could be modulated by miR-124 to
promote M2 polarization of microglia and improve neuroinflammation. Moreover, miR-124
directly inhibited neuronal autophagy and apoptosis in the ischemic attack [236], as well as
neurodegeneration in traumatic brain injury [237]. The roles of miR-124 in mitigating cog-
nitive impairment may therefore involve multiple mechanisms, more than the regulation
of microglia-mediated neuroinflammation, and further investigations of miR-124-related
neuropathological features may provide novel mechanistic insights into the protective
effects of miR-124 against RIBI.

4.8. Long Non-Coding RNAs (lncRNAs)

lncRNAs are a class of non-coding RNAs with a length of more than 200 nucleotides [238].
Although lncRNAs lack open reading frames and do not participate in protein coding, some
regions of lncRNAs fold themselves or fold the multiple regions together to form secondary
and tertiary structures. Such structural diversity contributes to extensive interactions between
lncRNA and proteins, DNA, or RNA, which consequently change cellular and molecular func-
tions and affect the disease process [239,240]. Xu et al. showed increased levels of LncRNA
ENSMUST00000190863 and ENSMUST00000130679 in BV-2 cells, as well as in primary mi-
croglial cells isolated from the hippocampus of mice at 24 h after 10 Gy X-ray radiation [66].
Through siRNA transfection, they demonstrated that increased ENSMUST00000190863 or
ENSMUST00000130679 in microglia promoted DNA damage (DDR) and phosphorylation
of p65, JNK, and p38, as well as subsequent downstream pro-inflammatory cytokine release
after radiation, which resulted in apoptosis of co-cultured neural stem cells [66]. Moreover,
radiation increased lipid droplet accumulation within microglia, and almost one-third of the
metabolism-associated genes of ENSMUST00000190863 and ENSMUST00000130679 down-
stream are related to lipid metabolism, raising the possibility of adipogenesis regulation by
them. In turn, the microglial inflammatory state, DNA damage response, and intracellular
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accumulation of lipid droplets all upregulate expression levels of the above-two lncRNAs [66].
This positive feedback relationship may serve to amplify the lncRNA-regulation efficacy in
RIBI therapy.

4.9. Extracellular Vesicles (EVs)

EVs are lipid bilayer membrane structures secreted by cells in both physiological and
pathological conditions. EVs are divided into two broad categories, namely, exosomes and
microvesicles (MV), which mediate intercellular communication by carrying genetic material,
protein, and lipids to nearby cells and cells far away [241,242]. In radiation-induced cases
of cognitive impairment in rodents, hippocampal transplantation of human neural stem
cell (hNSC)-derived MV robustly attenuated microglial activation, preserved complexity of
neuronal architecture, and improved performance in behavioral tasks at short (6 weeks) or
long (6 months) post-radiation times [231,243,244]. Strikingly, besides for the hippocampus,
the neocortex and amygdala similarly exhibited a significant reduction in activated microglia
via bilateral hippocampal transplantation of hNSC-derived MV [231]. Furthermore, even after
unilateral hippocampal transplantation of MV, a trend toward decreased activated microglia
and increased spine density was found in the contralateral hippocampus [243], suggesting both
local and remote effects of EV therapy. Liu et al. showed that tail-vein injection of exosomes
derived from adipose mesenchymal stem cells (ADMSC-Exos) ameliorates the pathological
conditions of cranial irradiation, as indicated by reduced neuroinflammation, oxidative stress,
and microglial infiltration in the hippocampus. Further analysis also suggested that ADMSC-
Exos activated the SIRT-1/NF-κB signaling pathway to inhibit the release of inflammatory
factors from irradiated primary microglia [73]. Furthermore, fluorescence co-localization
revealed the uptake of GFP-labeled MV by neurons and astrocytes in the hippocampus of rats
exposed to X-ray irradiation with 10 Gy, suggesting that EV-mediated signals may also affect
other cells types in the brain, not just microglia [243].

Leavitt et al. analyzed and validated miRNAs as major effector components in hNSC-
derived EVs against RIBI [231]. In fact, EVs contain a variety of bioactive content, including
non-coding RNAs, neurotrophic factors, cell adhesion molecules, and other factors capable
of modulating neural activity [242]. Although the precise mechanisms of EV treatment are
still unclear, and the current data in RIBI only revealed the combined effect of different fac-
tors in EVs, in other models of CNS disorder and injury, preclinical studies have shown the
ability of individual factors within EV to suppress the propagation of neuroinflammation,
enhance neurogenesis, maintain myelination, and promote the secretion of neurotrophic
factors [231,245]. Therapeutic efficacy of EVs may be optimized by targeting specific EV
component equipped with neuroprotective miRNA and other effector molecules for the
various molecular biological pathways inherent to RIBI pathology.
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Table 1. Radioprotective effect of targeting different molecules in microglia in radiation-induced brain injury models.

Targets Animal/Cell Model Source Dose and Dose Rate Irradiated Site Time Point after Radiation Intervention Effect in Irradiation Models Reference

CSFR1 C57BL/6J mouse

X-ray with 9 cGy
(1.10 Gy/min)

whole brain

3 days, 2 weeks, 6 weeks
CSFR1 inhibition reduces the increase in mRNA of inflammation markers

(TLR9, SYK, CCL6, CD14, CLECL5a, TSLP, CCL5) and the number of
activated microglia in hippocampus and ameliorates cognitive dysfunction.

[141]

4He particles with 30 cGy
(15–25 cGy/min) 4–6 weeks

CSFR1 inhibition ameliorates cognitive dysfunction, reduces activated
microglia population, and attenuates the increase in PSD-95 puncta but does

not affect morphologic and electrophysiologic features of neurons.
[143]

4He particles with
15 cGy (16.37 cGy/min)
50 cGy (16.95 cGy/min)

100 cGy (18.07 cGy/min)

18–21 days and 90–100 days
CSFR1 inhibition improves long-term cognitive impairment and

inflammatory response, decreases C5aR and LAMP-1, and
increases synapsin-1.

[144]

γ ray with three fractions of 3.3 Gy 1, 3 months CSFR1 blockade reduces the numbers of activated microglia, suppresses
monocyte accumulation in brain, and ameliorates cognitive dysfunction. [142]

C1q C57BL/6 mouse γ-ray with 9 Gy
(1.2 Gy/min) whole brain 2, 24, 48 h; 1, 2, 3, 4 weeks

Deletion of C1q in microglia protects synaptic loss and reduces activation of
microglia and astrocytes, as well as protein levels of TNF-a, IL-1ß, IL-6,

IL-1α, CCL2, IL-18, and TLR4.
[71]

C3 C57BL/6 mouse X-ray with 8 Gy
(2.3 Gy/min) whole brain 6 h; 7 days; 2, 3, 4 weeks C3 knockout improves task performance and increases activated microglia

and proliferating cells in the granule cell layer. [165]

C3R C57BL/6J mouse γ-ray with 10 Gy
(1.17 Gy/min) whole brain

30 days
CR3 blockade ameliorates behavior deficits in novel object recognition and

the Lashley III maze, prevents dendritic spine loss, and increases
CD11-positive microglia in hippocampus.

[166]

30, 45 days CR3 knockout prevents dendritic spine loss and increases activated
microglia in hippocampus. [145]

P2Y6

Balb/c mouse β-ray with 30 Gy
(3 Gy/min) whole brain 1, 14, 30 days P2Y6 receptor antagonism suppresses phagocytosis of irradiated microglia

and increases the number of apoptotic neurons. [182]

Primary microglia β-ray with 8 Gy 4, 12, 48 h
P2Y6 receptor antagonism suppresses phagocytosis of irradiated microglia

and has no effect on the production of inflammatory mediators (TNF-α,
IL-1β, IL-6, iNOS).

[182]

P2X7
Balb/c mouse β-ray with 30 Gy

(3 Gy/min) whole brain 3, 7, 14 days; 8 weeks P2X7R blockade reduces the activated microglia population and neuron loss
in the cortex. [69]

Primary microglia β-ray with 10 Gy
(6 MeV/min) 24, 48 h P2X7R blockade reduces the activated microglia population and mRNA

expression levels of IL-6, TNF-α, and COX-2. [69]

CX3CR1

C57BL/6J mouse γ-ray with 10 Gy
(2 Gy/min) whole brain 3, 6, 12, 24, 48, 72 h; 1, 2, 4 weeks

FKN overexpression promotes M2 phenotypic polarization, reverses the
reduced neural stem cell in hippocampus, decreases the TNF-α level, and

increases the IL-10 level in the blood.
[20]

BV-2 γ-ray with 10 Gy
(2.0 Gy/min) 1.5, 6 h

FKN promotes microglial phagocytosis and M2 polarization, decreases
TNF-α and IL-1β mRNA levels, and increases IL-10 mRNA levels. CX3CR1

knockdown reverses these effects.
[20]

PPARα

BV-2 γ-ray with 10 Gy
(4.0 Gy/min) 1, 3, 7, 12, 24 h

PPARα activation prevents the increase in IL-1, and TNF-α mRNA levels,
and COX-2 protein via inhibition of p65 translocation and

jun phosphorylation.
[83]

129S1/SvImJ mouse γ-ray with 10 Gy
(3.33 Gy/min) whole brain 1 week, 2 months

PPARα activation promotes newborn neuron survival and prevents
microglial activation. PPARα knockout abolishes the neuroprotection

of fenofibrate.
[201]

Fischer 344 × Brown
Norway rats

γ-ray with four fractions of 10 Gy
(4 Gy/min) whole brain 26, 29 weeks

PPARα activation prevents perirhinal cortex-dependent cognitive
impairment without a decrease in microglial activation and an increase in

immature neurons.
[78]
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Table 1. Cont.

Targets Animal/Cell Model Source Dose and Dose Rate Irradiated Site Time Point after Radiation Intervention Effect in Irradiation Models Reference

PPARδ

BV-2 γ-ray with 10 Gy
(3.56 Gy/min) 30 min; 7, 24 h

PPARδ activation downregulates ROS production, IL-1 and TNF-α
expression, and COX-2 and MCP-1 proteins by inhibiting NF-κB and

PKCα/MEK1/2/ERK1/2/AP pathways.
[18]

C57BL/6J γ-ray with 10 Gy
(5 Gy/min) whole brain 3 h; 1, 2 weeks

PPARδ activation prevents the increase in IL-1 gene expression and pERK
protein but does not rescue neurogenesis and hippocampal-dependent

cognitive impairment.
[203]

PPARγ Fischer 344 rat γ-ray with nine fractions of 5 Gy
(4.41 Gy/min) whole brain 50, 54 weeks PPARγ activation prevents cognitive impairment. [206]

Kv 1.3 Balb/c mouse ß-ray with 30 Gy
(3 Gy/min) whole brain 3, 14 days; 8 weeks

Kv 1.3 blockade prevents neuronal loss and increases activated microglial in
hippocampus and cerebral cortex and improves spatial learning and

cerebral cortex atrophy in mice.
[74]

BV-2 ß-ray with 10 Gy
(3 Gy/min) 4, 12 h; 1, 2 days

Kv 1.3 blockade or knockdown decreases protein and mRNA level of
TNF-α, IL-6, and COX-2 in microglia and inhibits apoptosis of co-cultured

primary hippocampal neurons.
[74]

miR-124 C57BL/6J mouse γ-ray with 10 Gy
(2.07 Gy/min) whole brain 5 weeks miR-124 overexpression prevents microglia activation and ameliorates

cognitive impairment. [231]

miR-741-3p C57BL/6J mouse ß-ray with 30 Gy
(2.5 Gy/min) whole brain 1, 6 weeks

miR-741-3p inhibition resists cognitive dysfunction, hippocampal neuronal
injury, and microglia activation and decreases the expression level of IL-6

and TNF-a.
[229]

miR-122-5p

C57BL/6J mouse ß-ray with 30 Gy
(3 Gy/min) whole brain 6 weeks, 48–50 days

miR-122-5p inhibition prevents cognitive impairment, neuronal damage,
microglia activation, and production of TNF-a, IL-6, and IL-1ß

in hippocampus.
[230]

BV-2 ß-ray with 10 Gy 8, 24 h

miR-122-5p inhibition alleviates the decrease in cell viability and increase in
the release of TNF-a, IL-6, and IL-1ß in BV2; restores BV2 branching
morphogenesis and phagocytosis; and reduces co-cultured SH-SY5Y

cell apoptosis.

[230]

lncRNA
ENS-

MUST00000130679
BV-2 X-ray with 10 Gy

(2 Gy/min) 1, 24 h
lncRNA ENSMUST00000130679 knockdown suppresses DDR;

phosphorylation of p65, JNK, and p38; and release of TNF-a, IL-6, and IL-1ß
in BV2.

[66]

lncRNA
ENS-

MUST00000190863
BV-2 X-ray with 10 Gy

(2 Gy/min) 1, 24 h lncRNA ENSMUST00000190863 knockdown suppresses DDR,
phosphorylation of p65, and release of TNF-a in BV2. [66]

hNSC-
derived MV

athymic nude rats X-ray with 10 Gy
(1 Gy/min) whole brain

4–7 weeks

MV transplantation into the bilateral hippocampus reduces the number of
activated microglia in the hippocampus, neocortex (layer II/III), and

amygdala; recovers the complexity of neuronal architecture; and
ameliorates cognitive impairment.

[244]

1 month

MV transplantation into the unilateral hippocampus reduces the number of
activated microglia in the ipsilateral hippocampus; bilateral or unilateral

transplantation increases GDNF and restores PSD-95 protein level in
bilateral hippocampus; neither bilateral nor unilateral transplantation

protects dendritic spine density.

[243]

hNSC-
derived EV C57BL/6J mouse γ-ray with 10 Gy

(2.07 Gy/minute) whole brain 5 weeks, 6 months EV transplantation into the bilateral hippocampus prevents microglia
activation in the hippocampus and ameliorates cognitive impairment. [231]
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Targets Animal/Cell Model Source Dose and Dose Rate Irradiated Site Time Point after Radiation Intervention Effect in Irradiation Models Reference

ADMSC-
Exos

Sprague–Dawley rats γ-ray with 30 Gy
(1.59 Gy/min) whole brain 24 h; 3, 7 days

Tail vein injection pf ADMSC-Exos decreases the levels of caspase-3, MDA,
8-OHdG, TNF-α, IL-4, and SIRT1 and promotes recovery of SOD, CAT, IL-4,

and IL-10 levels and suppresses microglial infiltration.
[73]

primary microglia γ-ray with 30 Gy
(3 MeV/min) 24 h

Tail vein injection of ADMSC-Exos decreases the levels of caspase-3, MDA,
8-OHdG, TNF-α, IL-4, and SIRT1 and promotes the recovery of SOD, CAT,

IL-4, and IL-10 levels and suppresses microglial activation. The above
effects of ADMSC-Exos are inhibited by the SIRT-1 inhibitor EX527.

[73]
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5. Conclusions and Open Questions

Microglia with complex heterogeneity fulfill a comprehensive and vital biological
function in different brain regions and throughout the whole life cycle. High dose irradia-
tion activates microglia rapidly, and these cells undergo functional alterations by detecting
subtle changes in the surrounding microenvironment through receptors. Although we
described the intervention of pathological evolution of RIBI from a microglial perspec-
tive, the mechanisms behind the intervention and its relationship to radiation-induced
neurological dysfunctions are far from clarified, which may restrict the development of
therapeutic approaches with microglia as a target. Fortunately, preventing the release of
inflammatory factors from microglia and potentiating their clearance of toxic debris by
targeting microglial receptors and ion channels seems a feasible approach to enhance neu-
roprotection. Moreover, studies based on non-coding RNAs and EVs offer new potential
avenues for RIBI treatment, with fewer side effects. However, these preclinical studies were
conducted in tumor-free animal models to investigate the physiologic and mechanistic
effects of treatment, which may compromise proper assessment of these treatment effects
on RIBI in patients with tumors. Therefore, new therapies need to be evaluated for their
interaction with tumor cells to circumvent the impact of confounders before clinical applica-
tion. Furthermore, most therapeutic effects have been evaluated in male rather than female
rodents, but available evidence indicates gender differences in irradiated microglia, includ-
ing their activation, as well as microglia-mediated inflammation, neurogenesis, synaptic
modification, and cognitive impairment [144,145,170,246,247]. Future research should de-
termine whether gender-specific characteristics of microglia influence therapeutic effects
of RIBI.

Clinical and preclinical data indicate that brains from aged patients or animals are more
likely to develop persistent microglial activation and chronic neurotoxicity compared to
those from young after radiation exposure, which may accelerate the progression of aging-
related neurodegeneration disease [72,131,248,249]. Furthermore, irradiated microglia
exhibit similar characteristics as normal aging ones, including increased expression of aging-
related markers, such as senescence-associated-β-galactosidase (SA-β-gal) and p16INK4a

protein, and upregulated genes related to chronic inflammation, DNA damage response,
and mitochondrial dysfunctions [66,250,251]. Selective removal of senescent microglia
or inhibition of radiation-induced aging phenotypes of microglia may prevent the RIBI
process and radiation-accelerated brain aging.

Many previous studies focused on the radiation-induced microglia secretory effect,
while less work was done on their phagocytosis in RIBI. Further study on surface recep-
tors mediating microglial phagocytosis, such as triggering receptor expressed on myeloid
cells-2 (TREM2) and toll-like receptors (TLRs) after radiation exposure, may open novel
therapeutic targets for RIBI treatment. Notably, while we have discussed the clearance
of toxic substances by P2X7R- and P2Y6R-mediated phagocytosis in the context of RIBI
treatment, recent studies reported that blocking P2Y6R inhibited microglia phagocytosis
and prevented LPS, amyloid-β protein (Aβ), and tauopathy (tau)-induced neuron loss
and death, indicating the possibility for detrimental effects of P2Y6R-mediated phagocy-
tosis [165,252]. Moreover, preservation of synaptic integrity in RIBI was also associated
with the reduction of microglial phagocytic activity or the absence of the complement
component mediating microglial synaptic engulfment [142,145,165]. From a speculative
point view, irradiated microglia may engulf not only apoptotic cells, but also stressed
functional neurons as well as partially healthy synaptic components, thus exacerbating
brain damage and cognitive impairment. This is supported by recent studies in the ro-
dent models of stroke and AD [185,253,254]. Therefore, therapeutic approaches via the
targeting of microglial phagocytosis to control RIBI should be applied prudently. A better
understanding of the molecular mechanism of radiation-induced excessive phagocytosis
may allow us to manipulate microglia to distinguish normal neurons from abnormal living
neurons in order to reduce therapeutic side effects.
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