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THE BIGGER PICTURE With the wide use of machine learning models in decision making, various explana-
tion methods have been developed to help researchers understand how each variable contributes to pre-
dictions. However, the current explanation approach focuses on explaining the final (often best performing)
models, ignoring the fact that in practice, researchers arewilling to considermodels that are ‘‘good enough’’
and are easier to understand and/or implement. We propose the Shapley variable importance cloud to
address this practical need by extending the current explanation approach to a set of ‘‘goodmodels,’’ which
pools information across models to derive a more reliable measure for overall variable importance. More-
over, we analyze and visualize the uncertainty of variable importance across models, which enables
rigorous statistical assessments and helps discover alternative models with preferrable properties.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Interpretable machine learning has been focusing on explaining final models that optimize performance. The
state-of-the-art Shapley additive explanations (SHAP) locally explains the variable impact on individual pre-
dictions and has recently been extended to provide global assessments across the dataset. Our work further
extends ‘‘global’’ assessments to a set of models that are ‘‘good enough’’ and are practically as relevant as
the final model to a prediction task. The resulting Shapley variable importance cloud consists of Shapley-
based importancemeasures from each goodmodel and pools information acrossmodels to provide an over-
all importance measure, with uncertainty explicitly quantified to support formal statistical inference. We
developed visualizations to highlight the uncertainty and to illustrate its implications to practical inference.
Building on a common theoretical basis, our method seamlessly complements the widely adopted SHAP as-
sessments of a single final model to avoid biased inference, which we demonstrate in two experiments using
recidivism prediction data and clinical data.
INTRODUCTION

Machine learning (ML) methods has been widely used to aid

high-stakes decision making, e.g., in healthcare settings.1,2
This is an open access article und
While ML models achieve good performance by capturing data

patterns through complex mathematical structures, such

complexity results in ‘‘black box’’ models that hide the underly-

ing mechanism. The inability to assess the connection between
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variables and predictions makes it difficult to detect potential

flaws and biases in the resulting prediction models and limits

their uptake in real-life decisionmaking.3–7 The growing research

on interpretable ML (IML), also interchangeably referred to as

explainable artificial intelligence in the literature, improves the

usability of ML models by revealing the contribution of variables

to predictions.6–10

A lot of effort in IML has been put into ‘‘post hoc’’ explanations

that quantify the variable impact on a model while leaving the

model a black box.7,9,10 For example, the random forest11 was

developed with a permutation importance that evaluates reduc-

tions in model performance after removing each variable, which

partially contributes to its wide adoption in practice.10 A recent

study introduced a similar permutation-based model-agnostic

approach, termed model reliance, that provides global explana-

tions for anyMLmodels.12Current IMLapplicationsaredominated

by two local model-agnostic explanation approaches:13 the local

interpretable model-agnostic explanations (LIME)14 explains indi-

vidual predictionsby locally approximating themwith interpretable

models, and theShapley additiveexplanations (SHAP)15 attributes

a prediction among variables by considering it as a cooperative

game. These two methods are connected: both linear LIME and

SHAP are additive feature attribution methods, where SHAP pro-

videsamoredisciplinedapproach for setting theweightingkernels

involved, resulting in desirable properties that are not guaranteed

by the heuristic approach used in LIME.15

A desirable property of SHAP is that in addition to locally ex-

plaining individual predictions, the mean absolute SHAP values

can provide heuristic measures of variable importance to overall

model performance,15,16 and a formal global extension, i.e.,

Shapley additive global importance (SAGE),16 was developed

recently. However, by leaving the black box unopened, these

methods do not fully reveal the mechanism of the models, e.g.,

why do some variables contribute more to the predictions than

others?7 Ante hoc IML methods address this by developing

inherently interpretable models, e.g., recent works17–19 pro-

posed ML approaches to build sparse scoring systems based

on simple regressionmodels that had good discriminative ability.

By integrating considerations such as variable importance into

model-building steps, these methods support direct inference

on the importance of variables to the outcome.

While most IML approaches focus on optimal (e.g., loss mini-

mizing) models, a recent work20 broadened the scope to

include a wider range of models that are ‘‘good enough.’’ These

nearly optimal models are highly relevant to practical ques-

tions, e.g., can an accurate yet expensive biomarker be

replaced with other variables without strongly impairing predic-

tion accuracy?20 To systematically address such questions,

Dong and Rudin20 proposed a variable importance cloud

(VIC) that provides a comprehensive overview of variable con-

tributions by analyzing the variability of variable importance

across a group of nearly optimal models and found an over-

claim of the importance of race to the criminal recidivism pre-

diction in post hoc assessments.

VIC is the first to demonstrate the benefit of extending global

interpretation to include nearly optimal models, which is not

available from the state-of-the-art SHAP method or the recent

global extension via SAGE. However, VIC was developed from

the permutation importance,12,20 hence leaving a gap between
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theoretical developments and current applications based on

Shapley values. We propose a Shapley variance importance

cloud (ShapleyVIC) that extends SHAP to higher-level global in-

terpretations by integrating the latest development in Shapley-

based variable importance measures with the recently proposed

VIC framework. ShapleyVIC contributes to IML research by

providing additional insights into variable importance than post

hoc SHAP assessments, which easily integrates with SHAP to

provide a comprehensive model explanation on the local level

for individual instances, on the global level for the optimal model,

and finally across nearly optimalmodels for overall assessments.

In addition, ShapleyVIC explicitly quantifies the variability of var-

iable importance across models to enable formal inference and

conveys it through novel visualizations. We demonstrate the

use of ShapleyVIC and its practical implications as a comple-

ment to SHAP analysis in two experiments, where experiment

1 revisits the previous analysis of criminal recidivism prediction20

and experiment 2 assesses variable contributions when predict-

ing mortality using real-life clinical data.
RESULTS

Analytical results
The VIC framework has two key components: a global importance

measure to quantify the reliance of a model on each variable, and

a formal definition of nearly optimalmodels. In VIC, the formerwas

quantified using a permutation-based importance measure, and

the latter was defined by the Rashomon set.20 Following the

VIC framework, our proposed ShapleyVIC extends the widely

used Shapley-based variable importance measures beyond final

models for a comprehensive assessment and has important prac-

tical implications. ShapleyVIC uses the same definition of nearly

optimal models as VIC but quantifies model reliance on variables

using SAGE, a Shapley value for global importance. In the

following subsections, we describe the permutation importance

and Shapley values, introduce the definition of nearly optimal

models and the corresponding VIC, define ShapleyVIC with

explicit variability measures to support inference, and describe

our practical solutions to some challenges in implementation.

Global importance measures

Let Y denote the outcome and let XD = {X1, ., Xd} collectively

denote d variables, where D = {1, ., d} is the set of all variable

indices. A model of Y built using the d variables is denoted by

f(XD), with expected loss E{L(f(XD), Y)}. Fisher and team12 pro-

posed a permutation-based measure of variable contribution,

referred to as model reliance (MR). The MR of variable Xj (j˛D)
is the increase in expected loss when the contribution of this var-

iable is removed by random permutation:

mrjðfÞ =
E
n
L
�
f
�
XDyfjg;X 0

j

�
; Y

�o
EfLðfðXDÞ; YÞg ;

where XDyfjg denotes the set XD after excluding Xj, and X0
j follows

the marginal distribution of Xj. mrj(f) = 1 suggests model f does

not rely on Xj, and larger mrj(f) indicates increased reliance.

Although straightforward and easy to implement, the permuta-

tion approach does not account for interactions among vari-

ables, as it removes one variable at a time.16,21 Shapley-based
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explanations account for this by viewing variables as players in a

cooperative game15,16 andmeasures the impact of variable Xj on

model f based on its marginal contribution when some variables,

XS3XD, are already present. The Shapley values are defined as:

4jðwÞ = 1

d

X
S4fDyfjgg

�
d � 1
jSj

��1

½wðSWfjgÞ�wðSÞ�: (Equation 1)

w(S) quantifies the contribution of subset XS to the model, which

is defined differently for different types of Shapley-based vari-

able importance measures and will be explicitly defined below

for SHAP and SAGE. jSj denotes the number of variables in

this subset, and

�
d � 1
jSj

�
is the number of ways to choose jSj

variables from XDyfjg. 4j(w) = 0 indicates no contribution, and

larger values indicate increased contribution.16

When w(S) is the expectation of a single prediction, i.e.,

wðSÞ = vf ;xðSÞ = E½fðXDjXS = xSÞ�, 4jðvf ;xÞ gives the SHAP value

for local explanation.15 Absolute SHAP values reflect the magni-

tude of variable impact, and the signs indicate the direction;

therefore, the mean absolute SHAP value may be used as a heu-

ristic global importance measure.15,16

When w(S) is the expected reduction in loss over the mean

prediction by including XS, i.e., wðSÞ = vf ðSÞ = EfLðE½fðXDÞ�;
YÞg� EfLðfðXDjXS = xSÞ; YÞg, 4j(vf) is the SAGE value for a

formal global interpretation.16 Our proposed ShapleyVIC follows

the VIC approach to extend the global and model-agnostic

SAGE across models.

Nearly optimal models and VIC

Suppose f*(XD) is the optimal model that minimizes expected

loss among all possible f from the same model class, F (e.g.,

the class of logistic regression models). Dong and Rudin20 pro-

posed extending the investigation of variable importance to a

Rashomon set of models with nearly optimal performance (in

terms of expected loss):

Rðε; f�; FÞ = ff ˛FjEfLðfðXDÞ; YÞg% ð1 + εÞEfLðf�ðXDÞ; YÞgg;

where ‘‘nearly optimal’’ is defined by the small positive value ε,

e.g., ε = 5%. Using MR(f) = {mr1(f), ., mrd(f)} to denote the

collection of MR for model f, the VIC is the collection of MR func-

tions of all models in the Rashomon set, R = R(ε, f*, F), defined

above:12,20

VICðRÞ = fMRðfÞ : fðXDÞ˛Rðε; f�; FÞg:

VIC values are asymptotically normally distributed, but calcu-

lating their standard error (SE) is non-trivial when f is not a linear

regression model.12,20

ShapleyVIC definition

Our proposed ShapleyVIC is a hybrid of ante hoc and post hoc

approaches, where the MR for each model in the Rashomon

set is based on SAGE values. In the presence of collinearity

among variables, we hypothesize that negative SAGE values

with large absolute values are artifacts induced by highly corre-

lated variables rather than indications of unimportance. There-

fore, we define the Shapley-based MR based on the variance

inflation factor22 (VIF) of each variable:
mrsj ðfÞ =
� ��4jðvfÞ

�� if VIFj>v;
4jðvfÞ if VIFj%v;

where j = 1,., d, the superscript s indicates the Shapley-based

approach, and v is a threshold for strong correlation. In our ex-

periments, we used v = 2. Colinear variables will have similar

MR values. The corresponding ShapleyVIC is:

VICSðRÞ = �
MRSðfÞ : fðXDÞ˛Rðε; f�; FÞ	;

where MRS(f) = {mr1
s(f), ., mrd

s(f)}.

Pooling ShapleyVIC values using random effects meta-

analysis

With the Shapley-based MR of each variable, we pool the values

across theM nearly optimal models to assess the overall impor-

tance of each variable using a meta-analysis approach, viewing

each model as a separate study. We denote the ShapleyVIC

value of the j-th variable for them-th model and its variance (esti-

mated from the SAGE algorithm) by mrsjm and s2jm, respectively.

To simplify notation, we drop the subscript j in the rest of this

subsection. Let qm denote the true ShapleyVIC value of this var-

iable for them-th model, wheremrsm � Nðqm;s2mÞ. Since different

models have different coefficients for variables and therefore

different levels of reliance on each variable, qm is expected to

differ across models. Hence, we adopt the random effects

approach in meta-analysis23–25 and assume a normal distribu-

tion for the true MR, qm�N(q,t2), where the grand mean across

models, q, and the between-model variability, t2, are to be

estimated.

We estimate t2 using the commonly used DerSimonian-Laird

approach.23,25 The between-model variability (t2) and within-

model variability (s2m, m = 1, ., M, estimated from SAGE) are

two sources of the total variance (Q), which is the weighted

average of the squared deviation of mrsm from its weighted

average: Q =
P

wmfmrsm � ðPwmmrsmÞ=ð
P

wmÞg2, with wm =

1=s2m. When within-model variability is the only source of total

variance, Q is expected to be M�1. Hence, when Q > M�1,

the between-model variance can be estimated by t2 =

(Q�(M�1))/C, where C= ðPwmÞ � ðPw2
mÞ=ð

P
wmÞ is a scaling

constant. If Q % M�1, the estimated between-model variance

is simply t2 = 0.

With the estimated between-model variance, t2, the grand

mean, q, is estimated by a weighted average of mrsm:

mrs = ðPw0
mmrsmÞ =ð

P
w0

mÞ and varðmrsÞ = 1 =ðPw0
mÞ, where

w0
m = 1=ðs2m + t2Þ.23 The ShapleyVIC value from a new model

within the Rashomon set,mrsnew, may be predicted by assuming

a t-distribution with M�2 degrees of freedom for ðmrsnew �
mrsÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarðmrsÞ+ t2Þ

p
.24 The 95% prediction interval (PI) for

mrsnew is hence the 2.5th and 97.5th percentiles of this

t-distribution.

ShapleyVIC inference

Only positive ShapleyVIC values indicate importance, and larger

values suggest higher importance. A desirable property of Sha-

pleyVIC is that the SE of each value is readily available from the

SAGE algorithm: sjðfÞ = SEðcmr
s
j ðfÞÞ = SEðb4 jðvf ÞÞ. This allows us

to easily compare the reliance of a model on any two variables,
Patterns 3, 100452, April 8, 2022 3



Table 1. Summary statistics of the 6 variables in the

COMPAS study

Variable n (%)

All

(n = 7,214)

No 2-year

recidivism

(n = 3,743)

With 2-year

recidivism

(n = 3,471)

Chi-

squared test

p value

Age

18–20 years 220 (3.0) 47 (1.3) 173 (5.0) <0.001

>20 years 6,994 (97.0) 3,696 (98.7) 3,298 (95.0)

Gender

Female 1,395 (19.3) 865 (23.1) 530 (15.3) <0.001

Male 5,819 (80.7) 2,878 (76.9) 2,941 (84.7)

Race

African

American

3,696 (51.2) 1,660 (44.3) 2,036 (58.7) <0.001

Others 3,518 (48.8) 2,083 (55.7) 1,435 (41.3)

Prior criminal history

Yes 2,150 (29.8) 1,478 (39.5) 672 (19.4) <0.001

No 5,064 (70.2) 2,265 (60.5) 2,799 (80.6)

Juvenile criminal history

Yes 6,241 (86.5) 3,489 (93.2) 2,752 (79.3) <0.001

No 973 (13.5) 254 (6.8) 719 (20.7)

Current charge

Degree

misdemeanor

2,548 (35.3) 1,496 (40.0) 1,052 (30.3) <0.001

Others 4,666 (64.7) 2,247 (60.0) 2,419 (69.7)
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{Xj, Xk}˛XD, where the difference is normally distributed with

variance varfcmr
s
j ðfÞ�cmr

s
kðfÞg= s2j ðfÞ+ s2kðfÞ (assuming indepen-

dence betweenmrsj ðfÞ andmrskðfÞ). The importance of the d vari-

ables to the model can be ranked based on the number of times

each variable has significantly larger ShapleyVIC value than the

other d�1 variables.

As described in the previous section, the average Sha-

pleyVIC value of a variable indicates its overall importance

across nearly optimal models, and the 95% PI for a new

model from the Rashomon set can be used to statistically

assess and compare overall importance. Since only positive

values indicate importance, the overall importance of a

variable is only statistically significant when the lower

bound of the 95% PI is positive. We visualize the average

ShapleyVIC value and the 95% PI using a bar plot with error

bars and complement it with a colored violin plot of the

distribution of MR and its relationship with model perfor-

mance. Our proposed visualizations and their interpretations

will be described in our empirical experiments.

ShapleyVIC implementation

Although VIC is validly computed from the same data used to

train the optimal model,20 we adopt the approach in SHAP and

SAGE16,26 to evaluate ShapleyVIC values using the test set

and use the training set to train the optimal model and identify

the Rashomon set. A larger sample requires a longer computa-

tion time;16,27 therefore, we do not recommend using test sets

larger than necessary for the algorithm to converge.

As a hybrid of model-agnostic VIC and SAGE, ShapleyVIC is

also model agnostic. In view of the popularity of scoring models,

which are often built upon regression models, in this paper, we
4 Patterns 3, 100452, April 8, 2022
focus on the implementation of ShapleyVIC with regression

models. In such scenarios, the Rashomon set consists of regres-

sion coefficients, b, corresponding to expected loss E{L}%(1+ε)

E{L*}, where the superscript asterisk (*) indicates the optimal

model with minimum expected loss, and ε = 5% is an acceptable

value. To generate a reasonable sample of b, we consider a

pragmatic sampling approach based on rejection sampling:

- Set initial values for M0 (the number of initial samples to

draw from the Rashomon set), and u1 and u2 (bounds of a

uniform distribution).

- For each i = 1, ., M0, generate ki � U(u1, u2).

- Draw the i-th sample from a multivariate normal distribu-

tion: bi � Nðb�; kiS
�Þ, where b� is the regression coeffi-

cients of the optimal model, and S� is its variance-covari-

ance matrix. Reject bi if the corresponding empirical loss,bLi, exceeds the upper bound, i.e., if bLi>ð1 + εÞbL�
.

- Adjust the values of M0, u1, and u2 such that the range be-

tween bL�
and ð1 + εÞbL�

is well represented.

Advice on how to tune parametersM0, u1, and u2 based on our

empirical experiments is provided in Experimental procedures.

Following the practice of Dong and Rudin,20 we randomly

selected a final sample of 300–400 models. We implemented

ShapleyVIC as an R package, which is available from https://

github.com/nliulab/ShapleyVIC.

When working with logistic regression models, Dong and

Rudin20 sampled b via an ellipsoid approximation to the Rasho-

mon set, which worked well in their examples. When working

with data with strong collinearity (e.g., see experiment 2 in the

next section), however, we found it easier to explore a wide

range of b using our sampling approach than using the ellipsoid

approximation. Hence, we find our sampling approach a reason-

able alternative to Dong and Rudin’s approach for exploring the

variability in variable contributions, which favors a wider

coverage in the Rashomon space.
Experimental results
Weused twodataexamples todemonstrate the implementationof

ShapleyVIC and describe our proposed visualizations. In the first

experiment,wemotivated and validatedShapleyVICby reproduc-

ing key findings in the recidivism prediction study of Dong and

Rudin,20 where the analysis of nearly optimal models suggested

an overclaim of variable importance based on the optimal model.

The second example analyzed electronic health records data

with a higher dimension and a strong correlation. Moreover, we

used the two examples to illustrate the use of ShapleyVIC as a

complement to the SHAP analysis. In our proposed SHAP-Sha-

pleyVIC framework, we assess variable contributions first using a

conventional SHAP analysis of the optimal model and, next, with

a ShapleyVIC assessment of nearly optimal models for additional

insights. As detailed below, the SHAP-ShapleyVIC framework en-

ables the interpretation of models on various levels, ranging from

variable contributions to individual instances to the significance

of overall importance across well-performing models, which are

not simultaneously available from other IML approaches.

Experiment 1: Recidivism prediction study

This study aimed to assess the importance of six binary variables

for predicting 2-year recidivism: age (dichotomized at 20 years),

https://github.com/nliulab/ShapleyVIC
https://github.com/nliulab/ShapleyVIC


Figure 1. Visual summary of recidivism pre-

diction study results from SHAP-ShapleyVIC

framework, part I: SHAP analysis of the

optimal model

(A) The optimal logistic regressionmodel, where low

variance inflation factors (VIF close to 1) did not

suggest strong correlation.

(B) Variable ranking based on mean absolute SHAP

values from the optimal model.

(C) SHAP values (represented by dots) indicate

variable contributions to individual predictions.
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race (African American or others), having prior criminal history,

having juvenile criminal history, and current charge (degree

misdemeanor or others), with a particular interest in race. The

data include 7,214 records, and we pre-processed the data

using code shared by Dong and Rudin28 (see Table 1 for sum-

mary statistics). We randomly divided the data into a training

set with 90% (6,393) of the records and a test set with the other

10% (721) and generated 350 nearly optimal logistic regression

models.

SHAP analysis of optimal model. With only six variables and

mild correlation among variables (VIF < 1.1 for all variables based

on the optimal model; see Figure 1A), the optimal model is

straightforward to interpret: controlling for other factors, African

Americans had a higher risk of 2-year recidivism than other race

groups. The SHAP analysis made the importance of race to the

optimal model more explicit: it was the second most important

variable based on the mean absolute SHAP values (see Fig-

ure 1B), with lower importance than prior criminal history and

similar importance as juvenile criminal history, and the two

race groups had a similar magnitude of impact on the outcome

but in the opposite direction (see Figure 1C). Unlike SAGE, vari-

ances of SHAP values are not easily available for statistical

assessments.

ShapleyVIC analysis of nearly optimal models and proposed

visualizations. While race was found to be important to the

optimal model in the SHAP analysis, whether it is important to

the general prediction of 2-year recidivism requires further inves-

tigation of nearly optimal models. By analyzing 350 nearly

optimal models using ShapleyVIC, we present a less biased

assessment on variable importance.

In view of the small VIF values for all variables, the ShapleyVIC

values were based on unadjusted SAGE values. We first as-

sessed the overall importance of race by inspecting the bar
plot of the average ShapleyVIC values

(with 95% PI) across the 350 models (see

Figure 2A). A small negative average MR

(indicated by the bar) and a 95% PI con-

taining zero indicated a non-significant

overall importance to race, as opposed to

the high importance based on the optimal

model. This is consistent with the finding

from Dong and Rudin20 that, generally,

race is not an important predictor of 2-

year recidivism. Similarly, gender and cur-

rent charge also had non-significant over-

all importance, indicated by the 95%PI be-
ing entirely below zero. Juvenile and prior criminal history were

now ranked top with similar levels of overall importance that

were significantly higher than those of the other four variables.

Age, whichwas least important to the optimal model, had amod-

erate yet significant overall importance.

Inference on the bar plot of overall importance alone may

lead to a misperception that variable ranking is static. We

convey the variability of variable importance across models

by visualizing the relationship between MR on each variable

and model performance using a colored violin plot (see Fig-

ure 2B). The horizontal spread of a violin represents the range

of MR on a variable, which is divided into slices of equal width.

The height of each slice represents the proportion of models

in the MR interval, and the color indicates the average perfor-

mance (in terms of empirical loss) of these models. If an MR

interval does not contain any model (which often occurs

near the ends), the corresponding slice is combined with the

neighbor closer to the center.

As illustrated by the well-mixed color across the range of each

violin plot (see Figure 2B), there is no simple relationship

between model performance and reliance on any variable,

regardless of its overall variable importance. For race, most

dark-colored strips in the violin plot are positioned at negative

MR values, suggesting that better performing models tended

to have a low reliance on race. Bar and violin plots of VIC values

from the same 350 models (see Figure S1) suggested similar

findings but without variability measures to statistically test and

compare variable importance.

Experiment 2: MIMIC study

In this study, we examined the importance of 21 variables

(including age, clinical tests, and vital signs; see Table 2 for a full

variable list and summary statistics) in predicting 24-h mortality

in intensive care units (ICUs) using a random sample of 20,000
Patterns 3, 100452, April 8, 2022 5
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Model performance (Lower to higher)
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A

B

Figure 2. Visual summary of recidivism pre-

diction study results from SHAP-ShapleyVIC

framework, part II: ShapleyVIC analysis of

nearly optimal models

(A) ShapleyVIC suggested non-significant overall

importance for race after accounting for the vari-

ability in variable importance across the 350 nearly

optimal models.

(B) Distribution of variable importance (indicated by

the shape of violin plots) and the corresponding

model performance (indicated by color) to comple-

ment inference on average ShapleyVIC values.
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adult patients from the BIDMC dataset of the Medical Information

Mart for Intensive Care (MIMIC) III database. We trained a logistic

regression and generated a sample of 350 nearly optimal models

using a random sample of 17,000 records and used the rest of the

3,000 records to evaluate variable importance.

SHAP analysis of optimal model. The extremely small p values

(<0.001; see Figure 3A) for two-thirds of the variables and collin-

earity among variables (indicated by large VIF values in Figure 3A

and strong correlations in Figure S2) made it difficult to rank vari-

able importance based on the optimal model. SHAP analysis of

the model enabled straightforward variable ranking using mean

absolute SHAP values (see Figure 3B). Per-instance SHAP values

(indicated by dots in Figure 3C) provided additional insights on

variable contributions to the optimal model, e.g., although creati-

nine only ranked 14th among the 21 variables, high creatinine

levels can have a strong impact on predictions. However, the sta-

tistical significance of such an impact is unknown.

ShapleyVIC analysis of nearly optimal models and proposed visu-

alizations. SHAP analysis of the optimal model does not

answer some practical question, e.g., is creatinine deemed to

contribute moderately to general prediction of mortality using lo-

gistic regression? This is answered by the extended global inter-

pretation using ShapleyVIC.

We found a threshold of VIF >2 identified all variables

involved in moderate to strong correlations. The ShapleyVIC

values for the 11 variables with VIF >2 were based on the abso-
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lute SAGE values, whereas for the other

10 variables, the unadjusted SAGE values

were used. Figure 4A presents variable

ranking after accounting for the variability

in variable importance across the 350

nearly optimal models. Six of the top

seven variables based on mean absolute

SHAP values were also ranked top seven

by average ShapleyVIC values, but Sha-

pleyVIC tended to rank rest of the vari-

ables differently. The 95% PIs of average

ShapleyVIC values suggested similar

importance for the 5th- to 7th-ranking var-

iables and statistically non-significant

overall importance for the last five vari-

ables. We also used VIC to analyze the

same 350 models and had similar findings

as ShapleyVIC on top-ranking variables

(see Figure S3).
As highlighted in experiment 1, it is important to inspect the

variability of variable importance across models using the

colored violin plot to avoid misperceptions. Generally, creati-

nine contributed significantly to nearly optimal models and

ranked 13th based on the average ShapleyVIC value (see Fig-

ure 4A). However, the violin plot (see Figure 4B) showed a

wide spread of ShapleyVIC values for creatinine across

models, and the dark blue strip at the right end suggested the

presence of well-performing models that relied heavily on

creatinine. To extract models with heavy reliance on creatinine

for further investigation, we assessed the variable ranking in

each of the 350 models by pairwise comparison of ShapleyVIC

values (visually summarized in Figure 5) and further inspected

the ranking data to identify 19 models where creatinine ranked

top seven. Among these 19 models, creatinine increased to the

6th-ranking variable (see Figure 6), and hemoglobin and hemat-

ocrit had lower ranks, while other variables were not much

affected. Further studies on creatinine may draw additional

samples from the Rashomon set that are close to these 19

models for closer investigation.

DISCUSSION

Uncertainty is drawing attention when interpreting ML

models,10,29 which is relevant when interpretating predictions

or estimated effects (e.g., see Tomsett et al.,30 Antorán et al.,31



Table 2. Summary statistics of the 21 variables in the MIMIC study

Variables median (first and third quartiles) All (n = 20,000)

Discharged alive

(n = 18,259) Mortality (n = 1,741)

Mann-Whitney

test p value

Age 64.4 (52.1, 75.9) 63.8 (51.6, 75.3) 71.2 (59.0, 80.5) <0.001

Heart rate (beats/min) 84.4 (74.7, 95.1) 84.0 (74.5, 94.5) 90.3 (77.1, 103.4) <0.001

Systolic blood pressure (SBP; mm Hg) 116.5 (107.0, 129.2) 116.9 (107.4, 129.4) 111.5 (101.5, 126.6) <0.001

Diastolic blood pressure (DBP; mm Hg) 60.0 (53.7, 67.2) 60.2 (53.9, 67.5) 57.5 (51.0, 65.0) <0.001

Mean arterial pressure (MAP; mm Hg) 76.9 (70.6, 84.8) 77.1 (70.9, 85.0) 74.2 (67.5, 82.4) <0.001

Respiration (breaths/min) 18.0 (15.9, 20.6) 17.8 (15.8, 20.4) 19.9 (17.2, 23.5) <0.001

Temperature (�C) 36.8 (36.5, 37.2) 36.8 (36.5, 37.2) 36.8 (36.3, 37.3) <0.001

Peripheral capillary oxygen

saturation (SpO2; %)

97.6 (96.2, 98.7) 97.6 (96.3, 98.7) 97.4 (95.6, 98.8) <0.001

Glucose (mg/dL) 129.0 (111.3, 154.0) 128.2 (111.0, 152.5) 138.3 (116.0, 168.1) <0.001

Anion gap (mEq/L) 13.5 (12.0, 16.0) 13.5 (12.0, 15.5) 15.5 (13.5, 18.5) <0.001

Bicarbonate (mmol/L) 24.0 (21.5, 26.0) 24.0 (22.0, 26.5) 22.5 (19.0, 26.0) <0.001

Creatinine (mmol/L) 0.9 (0.7, 1.4) 0.9 (0.7, 1.3) 1.2 (0.8, 2.1) <0.001

Chloride (mEq/L) 105.0 (101.5, 108.0) 105.0 (101.5, 108.0) 104.0 (99.5, 108.5) <0.001

Hematocrit (%) 32.4 (28.7, 36.4) 32.5 (28.8, 36.5) 30.9 (27.7, 35.1) <0.001

Hemoglobin (g/dL) 10.9 (9.6, 12.3) 10.9 (9.7, 12.4) 10.3 (9.2, 11.7) <0.001

Lactate (mmol/L) 1.8 (1.7, 2.0) 1.8 (1.7, 2.0) 1.8 (1.8, 3.3) <0.001

Platelet (thousand per microliter) 209.0 (154.0, 277.0) 210.0 (156.5, 277.0) 194.0 (117.0, 282.0) <0.001

Potassium (mmol/L) 4.2 (3.8, 4.5) 4.2 (3.8, 4.5) 4.2 (3.8, 4.6) 0.028

Blood urea nitrogen (BUN; mg/dL) 18.0 (12.5, 29.5) 17.5 (12.5, 27.5) 28.5 (18.0, 48.0) <0.001

Sodium (mmol/L) 138.5 (136.0, 140.5) 138.5 (136.0, 140.5) 138.5 (135.0, 141.5) 0.715

White blood cells (WBCs; thousand

per microliter)

10.8 (7.9, 14.2) 10.7 (7.9, 14.0) 12.4 (8.8, 17.1) <0.001
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andGhosal and Tucker32) andwhen assessing the importance of

variables (e.g., see Schwab and Karlen33 and Fabi and

Schneider34). Specifically, uncertainty of variable importance is

relevant not only to causal interpretation of models33 but also

to the causability of model explanations, i.e., the ability of the

explanation in conveying a specific level of causal understanding

to a human expert.35 We contribute to the investigation of uncer-

tainty from a largely neglected source: the uncertainty in variable

importance among nearly optimal models (e.g., where model

loss is within an acceptable range) that could have been selected

in a prediction task for practical considerations. By actively

investigating the association between model performance and

reliance on each variable, we provide a higher-level global

assessment that studies model ensembles to avoid bias toward

a single model when inferring variable importance (or unimpor-

tance) and provide a basis for building interpretable models un-

der practical considerations and constraints.

The recently proposed VIC20 is the first to demonstrate the

benefit of extending global variable importance assessment to

nearly optimal models. Our proposed method, named Sha-

pleyVIC, is a hybrid of state-of-the-art ante hoc and post hoc

IML approaches that extends the widely used Shapley-based

explanations to global interpretations beyond a single optimal

model. Using the meta-analysis approach, we pool the Shap-

ley-based importance (measured by SAGE with uncertainty in-

terval) from each model to explicitly quantify the uncertainty

across models and summarize the overall importance of each

variable. This allows us to support inference on variable impor-
tance with statistical evidence, which is not easily available

from VIC.20 The close connection between SHAP and

SAGE16,21 enables a seamless integration of ShapleyVIC with

the state-of-the-art SHAP method for additional insight on vari-

able contributions, enabling local and global interpretations as

well as overall importance assessments across well-performing

models that are not simultaneously available from other IML ap-

proaches. Our proposed visualizations effectively communicate

different levels of information and work well for high-dimen-

sional data.

Our empirical experiments demonstrate the application of our

proposed SHAP-ShapleyVIC framework. SHAP analysis of the

optimal model facilitates straightforward interpretation of vari-

able contribution, and subsequent ShapleyVIC analysis of nearly

optimal models updates the assessment by accounting for the

variability in variable importance. Our experiment on recidivism

prediction provides a strong motivation for extending global

interpretation beyond a single model, where ShapleyVIC found

that the importance of race in predicting recidivism in a post

hoc assessment was likely a random noise. By identifying vari-

ables with similar overall importance based on the variability be-

tween models, ShapleyVIC adds flexibility to model-building

steps, e.g., by considering the stepwise inclusion or exclusion

of such variables. Using our proposed visualizations of Sha-

pleyVIC values across models, we demonstrated in the MIMIC

study how to identify the presence of models with higher reliance

on a variable of interest and subsequently focus on the relevant

subset of models for additional information.
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Figure 3. Visual summary of MIMIC study re-

sults fromSHAP-ShapleyVIC framework, part

I: SHAP analysis of the optimal model

(A) The optimal logistic regression model, where

high variance inflation factors (VIF >2) suggested

strong correlation for some variables (indicated by

gray).

(B) Variable ranking based on mean absolute SHAP

values from the optimal model.

(C) SHAP values (represented by dots) indicate

variable contributions to individual predictions.
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In common with VIC, ShapleyVIC faces a challenge in draw-

ing representative samples of nearly optimal models due to the

difficulty in characterizing the Rashomon set.12,20,29 In our

MIMIC study with strong collinearity, we found it easier to

explore a wide range in the Rashomon set for some variables

using our pragmatic sampling approach than by using the

more disciplined ellipsoid approximation approach described

by Dong and Rudin.20 Our pragmatic sampling approach may

not preserve the asymptotic properties based on the Rasho-

mon set,12,20 but by using the standard deviation of the Shap-

ley-based MR, we are able to pool information across sampled

models even when such asymptotic properties do not hold. In

view of the renewed interest in developing inherently interpret-

able prediction models (e.g., the easy-to-interpret scoring

models),7 in this paper, we have focused on exploring Rasho-

mon sets for regression models. Dong and Rudin20 described

an algorithm for sampling the Rashomon set of decision trees,

and future work should develop sampling algorithms for gen-

eral ML models for broader applications. However, it is worth

noting that such practical challenges in generating nearly

optimal models does not invalidate the theoretical model-

agnostic property of ShapleyVIC values.

Our meta-analysis approach for pooling ShapleyVIC values

assumes normality, which affects the PIs but less so for the

average values.36 This may be an issue for some variables in
8 Patterns 3, 100452, April 8, 2022
our experiments (e.g., the anion gap that

had a bimodal distribution and the few vari-

ables with extreme left tails and negative

average values) but is not likely to invali-

date our assessment on the overall impor-

tance of affected variables given the range

of their ShapleyVIC values and estimated

averages. Future work will consider alter-

native meta-analysis approaches with

less restrictive assumptions.36,37 In addi-

tion to comparing average ShapleyVIC

values, we also ranked variables based

on t-test comparisons of ShapleyVIC

values between all variable pairs for each

model and used the ranking to filter for

models of interest. Future work can

explore for alternative methods to statisti-

cally compare variable importance within

models, investigate the variability in

ranking across models, and discuss the

practical implications.
Strong correlation among variables (e.g., in the MIMIC study)

also poses a challenge on variable importance assessments. Per-

mutation importance is susceptible to biases when applied to

correlated data, as it samples from the marginal distribution.16

SAGE is defined using the conditional distribution to account for

correlations, but due to the immense computational challenge,

the authors adopted a sampling-based approximation approach

that generates variables from marginal distributions and conse-

quently assumes some extent of independence.16 Similar chal-

lenges are encountered by other practical implementations of

Shapley-based methods (e.g., see Covert et al.21,38) and are not

easily resolved. By using the absolute value of SAGEas ameasure

ofMR for highly correlated variables,measuredbyVIF,weprovide

a pragmatic solution to this problem thatmay inspire amore disci-

plined solution. Although VIF >2 worked well in both data exam-

ples, its generalizability to other data remains to be investigated.

ShapleyVIC may also be used with other (global) variable impor-

tance measures for preferrable properties.

In conclusion, in this study we present ShapleyVIC, a hybrid of

the state-of-the-art ante hoc and post hoc IML approaches, that

comprehensively assesses variable importance by extending the

investigation to nearly optimal models that are relevant to prac-

tical prediction tasks. ShapleyVIC seamlessly integrates with

SHAP due to a common theoretical basis, extending current

IML applications to global interpretations and beyond. Although
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Figure 4. Visual summary of MIMIC study re-

sults fromSHAP-ShapleyVIC framework, part

II: ShapleyVIC analysis of nearly optimal

models

(A) ShapleyVIC suggested a different variable

ranking after accounting for the variability in variable

importance across the 350 nearly optimal models.

(B) Distribution of variable importance (indicated by

the shape of violin plots) and the corresponding

model performance (indicated by color) to comple-

ment inference on average ShapleyVIC values. Dark

blue strips towards the right end of a violin plot

suggests the presence of good models that relied

heavily on the variable (e.g., creatinine) for further

investigations.
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we described the implementation of ShapleyVIC with simple

regression models, which can be readily integrated with the

development of scoring models (e.g., the recently developed

AutoScore framework19), ShapleyVIC is model-agnostic and

applicable for other ML models.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Nan Liu (liu.nan@duke-nus.edu.sg).
Materials availability

This research did not generate any materials.

Data and code availability

The MIMIC data are publicly available subject to the completion of ethics

training and a signed data use agreement and are for research only. The recid-

ivism prediction data and all original code have been deposited at Zenodo un-

der https://doi.org/10.5281/zenodo.5904414 and are publicly available as of

the date of publication.

Tuning parameters for sampling the Rashomon set

Weadvise first tuning parameters u1 and u2 using a temporary value forM0 that

is smaller than necessary for the final sample (e.g., M0 = 200) to reduce run

time. Researchers may begin with values u1 = 0.5 and u2 = 1 to generate M0
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samples of regression coefficients, compute the corresponding empirical loss,

inspect the range of empirical loss, and count the number of models not re-

jected. These steps normally take less than a minute for given values of u1
and u2. Based on our two experiments, it may suffice to keep u1 = 0.5 and

adjust u2 until the range of loss in the Rashomon set is well represented. In

view of the large size of the training data, the initial choice of u2 = 1 is likely

too small to fully explore the Rashomon set, resulting in all models being

accepted and the corresponding empirical loss being very close to the mini-

mum loss. In our two experiments, we incremented the values for u2 by 10

to speed up the tuning process and eventually selected values 80 and 20 for

u1 and u2, respectively. Finally, given the selected values for u1 and u2 and

the number of samples kept given the initial choice of M0, researchers can

increase the value forM0 (e.g., to 800 in both experiments) to obtain a reason-

able number of final samples.
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Figure 6. Bar plot of average ShapleyVIC values from 19 models
where creatinine ranked top 7
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