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Abstract

Operating lignocellulosic fermentation processes to produce fuels and chemicals

is challenging due to the inherent complexity and variability of the fermentation

media. Real‐time monitoring is necessary to compensate for these challenges, but

the traditional process monitoring methods fail to deliver actionable information

that can be used to implement advanced control strategies. In this study, a

hybrid‐modeling approach is presented to monitor cellulose‐to‐ethanol (EtOH)

fermentations in real‐time. The hybrid approach uses a continuous‐discrete ex-

tended Kalman filter to reconciliate the predictions of a data‐driven model and a

kinetic model and to estimate the concentration of glucose (Glu), xylose (Xyl), and

EtOH. The data‐driven model is based on partial least squares (PLS) regression

and predicts in real‐time the concentration of Glu, Xyl, and EtOH from spectra

collected with attenuated total reflectance mid‐infrared spectroscopy. The esti-

mations made by the hybrid approach, the data‐driven models and the internal

model were compared in two validation experiments showing that the hybrid

model significantly outperformed the PLS and improved the predictions of the

internal model. Furthermore, the hybrid model delivered consistent estimates

even when disturbances in the measurements occurred, demonstrating the ro-

bustness of the method. The consistency of the proposed hybrid model opens the

doors towards the implementation of advanced feedback control schemes.
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1 | INTRODUCTION

The transition of fuels and chemicals production from nonrenewable

resources to renewables is a key requirement in realizing a circular

economy. An example of this transition is the production of ethanol

(EtOH; as fuel and chemical platform) from renewable substrates

such as lignocellulosic feedstocks, which otherwise would be dis-

carded as waste material (Drapcho et al., 2008; Li et al., 2016). De-

spite the decades‐long research work on lignocellulosic fermentation,

the real‐time monitoring of key state variables in such a fermentation

process is required to successfully counter the effect of:

(i) toxicity of the fermentation media derived from lignocellulosic

feedstocks,

(ii) the presence of a mixed carbon source in the substrate,

(iii) the inherent variation of the feedstocks, and

(iv) contamination that can occur in industrial settings (Cabaneros

et al., 2019; Drapcho et al., 2008).

Fed‐batch process operations, where the feed rate is adjusted to

keep the concentration of inhibitors and glucose (Glu) inside the

reactor below a certain level, can be useful to mitigate the toxic

effects of the inhibitors and to promote the coconsumption of the

different carbon sources (Drapcho et al., 2008; Knudsen & Rønnow,

2020; Mauricio‐Iglesias et al., 2015). However, the substrate varia-

bility often results in different fermentation profiles between bat-

ches, which can result in significant operational challenges. In this

context, limiting the feed rate to avoid the effect of the inhibitors,

can decrease the productivity of the process, and increasing the

length of the fed‐batch process can increase the risk of contamina-

tion (Cabaneros et al., 2019; Eliasson Lantz et al., 2010). To optimize

the cellulosic EtOH fermentation, it is necessary to develop flexible

operations that are able to account for the effects of substrate

variability and to react to possible process deviations in real‐time (as

the fermentation progresses; Eliasson Lantz et al., 2010). As a con-

sequence, developing and implementing appropriate monitoring

schemes to gain real‐time information on the state of the fermen-

tation is crucial to enable control actions and to improve the com-

petitiveness of cellulose‐to‐EtOH processes (Cabaneros et al., 2019;

Eliasson Lantz et al., 2010).

With the ever‐increasing intention of biochemical industries to

leverage data to improve process operations, there is increased

interest in applying measurement methods to monitor processes in

real‐time (Udugama et al., 2020) Choosing a suitable monitoring

method for cellulose‐to‐EtOH fermentations is challenging due to

the high complexity of the fermentation matrix and the high con-

centration of suspended solids (Cabaneros et al., 2019; Eliasson

Lantz et al., 2010). In practice, the commonly monitored variables in

fermentation processes, for example, pH, temperature, or pO2 often

fail at delivering actionable information to design feedback control

schemes (Cabaneros et al., 2019). Therefore, it can be clearly seen

that more advanced measurements (e.g., of substrates, products,

biomass, or inhibitors) are needed to improve the operation of

cellulose‐to‐EtOH processes. Different measuring methods are

available to monitor the compounds dissolved in the liquid phase

(e.g., vibrational spectroscopy, biosensors, or at‐line high‐
performance liquid chromatography [HPLC]) or to monitor the

biomass concentration (e.g., capacitance probes or fluorescence

spectroscopy; Cabaneros et al., 2019). Among the different options

available, attenuated total reflectance mid‐infrared spectroscopy

(ATR‐MIR) is an analytical tool that allows the fast and simultaneous

detection of several compounds (including multiple sugars or weak

acids) from the fermentation media (Cabaneros et al., 2019;

Lourenço et al., 2012). Unlike other spectroscopic methods, ATR‐
MIR spectroscopy measures the light reflected from the sample

(instead of the light transmitted through it), making it more robust

and suited to monitor systems with a high concentration of sus-

pended solids (Cabaneros et al., 2019; Lourenço et al., 2012). The

collected spectra are then analyzed using data‐driven methods,

usually, partial least squares (PLS) regressions, to make use of the

linear correlations between the concentration of the different

analytes and the absorbance in the spectra (Lambert Beer's law;

Lourenço et al., 2012). However, the complexity of the media and

the highly correlated dynamics between the concentrations of many

analytes results in complex spectra with overlapping peaks and

require extensive data analysis to train reliable predictive models

(Cervera et al., 2009; Krämer & King, 2016). This situation makes

the measurements noisy and often unsuited for the implementation

of advanced control schemes (Krämer & King, 2017).

Mathematical approaches such as state estimators derived from

Kalman filters (KFs; Krämer & King, 2017) or particle filters (Golabgir

& Herwig, 2016) have been successfully implemented to address

these types of challenges (Golabgir & Herwig, 2016; Krämer & King,

2017; Mauricio‐Iglesias et al., 2015; Price et al., 2014). A continuous‐
discrete extended Kalman filter (CD‐EKF) is a particular extension of

the KF to nonlinear continuous systems with discrete measurements.

This makes the CD‐EKF an appropriate tool to monitor bioprocesses

given the nonlinear kinetics of biological systems (Mauricio‐Iglesias
et al., 2015; Price et al., 2014; Ricardo, 2019). Similar to the KF, the

CD‐EKF algorithm operates iteratively in two steps: a prediction and

an update step.

In this study, a hybrid monitoring approach based on CD‐EKF is

proposed to estimate the concentration of Glu, xylose (Xyl), and

EtOH from spectroscopic measurements collected with ATR‐MIR

spectroscopy and to monitor the progression of cellulose‐to‐EtOH

fermentations in real‐time (von Stosch et al., 2014). The CD‐EKF
reconciliates the predictions made by the internal model (a kinetic

model for cellulosic EtOH fermentation) with the PLS predictions of

the concentrations of Glu, Xyl, and EtOH. Due to the high complexity

and limited availability of fermentation media, the calibration set for

the PLS models solely contained synthetic samples that were pur-

posely planned using a design of experiments approach, and no fer-

mentation samples were included in it. This calibration set was

carried out to minimize the correlation between the concentration of

Glu, Xyl, and EtOH and to distribute the leverage of each sample

evenly in the design space.
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This developed hybrid approach provides a more stable and ro-

bust monitoring framework as it eliminates the deficiencies of a

purely mechanistic or data‐driven approach. That is, unmeasured

process disturbances and inherent variations in biological systems

can lead to significant mismatches with the kinetic model, and data‐
driven sensors can be noisy, difficult to interpret, and often lack

extrapolation power because they ignore the dynamics of the system.

The developed approach was then applied to monitor different

cellulose‐to‐EtOH fermentations carried out at the bench scale, and

the results obtained were compared to a scenario where only mea-

surements are used to monitor the process.

2 | MATERIALS AND METHODS

2.1 | Cell culture growth and propagation

2.1.1 | Growth on agar plates

One milliliter of the glycerol stock of the Xyl consuming Sacchar-

omyces cerevisiae CEN. PK. XXX (S. cerevisiae CEN. PK 122. MDS with

overexpression of the native genes RPE1, TAL1, and XKS1, and with

the insertion in the genome of the genes XYL1 and XYL2 from

Scheffersomyces stipitis; Westman et al., 2014) was inoculated in a

250ml shake flask with 100ml of yeast extract‐peptone–dextrose
medium, containing 10 g/L of yeast extract (Microbiology Fermtech),

20 g/L of peptone from casein, (Microbiology Fermtech), and 20 g/L

of dextrose (Sigma‐Aldrich). The shake flask was cultured for 24 h at

30°C and 180 rpm. One milliliter of the grown cell culture was

transferred to a 250ml shake flask containing 100ml of YPX medium

(10 g/L of yeast extract, 20 g/L of peptone, and 20 g/L of Xyl (Sigma‐
Aldrich) and it was grown for 36 h at 30°C and 180 rpm. One milliliter

of the cell culture grown in YPX was diluted 1000 times, plated in a

YPX‐agar plate (YPX media with 10 g/L agar), and incubated for 36 h

at 37°C before storage at 4°C.

2.1.2 | Cell culture propagation

A single colony of S. cerevisiae CEN. PK. XXX grown on YPX‐agar
plates was transferred to a 250ml shake flask containing 100ml of

YPX media, and it was grown for 36 h at 30°C and 180 rpm. One

milliliter of the grown cell culture was inoculated in a 500ml shake

flask, filled with 250ml of YPX media, and grown for 36 h at 30°C

and 180 rpm before inoculation of the fermenter. Before inoculating,

the dry weight of the cell culture was measured as described in

(El‐Mansi et al., 2012).

2.2 | Fermentation experiments

Four batch fermentations were carried out in a 2.5 L BIOSTAT® A

bioreactor (Sartorius) with a working volume of 1.5 L (Table 1),

equipped with two 6‐bladed Rushton impellers, pH and tem-

perature control. In all fermentations, the pH was controlled at 6

using 5 M H2SO4 and 2 M NaOH. The temperature was kept at

30°C and the stirring rate at 450 rpm. The wheat straw hydro-

lysate was supplemented with 5 g/L of yeast extract and 10 g/L of

peptone and centrifuged (Heraeuse Multifuge X3R; Thermo

Fisher Scientific) for 10 min at 4000 rpm to reduce the con-

centration of suspended solid compounds to 10 g/L. In fermen-

tations 2, 3, and 4, the media was centrifuged for another 10 min

at 4000 rpm to further reduce the concentration of suspended

solid compounds to 2 g/L. A volume of 1.4 L wheat straw hydro-

lysate (prepared as explained in the Supporting Information

Material) was inoculated with 100 ml of grown cell culture. The

fermentation lasted between 25 and 35 h until the Xyl was con-

sumed. A sample of 1.5 ml was taken hourly, filtrated through a

0.20 µm cellulose acetate filter (Labsolute USA, 7699822) and

stored at −20°C for off‐line analysis with HPLC.

2.3 | Off‐line analysis with HPLC

Glu, Xyl, EtOH, furfural (Fur), 5‐hydroxymethyl furfural (5‐HMF),

and acetic acid (HAc) were measured off‐line using an Ultimate

3000 HPLC (Thermo Fisher Scientific) with an Aminex HPX‐87 H

column (Bio‐Rad) at 50°C with 5 mM H2SO4 as eluent and a flow

rate of 0.6 ml/min for 80 min. A sample volume of 950 µl was

diluted with 50 µl of 5 M H2SO4 before injection. All compounds

were detected using the refractive index (ERC RefractoMax 520;

Prague) at 50°C.

TABLE 1 Overview of the four cellulose‐
to‐ethanol batch fermentations

Fermentation 1 Fermentation 2 Fermentation 3 Fermentation 4

Solid compounds (g/L) 10 2 2 2

Inoculum size (g/L) 1.4 1 0.4 1.4

Initial (glucose) (g/L) 37 37 42 39

Initial (xylose) (g/L) 22 22 22 22

Kinetic model Identification Validation Validation Validation

Data‐driven model Not used Validation Validation Validation

Kalman filter Not used Tuning Validation Validation
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2.4 | Spectroscopy and data collection

The ATR‐MIR spectrophotometer provided by CellView IVS and

manufactured by NLIR APS was connected to the fermenter using

a flow‐cell equipped with the ATR crystal (Pike Technologies) and

a closed recirculation loop. The media was directed to the flow‐
cell from the fermenter and sent back at a flow rate of 90 ml/min.

To ensure that the readings in the flow cell reflect the dynamics

in the fermenter, the cells must spend as little time as possible in

the recirculation loop. For this reason, the length of the tubing in

the closed‐loop was chosen to limit the residence time in the

tubing to 20–25 s. Background and reference measurements

were taken before starting the fermentation by measuring the

spectrum of air first with the laser turned off and then with the

laser turned on. The exposure time of the sample was set to

120 ms. Every minute, 100 ATR spectra of the fermentation

media were taken and their average was recorded and

stored as a single. txt file. Each spectrum contained absorbance

data in the range of 428–1833 cm−1 with a resolution of 1 cm−1.

A schematic representation of the experimental set‐up is given in

Figure 1.

3 | STATE ESTIMATION

3.1 | Hybrid monitoring algorithm for real‐time
state estimation

The algorithm proposed for on‐line monitoring uses a CD‐EKF to

make estimations of the state variables. The CD‐EKF fuses the pre-

dictions made with the kinetic model and the measurements calcu-

lated with the data‐driven model to give an estimate of the real

system state (Figure 2). The kinetic model is a time‐continuous sys-

tem of differential equations containing the reaction rates and the

stoichiometry of the different state variables of the fermentation

(with the form shown in Equation 1)

ˆ
= (ˆ( ) ( ) )

d
dt

f t t
x

x u p, , , (1)

where ˆ( )tx is a vector containing the state variables of the model, ( )tu are

the external inputs, and p are the model parameters. The data‐driven
model consists of a set of three independent PLS models that take the

spectra collected on‐line with the ATR‐MIR spectrometer as input and

return the measured concentrations of Glu, Xyl, and EtOH as output.

F IGURE 1 Schematic representation of the set up used for the fermentation [Color figure can be viewed at wileyonlinelibrary.com]
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At time zero (t0), the mechanistic model is used to generate a

long‐horizon prediction of the profile of the fermentation from the

initial conditions (x̂0). Then, during the fermentation, the CD‐EKF
operates iteratively in two steps to predict and update the estima-

tions of the concentrations of Glu, Xyl, and EtOH. In the first step, at

each time tk , given the previous a posteriori estimate of the state of

the system x̂kk, the kinetic model is integrated numerically from tk to

+tk 1 to produce a priori estimates of the states at +tk 1 ( +x̂k 1k).

∫ˆ = ˆ + (ˆ( ) ( ) ) ++
+

f t t dtx x x u p w, , ,
t

t
k 1k kk k

k

k 1 (2)

where ~ ( )Nw Q0,k represents the process noise (assumed to be in-

dependent and normally distributed). During the same step, a priori

estimates of the covariance matrix ( +Px
k 1k) are also calculated by

propagating it forward from tk to +tk 1 using Equation (3) and taking

the Px
kk as initial conditions (Zhou et al., 2012).

= ( ) ( ) ++ | |t tP A P A Q,T
k 1 k k k

(3)

where ( )tA is the Jacobian matrix of the kinetic model in the time

interval from tk to +tk 1. At +tk 1 (every 15min), 15 new spectra have

been collected (every minute from tk to +tk 1), and the PLS models cal-

culate the concentration of Glu, Xyl, and EtOH. Then the median values

of the 15 predicted concentrations of Glu, Xyl, and EtOH are used to

produce the measurement vector +ŷk 1. The measurement vector +ŷk 1

relates to the state of the system at +tk 1 following equation:

ˆ = (ˆ ) ++ + +hy x v ,k 1 k 1 k 1
(4)

where the function +(ˆ )h xk 1 relates the states at +tk 1 to the mea-

surement vector +ŷk 1 and + ~ ( )Nv R0,k 1 is the noise associated with

the measurements. At +tk 1, the new measurements of the

concentration of Glu, Xyl, and EtOH are used to update the a priori

estimates of the state variables and their covariance matrix

+ +(ˆ )x P,k 1k
x

k 1k to produce the a posteriori estimates

+ + + +(ˆ )x P,k 1k 1
x

k 1k 1 . This is the update step in the CD‐EKF algorithm.

First, the Kalman gain ( +Kk 1) is calculated using Equation (5) where C

is the Jacobian matrix of +(ˆ )h xk 1 . Finally, a posteriori estimates of the

states and the covariance matrix are calculated using the update

equations (Equations 6 and 7, respectively).

= ( + )+ + +
−K P C CP C R ,T T

k 1
x

k 1k
x

k 1k
1 (5)

ˆ = ˆ + (ˆ − ˆ )+ + + + + +x x K y Cx ,k 1k 1 k 1k k 1 k 1 k 1k
(6)

= ( − )+ + + +P I K C P ,x
k 1k 1 k 1

x
k 1k

(7)

where I is the identity matrix. At the end of each iteration, the a

posteriori covariance matrix ( + + )Px
k 1k 1 is used to calculate the 95%

confidence interval of the a posteriori state estimates

σˆ = ˆ ±+ + + + +xx 3 ,k 1k 1k 1k 1 k 1
(8)

where σ = ( )+ + +Pdiagk 1
2 x

k 1k 1 .

Before building the hybrid model, it is necessary to develop, iden-

tify, and calibrate the kinetic and the PLS models. The kinetic model was

identified off‐line using data from fermentation 1 (Table 1), and the PLS

models were calibrated using semi‐synthetic samples.

3.2 | Kinetic model

The kinetic model describing the dynamics of Glu, Xyl, Fur, furfuryl

alcohol (FA), 5‐HMF, HAc, EtOH, and biomass was implemented in

F IGURE 2 Scheme of the hybrid monitoring approach [Color figure can be viewed at wileyonlinelibrary.com]
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Matlab 2016® (Mathworks). The model, developed by Mauricio‐
Iglesias et al. (2015), describes the growth of S. cerevisiae on Glu and

Xyl and accounts for the inhibitory effects of Fur, FA, 5‐HMF, HAc,

and EtOH. A graphical conceptualization of the different processes in

the model is shown in Figure 3.

The kinetic model was developed following the notation de-

scribed by Sin et al. (2008). The model was based on the uptake rates

of Glu, Xyl Fur, 5‐HMF, and HAc and the reaction rates of FA, EtOH,

and biomass were expressed as a linear combination of the uptake

rates of Fur, Glu, and Xyl using the stoichiometric matrix (shown in

Table 2). The reaction rates for each state variable were modeled

using the following expressions:

• The uptake rate of the substrates (Glu and Xyl) followed Monod

kinetics with substrate inhibition (Equation 9 in Table 3).

• The uptake rate of the inhibitors (Fur, 5‐HMF, and HAc) followed

regular Monod kinetics (Equation 10 in Table 3).

• The inhibition effects by Fur, FA, 5‐HMF, and HAc were modeled

by multiplying the reaction rates by the inhibition term shown in

Equation 11 in Table 3.

• Product inhibition of the uptake rates of Glu and Xyl was modeled

by multiplying the respective uptake rates by the empirical term

shown in Equation 12 in Table 3.

• Competitive inhibition (Glu inhibits the uptake of Xyl) was modeled

using the inhibitory term shown in Equation 13 in Table 3.

By combining the stoichiometric matrix with the uptake kinetic

rates, a model with 8 ordinary differential equations and 32 para-

meters was obtained (the full set of differential equations and the list

of parameters are shown in the Supporting Information Material).

The parameters were estimated by fitting the model to off‐line ex-

perimental data obtained with HPLC. The profiles of Glu, Xyl, Fur,

and EtOH of fermentation 1 (Table 1) were used for the parameter

estimation (the results of the parameter estimation are shown in

F IGURE 3 Conceptualization of the kinetic model. (1) Glucose uptake, (2) xylose uptake, (3) furfural uptake, (4) furfural is converted into
furfuryl alcohol (FA), (5) FA inhibits the uptake of glucose, (6) FA inhibits the uptake of xylose, (7) furfural inhibits the uptake of glucose,
(8) furfural inhibits the uptake of xylose, (9) furfural inhibits the uptake of 5‐hydroxymethyl furfural (5‐HMF), (10) 5‐HMF inhibits the uptake of
glucose, (11) 5‐HMF inhibits the uptake of xylose, (12) 5‐HMF uptake, (13) 5‐HMF is converted into acetate, (14) acetic acid uptake, (15) acetic

acid inhibits the uptake of glucose, (16) acetic acid inhibits the uptake of xylose, (17) production of ethanol, (18) ethanol inhibits the uptake of
glucose, (19) ethanol inhibits the uptake of xylose, (20) cell growth, (21) competitive inhibition: glucose inhibits the uptake of xylose [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Stoichiometric matrixGluc Xyl Fur FA 5‐HMF HAc EtOH X

Glu uptake −1 0 0 0 0 0 YEtOH/Glu YX/Glu

Xyl uptake 0 −1 0 0 0 0 YEtOH/Xyl YX/Xyl

Furuptake 0 0 −1 YFA/Fur 0 0 0 0

5‐HMF uptake 0 0 0 0 −1 YHAc/5‐HMF 0 0

HAc uptake 0 0 0 0 0 −1 0 0

Abbreviations: 5‐HMF, 5‐hydroxymethyl furfural; X, biomass; EtOH, ethanol; FA, furfuryl alcohol;

Fur, furfural; Glu, glucose; HAc, acetic acid; Xyl, xylose.
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Supporting Information Material). In brief, first parameter estimation

was performed using the nonlinear least‐squares method to fit the

maximum biomass specific uptake rates of Glu, Xyl, and HAc to the

experimental data (vmax, Glu, vmax, Xyl, vmax, HAc) using the lqnonlin

function of Matlab Release 2016b. The initial conditions are shown in

Table 1. The parameters found by Krishnan et al. (1999) and Hanly

and Henson (2014) were used as the initial guess for the parameter

estimation (see Supporting Information Material). To improve the

fitting, a local sensitivity and identifiability analysis was conducted to

find the parameters with a larger impact on the output, and the

combinations of parameters that are not linearly correlated (Brun &

Reichert, 2001). As a result of the sensitivity and identifiability

analysis, a subset of three parameters (vmax, Glu, KiHAc, Glu, and Ki, Glu,

Xyl) was selected for further estimation (the results of the sensitivity

and identifiability analyses are shown in Supporting Information

Material). A second parameter estimation was performed with the

three selected parameters using the bootstrap framework described

by Sin and Gernaey (2016). First, a reference parameter estimation

was done using nonlinear least squares. Then, 100 synthetic data sets

were created by randomly sampling from the residuals of the re-

ference parameter estimation using the Monte Carlo method (Sin &

Gernaey, 2016). The three parameters were then re‐estimated for

each of the 100 synthetic data sets using nonlinear least squares.

This process resulted in a population of 100 estimates for each

parameter. The mean, the SD, and the covariance matrix were cal-

culated for each of the estimated parameters to assess their un-

certainty. The uncertainty in the estimated parameters was

propagated through the model using a Monte Carlo approach to

assess the uncertainty in the model output (Sin & Gernaey, 2016).

The uncertainty in the parameters estimated using the bootstrapping

method was considered to follow a normal distribution. The model

was finally validated with the fermentations 2–4 (validation results

are shown in Supporting Information Material IV).

3.3 | Calibration of the data‐driven models

Three independent PLS models were developed to calculate the

concentrations of Glu, Xyl, and EtOH from the spectral data collected

with the ATR‐MIR spectrophotometer. Due to the limited medium

availability, a specific procedure to calibrate the PLS models was

designed to (1) account for the matrix absorbance; (2) distribute the

leverage of each calibration sample evenly along the experimental

space; and (3) minimize the correlation between the concentrations

of Glu, Xyl, and EtOH. First, 1.5 L of wheat straw hydrolysate was

fermented (as described in Section 2) to remove the Glu and Xyl from

the media (the Glu was entirely removed, but a residual concentra-

tion of 0.2 g/L of Xyl remained in the fermentation media). Then, the

fermented medium was centrifuged (at 4000 rpm for 5min) to re-

move the biomass, and the EtOH was stripped out by sparging sterile

air for 24 h at 35°C. Finally, the volume was adjusted to 1.5 L by

adding 150ml of deionized water. The resulting broth was the fer-

mentation matrix without Glu, Xyl, or EtOH, and it was used to

prepare 21 semi‐synthetic samples for the calibration set. Note that

the fermentation matrix used to calibrate the PLS models corre-

sponded to the matrix at the end of the fermentation, and therefore,

the PLS models did not take into account the changes in the fer-

mentation matrix. This approach is valid under the assumption that

the contribution to the variance of the spectral matrix caused by the

change in the concentration of the analytes is much more significant

than the contribution caused by the change in the matrix. The sam-

ples were prepared based on a three dimensional Latin hypercube

(LH) experimental design. This design was chosen to distribute the

leverage of the different samples evenly along with the experimental

space (Montgomery, 2009; the calibration space is shown in Table 4).

To minimize the correlation between the concentrations of Glu, Xyl,

or EtOH in the different samples, 100,000 randomized LH candidates

were created and ranked according to their average pairwise

Pearson's correlation coefficients (PCCs). The calibration design with

TABLE 3 Mathematical terms describing
the reaction rates of the model

Compound Reaction rate Compounds Equation no.

Substrate uptake
∙

+ +

v S

K S

S

S
S

Ki S

max,
2

,

S = glucose, xylose 9

Inhibitors uptake
∙

+

v I

K I
I

SP I

max,

,
I = furfural; 5‐HMF, acetic acid 10

Inhibition effects
+

1

1
I

Ki I S, ,

S = glucose, xylose; I = furfural, furfuryl

alcohol; 5‐HMF, acetic acid

11

Product inhibition
γ

− ⎛
⎝

⎞
⎠

†
1 P

P S

S

max,
S = glucose, xylose; P = ethanol 12

Competitive
inhibition +

1

1
I

Ki I S, ,

S = xylose; I = glucose 13

Abbreviation: 5‐HMF, 5‐hydroxymethyl furfural.
†P Smax, is the product inhibition constant.

TABLE 4 Calibration space considered for the partial least
squares models

Lower limit Upper limit

Glucose (g/L) 0 40

Xylose (g/L) 0 25

Ethanol (g/L) 2.5 32.5
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the lowest correlation was selected. The spectra corresponding to

the samples in the selected calibration set, as well as the pairwise

PCC, are shown in Figure 4 (the specific concentrations are shown in

the Supporting Information Material). This allows the PLS to provide

independent results in fermentations with different dynamics.

A volume of 75ml was prepared for each sample, and the specific

concentration of Glu, Xyl, and EtOH was determined by HPLC. The

spectrum of each sample was collected by circulating it through the

flow cell. The spectral area of the calibration set between 950 and

1550 cm−1 was used to calibrate three independent PLS models for

Glu, Xyl, and EtOH, respectively, using the MBPLS package in Python

3.7 (Baum & Vermue, 2019). The spectra were preprocessed by

taking the first derivative and mean centering them. A leave‐one‐out
cross‐validation procedure was used to calculate the optimal number

(a)

(b)

(c)

F IGURE 4 (a) Spectra of the calibration samples in the optimal calibration set obtained from Latin hypercube sampling. (b) Pairwise

Pearson's correlation (PCC) between the concentration of glucose, xylose, and ethanol in the calibration set. (c) Root mean squared error during
the cross‐validation (RMSECV) of the partial least squares (PLS) models for glucose, xylose, and ethanol [Color figure can be viewed at
wileyonlinelibrary.com]
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of latent variables (LV) for each model by minimizing the root mean

square error of cross‐validation (RMSECV). The PLS models for Glu,

Xyl, and EtOH consisted of 4, 3, and 3 LVs, respectively (Supporting

Information Materials). In all cases, the PLS models described more

than 95% of the variance in both, the X (spectra) and Y (concentra-

tion) blocks. The regression lines of each PLS model are shown in

Figure 4c.

3.4 | Tuning the CD‐EKF

To initialize the CD‐EKF, initial estimates of the measurement

and process noise covariance matrices must be provided. This

step is crucial to determine the degree of reliance of the a pos-

teriori estimates on the a priori estimates and on the measure-

ments. The measurement noise covariance matrix (R) was found

directly from the variance of residuals between the HPLC mea-

surements and the PLS predictions. During the Glu consumption

phase, the production of other compounds (e.g., glycerol) inter-

fered with the PLS predictions of Xyl and EtOH, resulting in much

lower measurement accuracy (i.e., the measurement noise cov-

ariance of Xyl and EtOH was nearly twice as high during the Glu

consumption phase than during the rest of the fermentation). To

account for this different prediction quality, two measurement

noise variance matrices were used for the Glu and Xyl con-

sumption phases (R1 and R2, respectively; Ricardo, 2019). Since

Glu inhibits the consumption of Xyl, it was set that the Xyl con-

suming phase started when the Glu concentration was below ¼ of

the value of the inhibition constant of Glu on Xyl (Ki,Glu,Xyl). Before

this point, R1 was used as the variance matrix of the measure-

ments, and R2 was used afterward. The initial process noise cov-

ariance matrix ( )Q was iteratively tuned following the procedure

described by Price et al. (2014). First, a small Q( × )−1 10 7 was

chosen, which made the CD‐EKF rely excessively on the internal

model and made it insensitive to the measurements. Then, Q was

gradually increased until the estimated states matched the off‐
line measurements taken with HPLC (Q= × )−1 10 5 . The tuning of

the CD‐EKF was done in fermentation 2, and fermentations 3 and

4 were used to validate the monitoring approach using different

fermentation conditions (Table 1).

4 | RESULTS AND DISCUSSION

The performances of two real‐time monitoring strategies were

compared using three different cellulose‐to‐EtOH fermentations.

The first scenario only relied on the data‐driven model to predict the

concentrations of Glu, Xyl, and EtOH. The second scenario used the

hybrid model to reconciliate the measurements from the data‐driven
model with the internal model of the process to estimate the system

states. The performance of each method was compared using the

RMSE between the off‐line measurements taken with HPLC and the

real‐time predictions (Figure 5).

4.1 | Strategy 1: Monitoring using a data‐driven
model only

The PLS predictions of the concentrations of Glu, Xyl, and EtOH for

the fermentations 2–4 are shown in Figure 5a–c. Since the calibration

set of the PLS models only included synthetic samples generated

using the LH sampling and did not include any fermentation samples,

the results are shown in Figure 5a–c are three independent valida-

tions of the models. The PLS models were able to describe the pro-

files of Glu, Xyl, and EtOH in all three batch fermentations with

different accuracies (Figure 5). The prediction of Glu was accurate in

fermentation 2 (Figure 5a1), but showed some deviations in fer-

mentations 3 and 4, especially towards the end of the fermentation

(Figures 5b1 and 5c1). Note that clogging of the circulation loop

occurred after 2 h in fermentation 4 due to the accumulation of

suspended solids and caused the dramatic drop in the predicted Glu

concentration seen in fermentation 4 (Figure 5c1). The prediction of

Xyl followed two well‐distinguished trends during the three fer-

mentations (Figures 5a2, 5b2, and 5c2). The first one occurred during

the Glu consumption phase, where the predicted Xyl concentration

increased from 15 to 25 g/L. This tendency was neither in accordance

with the off‐line measurements nor with the biology of the system

(i.e., S. cerevisiae does not produce Xyl) and suggested that other

factors, neglected in the calibration set of the PLS models, interfered

with the prediction of Xyl. This interference was arguably due to the

accumulation of glycerol and biomass in the fermentation media

during the growth on Glu. S. cerevisiae produces glycerol to re-

generate NAD+/NADH and to maintain the redox balance within the

cells (Palmqvist et al., 1999). This was further confirmed by the off‐
line measurements with HPLC, which showed that during the Glu

consumption phase, glycerol reached a concentration of 3 g/L (data

not shown). Moreover, during the Xyl consuming phase, the glycerol

concentration did not significantly change, and glycerol remained in

the fermentation matrix after stripping the EtOH. In consequence,

the matrix used to calibrate the PLS models contained a high‐glycerol
concentration and a low‐biomass concentration, which did not re-

present the properties of the matrix at the beginning of the fer-

mentation. The second trend in the prediction of Xyl occurred during

the Xyl consumption phase, where the glycerol concentration re-

mained constant. In this second phase, the PLS model was able to

describe the trend of Xyl in all the fermentation, with a slight over-

estimation in fermentations 2 and 4 (Figures 5a2, 5b2, and 5c2).

EtOH was accurately predicted in fermentation 3 (Figure 5b3), but it

showed significant deviations during the Glu consumption phase in

fermentations 2 and 4 (Figures 5a3 and 5c3). Likely, these deviations

are also caused by matrix effects. Nonetheless, during the Xyl con-

sumption phase, the concentration of EtOH is accurately predicted in

all fermentations (Figure 5a3, 5b3, and 5c3). The PLS models were

able to successfully describe the general trajectories of Glu, Xyl, and

EtOH in three fermentations with different initial conditions. These

predictions can be used to assess the progress of the fermentation

and demonstrate the robustness of the calibration procedure fol-

lowed to calibrate the models. However, the matrix effects had a
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

F IGURE 5 (a–c) Comparison between the monitoring outcomes of the partial least squares (PLS) and the hybrid model in fermentations 2–4.

Fermentations 2–4 were validation sets of the PLS model, while the continuous‐discrete extended Kalman filter (CD‐EKF) was tuned using
fermentation 2 and validated in fermentations 3–4. (d1–3.) The root‐mean‐squared error (RMSE) between the hybrid model, the PLS, the kinetic
model, and the off‐line high liquid performance chromatography (HPLC) samples [Color figure can be viewed at wileyonlinelibrary.com]
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substantial interference with the predictions of the PLS models

(especially for Xyl and EtOH), making the measurements noisy and

unsuited to apply advanced control strategies. The PLS predictions

could be improved by expanding the calibration set by including ei-

ther fermentation samples (to better account for the changes of the

fermentation matrix) or by considering glycerol and biomass in

the experimental space. Unfortunately, this was not possible due to

the limited availability of fermentation media.

4.2 | Strategy 2: Hybrid monitoring approach

The initial process noise covariance matrix (Q) of the CD‐EKF was

tuned in fermentation 2 by iteratively adjusting it to match the

CD‐EKF estimations with the off‐line HPLC measurements. After

tuning the CD‐EKF, its predictions were validated using fermenta-

tions 3 and 4. The performance of the hybrid model was investigated

by calculating the RMSE of the estimated states at the different

measurement points and by comparing it to the RMSE of the pre-

dictions made with the data‐driven model and the internal model.

The results showed that in all fermentations, the state estimations

made with the hybrid model significantly improved the predictions of

the data‐driven model (the RMSE of the hybrid model estimates were

between 1.3 and 6 times lower than the RMSE of the predictions

made with the PLS model). These results indicate that the hybrid

model successfully used the internal model to correct the incon-

sistencies and noise associated with the PLS predictions. The esti-

mated concentrations of Glu, Xyl, and EtOH made with the hybrid

model in fermentation 2 were in excellent agreement with the off‐
line measurements and with the internal model of the process (the

RMSE of the hybrid and the kinetic model estimates were very si-

milar and below 1.55 g/L in all the states). The validation experiments

had different initial conditions that resulted in different fermentation

profiles (Table 1 and Figure 5b,c). In fermentation 3, the kinetic

model was not able to predict the concentrations of Glu and Xyl with

the same accuracy as in fermentation 2. While in fermentation 2 the

RMSE of the kinetic model for Glu was 0.97 and 1.54 g/L for Xyl, in

fermentation 3 the kinetic model predicted Glu and Xyl with an

RMSE of 3.90 and 2.92 g/L, respectively. The predictions improved

with the hybrid model, resulting in the lowest RMSE of 2.60 and

2.66 g/L for Glu and Xyl, respectively Figure 5d2), when compared to

the predictions of the PLS and the kinetic model. This demonstrates

that the hybrid approach is sensitive to the measured data and in-

corporates it to correct the estimates of the system states, making

the hybrid model able to account for process deviations. On the

other hand, the prediction of EtOH had a higher RMSE than the

internal model due to the overestimation of EtOH concentrations

towards the end of the fermentation (Figures 5b3 and 5d2). Similar

to fermentation 2, the state estimations of the hybrid model and the

predictions of the internal model agreed in fermentation 3 and had

an RMSE below 1.4 g/L for each compound. Interestingly, the pre-

dictions of the hybrid model were not affected by the dramatic drop

in the concentration of Glu and Xyl that occurred in fermentation 4

due to the clogging of the recirculation loop (Figures 5c1–3 and 5d3).

As such, it can be clearly seen that the proposed hybrid model is

robust to punctual deviations in the measuring signal, which the PLS

model lacks. This stability is desirable when dealing with spectro-

scopic data, where the signal is highly sensitive to disturbances such

as air bubbles or solid compounds.

4.3 | Perspectives for industrial application
of the hybrid approach

In the current implementation, the hybrid model was updated with

new measurements every 15min to produce new estimates of the

system state. This updating frequency allows monitoring of the

progress of the fermentation in real‐time, and can be used to detect

deviations in the fermentation profile (e.g., due to contamination by

lactic acid bacteria) and to take corrective actions. However, given

the dynamics of the system, other control applications (such as feed

rate control) would require higher updating frequencies. The data

acquisition and the computational time to solve the hybrid model are

the two factors limiting the updating frequency. One of the main

advantages of using spectroscopic methods over other monitoring

tools such as at‐line HPLC is that spectroscopy allows the fast and

automated collection and analysis of new spectra, resulting in a high

updating frequency of the state variables without the need for

manual sampling (Cabaneros et al., 2019). The spectrophotometer

used in this study can collect a new spectrum every minute, and the

hybrid model is solved in a few seconds, updating the states of the

system every 1.5 min. The possibility to reach high updating fre-

quencies makes this approach also useful for the implementation of

control schemes that require faster response times (e.g., for feed‐rate
control in fed‐batch operations).

In the present work, the media was centrifuged before the fer-

mentation to remove suspended solids compounds that could clog

the tubing in the recirculation loop. However, in industrial opera-

tions, the media is not centrifuged, and high concentrations of sus-

pended solids are present during the fermentation process. This

situation would be further aggravated in processes using simulta-

neous saccharification and fermentation, where the concentration of

solid matter is especially high. Such high concentrations of suspended

solid compounds can interfere with the collected spectra, reducing

the accuracy of the predictions, and even limiting the industrial ap-

plicability of some spectroscopic methods (Cabaneros et al., 2019). In

this context, ATR‐MIR spectroscopy is an attractive option due to its

robustness to high concentrations of suspended solids caused by the

shallow penetration depth of the light into the media. As such, ATR‐
MIR spectroscopy has been successfully applied to monitor the

progress of various systems with high solid matter on‐line, such as

the mashing process in breweries (Patent No. WO 2015/155353,

2015). Although ATR‐MIR spectroscopy can be used to monitor

processes with a high concentration of suspended solids, it would still

be expected that the interference of the light with the solid matter

affects the precision and accuracy of the measurements. On a
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practical note, even though on‐line proves with a recirculation loop

have been successfully implemented in systems with high con-

centrations of suspended solids, in‐line probes are advantageous to

avoid clogs in the recirculation loop (Cabaneros et al., 2019).

5 | CONCLUSIONS

Real‐time monitoring of cellulose‐to‐EtOH fermentations is challen-

ging due to the high complexity of the fermentation media derived

from lignocellulosic material. The results of this study showed that

relying only on advanced spectroscopic measurements combined

with PLS regression models to measure the concentration of Glu, Xyl,

and EtOH can yield a good qualitative description of the fermenta-

tion progress. However, the interference of other compounds such as

glycerol or biomass and the presence of bubbles and suspended so-

lids in the fermentation broth results in noisy and biased predictions

that limit the implementation of advanced control schemes. The

hybrid approach presented in this study efficiently fuses the pre-

dictions of the PLS model and the internal model of the system to

correct the inconsistencies of the PLS predictions and produce con-

sistent estimates of the state variables. Having a thorough under-

standing of the behavior of the measuring system is crucial to tune a

robust and stable CD‐EKF effectively. The hybrid model presented in

this study was calibrated and tuned using only two fermentations,

and large amounts of data were not required to develop the state

estimator. This is an essential feature as data is often not easily

available in industrial setups. The quality of the predicted con-

centrations of Glu, Xyl, and EtOH using the hybrid model opens the

doors towards the implementation of advanced monitoring schemes.

In the current configuration, the hybrid model can be used to monitor

fermentations in real‐time, to detect deviations in the behavior, and

to take corrective actions when needed. Moreover, the high sampling

frequency (one sample per minute) and the low computational time

required by the model allow updating the estimates every 1.5 min,

making this approach suitable to implement real‐time control

strategies.
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