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A B S T R A C T   

The COVID-19 virus has spread rapidally throughout the world. Managing resources is one of the biggest 
challenges that healthcare providers around the world face during the pandemic. Allocating the Intensive Care 
Unit (ICU) beds’ capacity is important since COVID-19 is a respiratory disease and some patients need to be 
admitted to the hospital with an urgent need for oxygen support, ventilation, and/or intensive medical care. In 
the battle against COVID-19, many governments utilized technology, especially Artificial Intelligence (AI), to 
contain the pandemic and limit its hazardous effects. In this paper, Machine Learning models (ML) were 
developed to help in detecting the COVID-19 patients’ need for the ICU and the estimated duration of their stay. 
Four ML algorithms were utilized: Random Forest (RF), Gradient Boosting (GB), Extreme Gradient Boosting 
(XGBoost), and Ensemble models were trained and validated on a dataset of 895 COVID-19 patients admitted to 
King Fahad University hospital in the eastern province of Saudi Arabia. The conducted experiments show that the 
Length of Stay (LoS) in the ICU can be predicted with the highest accuracy by applying the RF model for pre-
diction, as the achieved accuracy was 94.16%. In terms of the contributor factors to the length of stay in the ICU, 
correlation results showed that age, C-Reactive Protein (CRP), nasal oxygen support days are the top related 
factors. By searching the literature, there is no published work that used the Saudi Arabia dataset to predict the 
need for ICU with the number of days needed. This contribution is hoped to pave the path for hospitals and 
healthcare providers to manage their resources more efficiently and to help in saving lives.   

1. Introduction 

The quick spread of the Coronavirus Disease (COVID-19) worldwide 
has threatened most healthcare systems. Generally, the rapid increase in 
the number of infected patients has raised the demand for Intensive Care 
Unit (ICU) beds [1]. The shortage in hospital resources and bed capacity 
is one of the most critical factors that have an impact on increasing death 
rates of COVID-19 [2]. A study based on a sample of COVID-19 patients 
collected from 88 US Department of Veterans Affairs hospitals indicated 
that the risk of death for COVID-19 patients in ICU increased with the 

increase in the demand for the ICU compared to the period when the 
demand rate was approximately 25% lower [3]. 

Various measures were taken to address the lack of medical resources 
issue, including following specific guidelines for prioritizing patients 
and selecting those deserving of admission to the ICU for needed care [4, 
5]. Although these measures play a significant role in managing medical 
resources, they, in turn, may put the lives of COVID-19 patients at risk, 
as happened in the United Kingdom when several patients adhered to 
home quarantine, which led to their death, and their condition was not 
discovered for a period up to two weeks [6]. 
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During the period of such crises, it is necessary to estimate the future 
need for medical resources such as ICU beds and nasal oxygen support. 
For such purposes, Artificial Intelligence (AI), namely Machine Learning 
(ML), has made a significant contribution during the COVID-19 
pandemic [7]. 

Several studies in the literature focused on predicting the number of 
patients who need admission to the ICU [8–13]. Moreover, identifying 
the factors that increase the likelihood of ICU admission are also 
important [8,14–17]. Several factors play role in determining the need 
for ICU admission for COVID-19 patients, e.g. air quality in the 
geographical region, which could indicate the rate and severity of the 
infection in specific countries [18]. Age also is an indicator, as Estiri 
et al. stated that patients at age of 51 and above are more likely to be 
hospitalized or face mortality risk [8]. Izquierdo et al. found that the 
most common clinical characteristics determining admission to ICU 
were fever, age, and tachypnea with/without respiratory crackles [17]. 
Aktar et al. illustrate the strong relationship between abnormal blood 
parameters and the severity level of the disease in COVID-19 patients 
[16]. Subudhi et al. found that the amount of LDH, CRP, and O2 satu-
ration had significant influence in making the ICU admission decision 
while eGFR<60 ml/min/1.73m2, and the percentages of lymphocytes 
and neutrophils were useful in predicting mortality [13]. Moreover, 
Heldt et al. found that selected laboratory findings such as creatinine, 
blood lactate levels, and clinical indicators of patient oxygenation were 
most predictive of endpoints for COVID-19 patients. Furthermore, pa-
tient age and measures of oxygen status during the ED stay can help in 
the initial prediction of poor patient outcomes [9]. 

By searching the literature, there are no published studies that tar-
geted developing machine learning models to estimate the needed 
number of days in the ICU for COVID-19 patients in Saudi Arabia which 
is the focus of this study. Also, in this work, the most relevant features 
related to the ICU admission for COVID-19 patients in Saudi Arabia are 
being determined. 

The research conducted in this paper aims at:  

1. Reviewing the published works that aimed at predicting the need of 
COVID-19 patients for ICU admission and the expected number of 
days to be spent in the unit worldwide.  

2. Developing machine learning models to predict and estimate the 
number of days COVID-19 patients in Saudi Arabia may spend in the 
ICU to assist health sectors to better manage their resources and 
determine their readiness to receive new patients and provide the 
needed care for them.  

3. Identifying the most relevant features that indicate the patient’s need 
for ICU and the expected length of stay in the unit. 

The rest of this paper is organized as follows: Section 2 presents the 
related works, section 3 introduces the methodology, section 4 explains 
the conducted experiments, and the experimental results are discussed 
in Section 7. Finally, section 8 concludes the paper and presents future 
research directions. 

2. Related works 

The spread of COVID-19 had a significant impact on the healthcare 
systems around the globe. In particular, on the availability of beds in the 
intensive care unit. This pandemic increased the research community’s 
interest in finding practical solutions to mitigate the effects of this 
problem, such as prediction models for ICU admissions, length of stay in 
ICU, and discharge date. To conduct our research, over 41 papers were 
reviewed. The main focus was on the latest published works in high 
reputed journals to analyze the effectiveness of ML models and algo-
rithms in solving the problems of resource shortage. 

Many studies have tackled the issue of predicting the need for 
different hospital resources for COVID-19 patients, and some of them 
have utilized machine learning for that goal. Works that identify the 

related features for ICU admission are also reviewed. The below dis-
cussion reviews the related works and their used methods. It also pro-
vides a summary table of the related works in terms of aim, method, 
dataset, features, and results. 

Epstein and Dexter [19] have designed an analytical model to predict 
the future need for beds and ventilators during the COVID-19 pandemic 
for a specific hospital by analyzing its internal data. The model used 
COVID-19 data of admitted patients to estimate the number of days they 
may need a ventilator. The authors found that there is no relationship 
between gender and duration of hospitalization, or between age and the 
need for ventilators. The performance of the model was good as the 
mean absolute error of the daily prediction was small <1.25 patients/-
day for the census, and <0.5 ventilators/day for ventilators. However, 
the results of the model could not be generalized, as the authors rec-
ommended resetting the input parameters for each hospital to achieve 
more accurate results. 

In contrast with the previous study, López-Cheda et al. in [20] found 
that gender and age affect the stay duration in the ICU. They applied a 
non-parametric model to predict the LoS of COVID-19 patients in ICU 
and the time to discharge or death. They simulated the COVID-19 hos-
pital demand using a Monte Carlo algorithm. The results found that the 
LoS in hospital is 11 days on average. 

The work of Henzi et al., presented in [21], has also demonstrated 
that gender has an effect on the LoS in the ICU. A semi-parametric model 
to probabilistically predict the LoS of COVID-19 patients in ICU was 
applied. The model was trained using data from patients with acute 
respiratory distress syndrome (ARDS) and validated using data of 
COVID-19 patients. The results indicated that the LoS for females tended 
to be shorter than that for males. 

Researchers are often interested in improving prediction scenarios 
that influence public decision guidance. To this end, Lapidus et al. in 
[22] conducted a study to assess the average LoS (ALoS) for COVID-19 
patients in ICU by examining two methods of estimation, the Dis-
charged Patient Estimation (DPE) and the Censored Patient Estimation 
(CPE). Although the true ICU_ALoS for the series was >21 days, which is 
significantly higher than other reported estimates, they concluded that it 
is possible to rely on the ALoS in decision-making. They also recom-
mended that censored patients should be included in the analysis along 
with discharged cases to reduce the bias rate. 

Dan et al. built a machine learning model to predict ICU admission, 
LoS in the ICU, and mortality of COVID-19 patients. The model could 
predict events using clinical data collected within 1–15 days before 
actual admission to the ICU. They found that the length of stay in the ICU 
for elderly people with heart disease is high. Moreover, LoS in the ICU is 
affected by abnormal values of many factors, namely lymphocyte ab-
solute value, erythrocyte count, total cholesterol, adenovirus IgM anti-
body, hypersensitive C-reactive protein, high sensitivity troponin I, and 
Q fever Rickettsia IgM antibody [23]. 

Identifying the factors and the clinical characteristics that help in 
predicting the admission of COVID-19 patients to the ICU is crucial too. 
Hong et al. have described COVID-19 clinical characteristics outside of 
Wuhan. They found that fever is not a permanent initial symptom of 
COVID-19 as only 70% of the study sample reported this symptom. They 
found also that age, weight, gender, and career are not affecting the 
length of hospital stay. They designed a multivariate model to predict 
the risk of a long hospital stay. Long periods of hospital stay increase 
medical costs and increase the level of risk. Early estimation helps in 
taking many decisions and allocating resources [24]. 

Moreover, the research conducted by Gunduz et al. in [10] found 
that the CHA2DS2-VASc (Congestive heart failure, hypertension, age, 
diabetes mellitus, stroke, vascular disease) and the M-CHA2DS2-VASc 
(modified CHA2DS2-VASc) scores can be used to predict the need of ICU 
admission, the LoS in the ICU, and mortality of COVID-19 patients. 

Table 1 summarizes the related studies by showing their aim, the 
used model and algorithm, the dataset, features, and the obtained re-
sults. Table 2 shows the relationship between the LoS and some clinical 
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features according to those studies. 

3. Methodology 

This section presents the approach to developing the prediction 
models to estimate the period of stay in the ICU for COVID-19 patients. It 
provides an overview of the approach, a brief about the machine 
learning algorithms utilized, and the dataset description and 

preparation. The first step was to build the machine learning model. The 
second was to collect the dataset and prepare it for processing. Then, 
experiments were conducted to select the best-performing model. The 
evaluation of the developed models then took place. The final step is to 
utilize the developed model for the prediction purpose. 

3.1. Overview of the proposed approach 

This paper aims at prdicting the likelihood of COVID-19 patients for 
ICU admission and the length of their stay using demographic and 
clinical data of positive COVID-19 patients obtained from King Fahad 
University Hospital in Dammam city in Saudi Arabia. The first step was 
to review different machine learning algorithms and select the most 
suitable ones to be utilized in developing the prediction models. Next, 
data pre-processing was applied to recover the missing data and solve 
the imbalanced data problem which is described in detail in section 
3.3.2. After that, the selected machine learning algorithms were trained 
and validated on the selected dataset, once with and once without 
applying feature selection, and by trying different k-fold as demon-
strated in section 4. The classification results of the developed models 
were compared in the third stage which is described in section 5 to 
identify the best performance model. 

3.2. Machine learning algorithms 

In this section, the machine learning classifiers used to build the 
prediction models are discussed. Since the literature addressed different 
classifiers as well-known to perform with high accuracy to solve the 
problem of developing prediction models for medical purposes, the first 
task was to select the top classifiers and test their performance for our 
proposed model. The selected classifiers are Random Forest RF, Gradient 

Table 1 
Summary of works aimed at estimating the need and LoS in ICU for COVID-19 patients worldwide.  

Ref Aim Model Algorithms/ 
Methods 

Dataset Model inputs/Extracted 
features 

Results 

[10] Predict ICU admission, LoS in 
the ICU, and mortality for 
COVID-19 patients 

Multivariate logistic 
regression 

LR EHRs of 1668 COVID-19 patients at 
Merkezefendi State Hospital, 
Manisa, Turkey) 

Clinical data AUC: 0.89 

[19] Predict patient census and 
estimate ventilator needs for 
a specific hospital during the 
COVID-19 pandemic 

Analytical model 
(Weibull 
distribution) 

Linear and log- 
linear regression 

EHRs from UHT and UIHC of COVID- 
19 patients 

LoS in hospital, and 
duration of using the 
ventilator 

MAE: <1.25 
patients/day, <0.5 
ventilators/day 

[20] Estimate LoS of hospitalized 
COVID-19 patients 

Non-parametric 
model 

– EHRs of 10,454 confirmed COVID- 
19 cases in Galicia (Northwest 
Spain) 

Age, and gender – 

[21] Estimate the LoS of COVID-19 
patients in ICU 

Semiparametric 
distributional index 
model 

Distributional 
regression model 

EHRs of 2411 patients with ARDS for 
training, and EHRs of 557 COVID-19 
patients for testing, the data from the 
Swiss Society of Intensive Care 
Medicine 

Age, and gender Accuracy predict 
patient discharged 
from the ICU in 20 
days = 80% 

[24] Describe COVID-19 clinical 
characteristics outside of 
Wuhan and predict the risk of 
long LoS in hospital 

Multivariate 
regression model 

Statistical 
methods (t-test, 
Chi-square) 

EHRs of 75 COVID-19 patients in 
Zhejiang Tertiary Care Hospital 

Demographic data, 
comorbidities, 
laboratory results 
symptoms, and vital 
signs 

AUC: 0.84 

[23] Predict ICU admission, LoS in 
the ICU, and mortality for 
COVID-19 patients 

ML model SVM EHRs of 733 COVID-19 patients in 
Wuhan, China 

Demographic, 
laboratory, and clinical 
data 

Accuracy of: 
1. Prediction of ICU 
admission (0.83, 
0.84) 
2. Prediction of ICU 
death (0.92, 0.98) 
MAE of the 
prediction of LoS in 
ICU (0.723) 

[22] Estimate average LoS in the 
ICU for COVID-19 patients 

Mathematical model Two estimation 
methods: DPE and 
CPE 

EHRs of COVID-19 patients entered 
the ICU of ZHWU 

Age and gender DPE and CPE 
estimates of 
ICU_ALoS (95% CI) 

Note: Area Under the Curve (AUC), Acute Respiratory Distress Syndrome (ARDS), Electronic Healthcare Records (EHR), Discharged Patient Estimation (DPE), 
Censored Patient Estimation (CPE), Linear Regression (LR), Mean Absolute Error (MAE), Support Vector Machine (SVM), University of Iowa Hospitals and Clinics 
(UIHC), University of Miami UHealth Tower (UHT), Zhongnan Hospital of Wuhan University (ZHWU). 

Table 2 
Relationship between LoS and clinical features of patients.  

Factor Studies that confirmed 
relation 

Studies that confirmed 
no relation 

Age [10,20,23] [19,24] 
Gender [20,21] [19,24] 
Weight  [24] 
Career  [24] 
Heart disease [10,23] – 
Hypertension [10] – 
Diabetes mellitus [10] – 
Stroke [10] – 
Vascular disease [10] – 
Lymphocyte absolute 

value 
[23] – 

Erythrocyte count [23] – 
Total cholesterol [23] – 
Adenovirus IgM antibody [23] – 
Hypersensitive C- reactive 

protein 
[23] – 

High sensitivity troponin I [23] – 
Q fever Rickettsia IgM 

antibody 
[23] –  
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Boosting GB, Extreme Gradient Boosting XGBoost, and Ensemble model. 
Based on [25], the most used ML algorithms for mortality, severity, and 
length of stay in ICU are Random Forest RF and XGBoost. In their work, 
the prediction model attained its best result by utilizing RF which helped 
to alarm the medical service providers in 6 h earlier that the patient must 
be admitted to the ICU. 

In the research addressed in [26], Random Forst outperforms other 
classifiers in predicting COVID-19 affected cases, mortality, and cured 
cases in India. 

Also, these algorithms have been applied for many prediction pur-
poses in the medical field such as breast cancer, diabetes, and other 
diseases. For example, the work presented in [27] built a risk prediction 
model that utilized RF and XGBoost algorithms for weighted feature 
selection to diagnose type 2 diabetes. They stated that the best predic-
tion accuracy was achieved by using RF. XGBoost classifier can be used 
to predict accurately the infection with breast cancer, and it can achieve 
the highest accuracy as discussed in [28]. Also in [29], GB and LR were 
utilized to predict the need for recurrent bleeding, therapeutic inter-
vention, and severe bleeding. The work demonstrated that the GB al-
gorithm is a robust classification that can handle large input sizes and 
fits with simple models to achieve higher accuracy. 

The propsed models in this work were implemented using Python 
programming language which provides several tools for machine 
learning tasks. 

Below is a brief description of the used classifiers to build the pro-
posed models.  

a. Random Forest (RF) 

The random forest, as the name implies, is made up of a huge number 
of individual decision trees that work together as an ensemble. It works 
to enhance accuracy by relying on a group of decision models rather 
than a single learning model. The key distinction between this approach 
and traditional decision tree algorithms is that the root nodes have 
splitting nodes that are produced at random [30]. The trees protect each 
other from their flaws, which explains why they have such a strong ef-
fect. While some trees may estimate incorrect classification, many others 
will be correct, allowing the trees to progress in the proper direction. As 
a result, the predictions, and thus errors, generated by individual trees 
must have minimal correlations with each other for the random forest to 
perform well [31]. Furthermore, RF offers many advantages, such as the 
ability to be utilized for both classification and regression tasks, and it 
can process missing variables. Additionally, when additional decision 
trees are added to the forest, overfitting is less likely to occur [32].  

b. Gradient Boosting (GB) 

Gradient boosting is a type of boosting technique that is an ensemble 
mechanism for combining numerous simple models into a single com-
posite model. The entire model becomes a stronger predictor when 
additional simple models are introduced [33]. Each model attempts to 
compensate for the flaws of its predecessor by selecting a random sample 
of data, fitting it with a model, and then training it consecutively. Each 
iteration combines the weak rules of each classifier to generate a single 
and strong prediction rule [34]. Gradient boosting is a technique that 
can be utilized for both regression and classification tasks [33]. It can 
train many models in a progressive, cumulative, and sequential manner. 
The input of GB is three requirements which are: loss function, predic-
tion maker (weak learner) which is generally a decision tree, and an 
additive model which minimizes the loss function by adding the weak 
learners. The loss function describes how the dataset is modeled by the 
algorithm. Mainly, it is the gap between actual and projected values. It 
has a different function for each task. For example, for the classification 
task, the binary cross entropy loss can be used. On the other hand, the 
decision trees can be used as a weak learner to reduce the error gener-
ated from the previous models and return a strong model [35].  

c. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting is a fast open-source version of the sto-
chastic gradient boosting ensemble method which is donated as a scal-
able tree boosting system. As an ensemble machine learning algorithm, 
XGBoost is built on decision tree models. Trees are introduced to the 
ensemble one at a time and fit to correct the prediction mistakes caused 
by preceding models [36]. XGBoost has been deployed on a variety of 
challenges, and the results show that this algorithm produces 
state-of-the-art outcomes on a wide range of difficult problems [37]. It is 
intended to be both computationally efficient (i.e. fast to execute) and 
extremely effective. The most significant factor in XGBoost’s success is 
its scalability in all situations. On a single machine, the system operates 
more than 10 times quicker than the existing popular solutions and 
scales to billions of samples in distributed or memory-limited scenarios.  

d Ensemble Classifier 

By integrating many models, ensemble learning aids in improving 
machine learning results. This method is expected to produce greater 
predictive performance than a single model because it employs a group 
of classifiers rather than a single one to classify unknown data. The 
ensemble’s classifiers all anticipate the proper class of each unseen 
instance, and their predictions are subsequently aggregated using some 
kind of voting system [38]. It is only appropriate to employ this 
approach if the output of multiple classifiers disagrees. Combining a 
large number of identical classifiers provides no benefit. As a result, 
approaches for creating ensembles revolve around producing classifiers 
that disagree with their predictions [39]. Table 3 discusses the strengths 
and weaknesses of the selected prediction algorithms. 

3.3. Data collection and preparation 

This section describes the dataset used in the research and the pro-
cess of data preparation and pre-processing. 

3.3.1. Data description 
The dataset was obtained from King Fahad University hospital in 

Dammam City at the eastern province of Saudi Arabia. Since the start of 
the pandemic, this hospital was one of the main centers to receive and 
treat COVID-19 patients from all cities in the eastern province. The 
dataset consists of the clinical and demographics data of 895 patients 
who attended to the hospital and tested positively for COVID-19. Each 
patient record contained 47 features collected at admission time and 
from the medical history of the patient, where each patient’s record was 
updated daily. Those features included a wide range of clinical and 
demographics data that contains comorbidities, laboratory results 
symptoms, and vital signs such as age, gender, obesity, smoking, vitamin 
D def, fever, headache, liver disease, ferritin, LDH, AST, Trop, and other 
data. The data set also contained the number of days each patient spent 
in the ICU before being discharged or expired. The range of the days in 
the data was between 0 and 58 days. For classification and prediction 
purposes, these days were categorized in small intervals of 5 days and 
given one label of 9 classes (from 1 to 9) to represent the LoS days data. 
The Zero class was used to label COVID-19 patients who did not need to 
attend the ICU. Class 1 was used to represent patients who entered the 
ICU for less than 24 h. The remaining classes 2, 3, 4, 5, 6, 7, 8, and 9 were 
used to represent the following period of days respectively: 1–5, 6–10, 
11–15,16-20, 21–25, 26–30, and more than 30 days. 

3.3.2. Data preparation and preprocessing 
The data preparation and preprocessing involved two tasks: first, 

filling in the missing data, second, solving the issue of imbalanced data. 
Since the dataset contained some missing values, the KNN imputa-

tion method was used to fill in these missing values. The KNN imputa-
tion algorithm replaces the missing value with a value obtained from a 
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neighbor of this empty value. The parameter k defines the number of 
neighbors to be included in the voting process. Besides the capability of 
this algorithm of obtaining a closer value as much as possible and using 
it in filling the missing value. The KNN imputation algorithm can pre-
serve the normal distribution of the data which is very important in the 
case of medical datasets [46]. Since the usage of different k values in the 
KNN imputation algorithm can result in different results, the model 
performance was the average of using four different k values: k = 3, k =
5, k = 7, k = 10, k = 15. 

Similar to a lot of other datasets, this dataset is considered an 
imbalanced dataset. Fig. 1 shows the frequency of every class in the 
attribute “Days to discharge from the ICU”. As shown, the majority of the 
records belong to class 0 while class 6 and class 7 had only 30 and 12 
records respectively. This may make the model biased to class 0. The 
imbalanced dataset is considered a problem as the model will not be able 
to predict the minority classes because the model will focus only on 
optimizing the accuracy without taking into consideration the overall 
distribution of each class. To solve this imbalanced dataset issue, Syn-
thetic Minority Oversampling Technique (SMOTE) was used. This 
technique oversamples the minority class by creating “synthetic” 

examples rather than already existing examples [47]. Fig. 2 demon-
strates the frequency of every class in the attribute “Days to discharge 
from the ICU” after applying SMOTE technique in which all the classes 
now have the same number of records which is 144 records. 

Also, the dataset attributes were evaluated using the entropy eval-
uation to understand how the impurity or the heterogeneity of the target 
class is computed. Table 4 below demonstrates the result of the entropy 
evaluation for each attribute. 

4. Experiments 

In order to achieve the goal of this research, a number of experiments 
were conducted to test the performance of the four developed prediction 
models mentioned earlier in section 3.2. The data were randomly 
divided into two folds, 80% for the training process, and the remaining 
20% was for validation. All models were run using different K-fold 
values: 3, 5, 7, 10, and 15. The same dataset was used with each pre-
diction model, and the performance was evaluated. Because the dataset 
is imbalanced, we could not depend on one performance measure. In this 
case, the performance measures included accuracy (the proportion of 
correctly classified test records), precision (positive predictive value), 
recall (negative predicted value), and f-score (the harmonic mean of 
precision and recall). Also, feature selection was applied once with each 
classifier using the Boruta algorithm to reduce the feature set each 
model needs to handle. The developed models and their performance are 
discussed in the below sections. 

4.1. Model 1: random forest (RF) 

The first prediction model was built using RF classifier. Table 5 

Table 3 
Strengths and weaknesses for the implemented ML algorithms RF, GB, XGB, and 
ensemble classifier.  

Algorithm Strength Weakness 

Random Forest 
(RF)  

• Collection of decision trees 
that fit the data and cause 
high variation in 
classification  

• Data classification is based 
on the most votes.  

• Lower chance of variation 
in data training.  

• Good scale for big dataset.  
• Knows what is better fields 

in the classification [40].  

• Very sensitive to training 
data which makes it error- 
prone.  

• Complex and 
computationally expensive  

• The base classifiers need to 
be defined  

• It prefers the parameters that 
take higher different values 
[40]. 

Gradient 
Boosting 
(GB)  

• It improves the prediction 
performance [41].  

• The algorithm builds 
relations by shortening the 
number of errors from old 
weak classifiers [42].  

• Up-sampling of similar data 
does not show any impact in 
improving results [42]. 

Extreme 
Gradient 
Boosting 
(XGBoost)  

• Designed to be used with 
large complex datasets and 
avoid model overfitting.  

• The method is scalable in 
all cases.  

• It can handle sparse data 
and also parallel and 
distributed computation 
which makes learning 
process faster and quicker 
[43].  

• Always involves many 
classification and 
regression trees [44].  

• Complex and 
computationally expensive 
[40]. 

Ensemble 
Classifier  

• It is combined by weighted 
averaging or the voting of a 
collection of single 
classifiers.  

• The ensemble method 
combines multiple weak 
classifiers as a strong 
classifier. An empirical 
study shows that the price 
of building a base classifier 
is lower than the price of 
building a strong classifier.  

• It can maximize the 
information of the base 
learner and improve the 
overall ability of 
classification [45].  

• The method robustness is 
affected by the quality of the 
dataset [45].  

Fig. 1. Days to discharge from ICU class distribution before oversampling.  

Fig. 2. Days to discharge from ICU class distribution after oversampling.  
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demonstrates the results obtained by this model on the validation set for 
predicting the class of the number of days to discharge from ICU using 
different values of K-fold. The 3-fold achieved the highest accuracy 
performance compared to the other K-folds using the RF classifier. The 

results of RF classifier after the feature selection are shown in Table 6, 
which also shows that 3-fold provides the highest performance. 

4.2. Model 2: gradient boosting (GB) 

The second model was developed using GB classifier, Table 7 and 
Table 8 show the results of validating the model without and with 
applying feature selection. Noticed that, the highest accuracy achieved 
does not depend on the number of K-fold where it was 88.14% with 15- 
fold before the feature selection and 87.29% with 3-fold after the feature 
selection. 

4.3. Model 3: Extreme Gradient Boosting (XGBoost) 

The third model was built using the XGBoost classifier which ach-
ieved the highest accuracy with 3-fold with and without applying the 
feature selection which was 91.49% and 90.80% respectively. Table 9, 
and Table 10 show the results obtained by using the third model with 
XGBoost classifier. 

4.4. Model 4: Ensemble Classifier 

The fourth model was developed using the Ensemble classifier where 
RF, GB, XGBoost, and Adaptive Boosting decisions techniques were 
combined. The obtained results with this model are shown in Table 11 
which achieved 93.13% accuracy without feature selection. Table 12 
shows the results of the model with applying feature selection which 
scored a slightly higher accuracy of 93.81%. 

5. Experimental results and discussion 

The goal of the presented research is to develop a machine learning 
model that estimates the required number of days for COVID-19 patients 
in the ICU to help healthcare providers to manage their resources and to 
plan for the expected COVID-19 affected patients. For this purpose, four 
prediction models were implemented using different ML classifiers with 
multiple tuning of the parameters. The results show that each model 
performed differently with the used dataset. By reviewing the obtained 
results in the previous section, it can be deduced that with the majority 
of the classifiers, using the full set of features improves the prediction 
accuracy compared to applying features selection. Only Model 4 (the 
ensemble) showed slight improvement with feature selection using 
Borota as the accuracy reached 93.81% compared to 93.13% before 
applying the feature selection. Table 13 shows the results achieved by 
each model by applying feature selection. Table 14 shows the highest 
obtained results of each classifier without the feature selection. Results 
were compared in order to identify the highest performance model. 

Fig. 3 also shows the obtained accuracy of each model before and 
after feature selection. 

By comparing the obtained results of all models, we can see that 
model 1, which applied the Random Forest, has achieved the highest 
validation accuracy of 94.16% to predict the number of days range to 
discharge from ICU by using 3-fold. It can be seen that RF provides the 
best result in all performance measures as it scored 94.16%, 94.14%, 
94.16%, and 94.14% for accuracy, precision, recall, and F-score 

Table 4 
Entropy values for features included in the study.  

Attribute Entropy Evaluation 

Gender 0.64 
Age 4.03 
DM 0.71 
HTN 0.68 
Cardiac 0.40 
Obesity 0.31 
Smoking 0.2 
Vitamin D def’ 0.04 
Renal 0.23 
Liver disease 0.12 
Autoimmune disease 0.10 
Fever 0.71 
Dry Cough 0.71 
Fatigue 0.45 
Headache 0.35 
Dyspnea 0.64 
Flu Symptoms 0.36 
diarrhea 0.53 
RR 2.86 
Blood oxygen saturation (SATS) 3.28 
Mode of infection 0.80 
1st sample 0.08 
Chloroquine/ Hydroxychloroquine 0.72 
Azithromycin/ Antibiotics 0.43 
Steroids 0.63 
Tocilizumab 0.56 
Respiratory failure 0.17 
Acute renal failure 0.10 
Acute coronary syndrome 0.06 
ARDS 0.06 
GI complication 0.03 
Nosocomial infection 0.03 
Septic shock 0.06 
Organ dysfunction or failure 0.13 
lymph 5.35 
Neut 5.56 
LDH 5.64 
ALT 4.34 
AST 4.57 
Trop 4.73 
ferritin 5.93 
D-dimer 5.47 
CRP 5.90  

Table 5 
The results of predicting the number of days to discharge from ICU class for 
Model 1.  

K-fold Accuracy Precision Recall F1-Score 

3 94.16% 94.14% 94.16% 94.14% 
5 93.55% 93.51% 93.55% 93.53% 
7 87.23% 87.23% 87.23% 87.20% 
10 86.07% 86.11% 86.07% 85.96% 
15 92.38% 92.31% 92.38% 92.33%  

Table 6 
The results of predicting the number of days to discharge from ICU class for 
Model 1 with feature selection.  

K-fold Accuracy Precision Recall F1-Score 

3 93.30% 93.30% 93.30% 93.30% 
5 89.45% 89.24% 89.45% 89.26% 
7 87.23% 87.26% 87.23% 87.17% 
10 86.30% 86.36% 86.30% 86.28% 
15 79.59% 80.17% 79.59% 79.67%  

Table 7 
The results of predicting the number of days to discharge from ICU class for 
Model 2.  

K-fold Accuracy Precision Recall F1-Score 

3 86.21% 86.24% 86.21% 86.11% 
5 85.16% 85.26% 85.16% 85.03% 
7 86.33% 86.37% 86.33% 86.30% 
10 83.33% 83.50% 83.33% 83.36% 
15 88.14% 88.17% 88.14% 88.08%  
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respectively. The rest of the classifiers yielded slightly lower perfor-
mance. For all developed models, feature selection did not contribute to 
improving performance. The feature selection process was applied in 

hope of reducing overfitting, reducing training time, and improving 
accuracy by eliminating irrelevant features. However, by applying the 
feature selection, the performance was slightly decreased as the ach-
ieved accuracy for the majority of the classifiers was less compared to 
using the full set of features. This indicates that all used features 
contribute to the final decision and are all important. 

Model 1 results were also compared to the other works in the liter-
ature presented in [10,20,24] where different datasets were used with 
ML prediction models. The comparison confirmed that the implemented 
model in this work achieved higher accuracy. Table 15 shows a com-
parison between the related works and the current research in terms of 
the method, performance measurements, features, geographical loca-
tion, and dataset size. 

The second goal of this work was to identify the features that are 
most relevant to patients’ need for ICU and their stay length. Therefore, 
the feature correlation with the number of days to discharge from the 
ICU was extracted from the heatmap. Table 16 shows the top 10 features 
that are highly correlated with the LoS for COVID-19 patients in Saudi 
Arabia. The obtained correlation results show that age, C-Reactive 
Protein, nasal oxygen support days, organ dysfunction or failure, LDH, 
blood oxygen saturation, headache, autoimmune disease, D-dimer, and 
ferritin are the features that can strongly indicate the need for patients to 
be in ICU. These obtained results are aligned generally with the iden-
tified features relevant to ICU admission in the literature which was 
presented earlier in Table 2. 

6. Conclusion and future work 

Artificial intelligence technologies have been widely employed in the 
battle against the COVID-19 pandemic as they support medical services 
with great tools to predict, monitor, track, and contain the pandemic. 
This work aimed to provide a model to help in managing the medical 
resources and facilitate the services for COVID-19 patients with severe 
conditions. The work presented in this paper aimed first to develop a 
prediction model to predict the need for COVID-19 patients to be in the 
ICU and to estimate the duration in days of their stay. Four prediction 
models were developed using ML classifiers: RF, GB, XGBoost, and 
Ensemble as those four classifiers are known to perform well for the 
targeted purpose. The developed model achieved high accuracy of 
94.16% with Random Forest which provides a reliable tool to help 
hospitals and healthcare providers to predict the period where the ICU 

Table 8 
The results of predicting the number of days to discharge from ICU class for 
Model 2 with feature selection.  

K-fold Accuracy Precision Recall F1-Score 

3 87.29% 87.09% 87.29% 87.02% 
5 83.98% 83.80% 83.98% 83.80% 
7 80.85% 80.93% 80.85% 80.62% 
10 76.48% 76.42% 76.48% 76.25% 
15 77.26% 77.99% 77.26% 77.48%  

Table 9 
Results of predicting the number of days to discharge from ICU class for Model 
3.  

K-fold Accuracy Precision Recall F1-Score 

3 91.41% 91.49% 91.41% 91.42% 
5 91.21% 91.10% 91.21% 91.10% 
7 87.02% 87.07% 87.02% 86.97% 
10 83.56% 83.67% 83.56% 83.49% 
15 82.69% 83.27% 82.69% 82.89%  

Table 10 
The result of predicting the number of days to discharge from ICU class for 
Model 3 with feature selection.  

K-fold Accuracy Precision Recall F1-Score 

3 90.72% 90.80% 90.72% 90.78% 
5 89.26% 89.27% 89.26% 89.20% 
7 85.32% 85.04% 85.32% 84.98% 
10 86.99% 87.05% 86.99% 87.00% 
15 82.69% 83.39% 82.69% 82.86%  

Table 11 
The result of predicting the number of days to discharge from ICU class for 
Model 4.  

K-fold Accuracy Precision Recall F1-Score 

3 93.13% 93.42% 93.13% 93.19% 
5 92.58% 92.56% 92.58% 92.54% 
7 88.94% 89.55% 88.94% 88.96% 
10 91.10% 91.39% 91.10% 91.20% 
15 85.01% 85.44% 85.01% 85.12%  

Table 12 
The result of predicting the number of days to discharge from ICU class for 
Model 4 with feature selection.  

K-fold Accuracy Precision Recall F1-Score 

3 93.81% 93.79% 93.81% 93.78% 
5 92.19% 92.23% 92.19% 92.13% 
7 87.45% 87.53% 87.45% 87.45% 
10 88.81% 88.85% 88.81% 88.72% 
15 86.56% 87.18% 86.56% 86.71%  

Table 13 
Results of investigating the effect of feature selection on the dataset.  

Algorithm Accuracy Precision Recall F1-Score 

Model 1 (RF) 87.27% 87.27% 87.17% 87.14% 
Model 2 (GB) 81.17% 81.25% 81.17% 81.03% 
Model 3 (XGBoost) 87.00% 87.11% 87.00% 86.96% 
Model 4 (Ensemble) 93.81% 93.79% 93.81% 93.78%  

Table 14 
Results of using the complete features set to predict the number of days to 
discharge from ICU.  

Model Accuracy Precision Recall F1-Score 

Model 1 (RF) 94.16% 94.14% 94.16% 94.14% 
Model 2 (GB) 88.14% 88.17% 88.14% 88.08% 
Model 3 (XGBoost) 91.41% 91.49% 91.41% 91.42% 
Model 4 (Ensemble) 93.13% 93.42% 93.13% 93.19%  

Fig. 3. Prediction models accuracy before and after feature selection.  
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beds will be available to organize and control the process of receiving 
new patients in the ICU. The second goal was to find the features related 
to the need for ICU for COVID-19 patients in the eastern province of 
Saudi Arabia. The obtained results showed that age, CRP, nasal oxygen 
support days are the top features related to the need for ICU admission 
and the length of stay in the unit. 

The future direction is to utilize the implemented model and the 
collected data to estimate and predict the need for COVID-19 patients for 
nasal oxygen support to better manage these resources. Also, the 
implemented model can be used with a larger dataset collected from the 
main regions of Saudi Arabia to be able to generalize the model to the 
kingdom or worldwide. 
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Summary 

Since the World Health Organization WHO declared the Coronavirus 
disease 2019 (COVID-19) as a pandemic in March 2020, all countries 
around the world devoted their efforts and resources to contain the rapid 
spread of the disease and limit its hazardous effects on individuals’ lives. 
One of the challenges that faces most hospitals and healthcare providers 
is managing the hospital resources and identifying when these resources 
will be available to serve new patients. Intensive Care Unit (ICU) beds 
are of the resources that witnessed high demand during the pandemic as 
COVID-19 is a respiratory disease and some patients develop compli-
cations when getting affected, which requires ICU admission. This work 
reviewed the published work that aimed at estimating the length of stay 
in the ICU for COVID-19 patients. It has been found that no yet published 
study estimated the ICU length of stay in the Saudi Arabia dataset. This 
research aims at utilizing machine learning techniques to develop a 
prediction model to assess the need for COVID-19 patients for ICU 
admission and to estimate the number of days needed. A dataset of 895 
positive COVID-19 patients at King Fahad University hospital in Dam-
mam in Saudi Arabia was collected. It contained 47 clinical and de-
mographics features collected at admission time, from the medical 
history of the patient, and updated daily until admitted to the ICU. Data 
were prepared and pre-processed to be used with the models, KNN- 

Table 15 
Comparison of obtained results with the related studies.  

Ref Method Measurements Features Dataset location Dataset 
size 

[10] LR AUC: 0.89 Clinical data Manisa, Turkey 1668 
[19] LR MAE: <1.25 patients/day, <0.5 ventilators/ 

day 
LOS in hospital, and duration of using the 
ventilator 

Miami-USA – 

[20] Nonparametric mixture cure model – Age, and gender Spain 10,454 
[21] Distributional regression model Accuracy = 80% Age, and gender Switzerland 2411/ 557 
[22] DPE and CPE DPE and CPE estimates of ICU-ALoS (95% 

CI) 
Age, and gender ZHWU 59 

[23] SVM Accuracy: 
1. Prediction of ICU admission (83%,84%) 
2. Prediction of ICU death (92%, 98%) 
MAE of the prediction of LoS in ICU (0.723) 

Demographic, and clinical data Wuhan, China 733 

[24] Statistical methods (t-test, Chi- 
square) 

AUC: 0.84 Demographic and clinical data Zhejiang 
Tertiary 

75 

Ours RF, GB, XGBoost, Ensemble Accuracy: 
94.16% 

Demographic and clinical data Saudi Arabia 895 

Note: Area Under the Curve (AUC), Acute Respiratory Distress Syndrome (ARDS), Electronic Healthcare Records (EHR), Discharged Patient Estimation (DPE), 
Censored Patient Estimation (CPE), Linear Regression (LR), Mean Absolute Error (MAE), Support Vector Machine (SVM), University of Iowa Hospitals and Clinics 
(UIHC), University of Miami UHealth Tower (UHT), Zhongnan Hospital of Wuhan University (ZHWU). 

Table 16 
Top 10 features that are highly correlated with the LoS for COVID- 
19 patients in Saudi Arabia.  

Feature Rank 

Age 1 
C-Reactive Protein CRP 2 
Nasal Oxygen Support days 3 
Organ dysfunction or failure 4 
LDH 5 
Blood Oxygen saturation (SATS) 6 
Headache 7 
Autoimmune disease 8 
D-dimer 9 
Ferritin 10  
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imputation was applied to fill in the missing data. The imbalanced data 
issue was resolved by applying the Synthetic Minority Oversampling 
Technique (SMOTE). 

Four prediction models were developed using four ML classifiers: 
Random Forest (RF), Gradient Boosting (GB), Extreme Gradient Boost-
ing (XGBoost), and Ensemble. The dataset was split into 2 folds, 80% for 
training and 20% for testing. The same data was used with all models to 
compare the performance. A number of experiments were conducted 
with different k-fold. Feature selection was applied using the Boruta 
algorithm to reduce the number of features. However, using the full set 
of features proved to provide higher accuracy. 

The conducted experiments show that the highest accuracy could be 
achieved by applying the RF model for prediction as the accuracy was 
94.16% which is high accuracy compared to the other published works 
for the same purpose. Feature correlation with the length of stay in ICU 
was obtained, and the results showed that age, CRP, nasal oxygen sup-
port days are the top indicators that are related to the patient’s need for 
the ICU admission. This work hopes to pave the path for hospitals and 
healthcare providers in Saudi Arabia to manage their resources to 
encounter the pandemic in the best manner. 
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