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Abstract

We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a con-
servation decision-making framework for designing a regional scale marine protected area
(MPA) network that provides insight into ecological and political contexts. We used an
ocean circulation model and regional coral reef data to simulate eight spawning events from
2008—-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate.
Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional
marine zones to identify spatial relationships between larval sources and destinations within
countries and territories across the region. We applied our results in Marxan, a conservation
planning software tool, to identify a regional coral reef MPA network design that meets con-
servation goals, minimizes underlying threats, and maintains coral reef connectivity. Our
results suggest that approximately 77% of coral reefs identified as having a high regional
connectivity value are not included in the existing MPA network. This research is unique
because we quantify and report coral larval connectivity data by marine ecoregions and
Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current
Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan
to design a regional MPA network that includes important reef network connections. The
identification of important reef connectivity metrics guides the selection of priority conserva-
tion areas and supports resilience at the whole system level into the future.
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Introduction

The rapid decline in coral reef health [1,2,3,4] is prompting countries around the world to take
actions to increase coral reef conservation and management. Marine Protected Areas (MPAs)
are one of the most widely advocated methods for protecting coral reefs [5], and many coun-
tries and regions are seeking to expand protection of coral reef habitat [6,7]. To stay healthy,
coral reefs rely heavily on ocean currents that provide new recruits from near and far locations
[8,9]. These demographic linkages are a key ecological support system for coral reefs, and pre-
vious research suggests that reef connectivity has a strong influence on community-level bio-
mass, population persistence, resilience, and species diversity [10]. However, these currents do
not follow political boundaries and several studies suggest MPA networks rarely achieve their
tull potential because connectivity is typically not incorporated into a regional design process
[11,12,13,14,15]. Consequently, a key challenge in the MPA network design process is to iden-
tify the appropriate size, spacing, and location of MPAs in order to safeguard sufficient connec-
tivity processes that will maintain a healthy functioning ecosystem while acting as a mutually
replenishing network to facilitate the recovery of populations following a disturbance
[10,16,17].

Clearly, more research is needed to find cost effective and meaningful pathways for incorpo-
rating ecological connectivity into MPA design [18]. One of the main problems is in identifying
the scale of marine larval dispersal, a fundamental challenge at the intersection of marine ecol-
ogy and oceanography disciplines [19,20,21]. Several studies suggest that confronting the coral
reef crisis is going to require regional collaboration and scaling-up of management efforts that
focus on improving our understanding of the ecological processes that underlie reef resilience
[22,23,24]. Accordingly, countries need to work together to understand and protect patterns in
coral larval dispersal and collaboratively design strategic system-wide MPA networks across
multiple marine jurisdictions [12,25,26].

To address these challenges, we modeled larval dispersal across coral reefs in the Caribbean
and Gulf of Mexico to identify important reef connections on a regional scale. Questions driv-
ing our research were: Following a spawning event, where do coral larvae go? Where is settle-
ment and recruitment most likely to occur? How dependent are reefs within each jurisdiction
on recruits from each local or upstream reef in other jurisdictions? Where are the key source
sites of marine connectivity within the region and are they protected? In order to answer these
questions, we modeled coral population connectivity based on a 30-day maximum larval dis-
persal period across eight spawning events from 2008-2011 using a spatially explicit connectiv-
ity model [25,26]. We used this information in the conservation planning software Marxan to
identify a suite of coral reef priority areas that meet conservation targets while maintaining
important connections between reef populations. Building on previous Marxan marine con-
nectivity studies [27,28,29], our research provides additional insight because: the analysis rep-
resents a synthesis of data over four years including multiple spawning events; 3) we quantify
and report larval connectivity data by Exclusive Economic Zones (EZZ); and 4) we use the con-
nectivity information in a systematic conservation planning program to design a regional MPA
network that includes important reef connections. By identifying important shared reef con-
nections between marine jurisdictions, we hope to promote multilateral cooperation in coral
reef protection and management, maintaining highly-connected populations which could aid
in disturbance recovery and improve reef resilience [26].

Methods

We modeled coral connectivity and integrated the results into a conservation optimization
algorithm to identify priority reef conservation areas within ten marine ecoregions that make
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up the Caribbean Basin, Gulf of Mexico and the southwest Sargasso Sea (8-35 N, 56-98 W)
[30]. Several studies have investigated the ecological connectivity of this region
[19,31,32,33,34], however our work is unique in that it integrates connectivity data into a con-
servation decision-making framework, providing insight for both ecological and political
contexts.

Coral Larvae Dispersal Model

Reef Data. We used coral reef data from the Millennium Coral Reef Mapping Project [35]
as a consistent and high-resolution representation of coral reef locations throughout the Carib-
bean Basin and Gulf of Mexico. Prior to using these data, all coral reef locations were reviewed
and edited by in-country reef experts. We developed a gridded reef map (8x8 km) and grouped
contiguous clusters of coral habitat into 423 distinct reef units (Fig 1). Given the close
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Fig 1. General reference map showing the location of the ten marine ecoregions used in the analysis indicating the distribution of total reef area
within each of the 423 reef units that were used in the larvae transport and settlement simulation. Coral reef data used are from the Millennium Coral
Reef Mapping Project [35] which represents the most accurate and consistently mapped global distribution of shallow coral reef systems.

doi:10.1371/journal.pone.0144199.g001
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proximity of the coral reefs within each reef unit, it was assumed that each unit was internally
connected.

Ocean Current Data. Ocean current data were acquired from the NOAA Real-Time
Ocean Forecast System (RTOFS) database [36]. The RTOFS database distributes daily ocean
current data integrating tidal patterns and is based on the Hybrid Coordinate Ocean Model
(HYCOM) [37]. The model is a basin-scale ocean forecast system for the northern Atlantic and
part of the southern Atlantic Ocean, using a variable size grid resolution ranging from 4 to 17
km, and extending from 25°S to 72°N and to 98°W to 16°E. Evaluations of the RTOFS perfor-
mance indicate that the modelled ocean data compare well to historical observations at regional
scales [38].

Dispersal Model. We modeled the dispersal of reef building coral larvae for spawning
events using a spatially-explicit larval dispersal model [38,39,40]. We modelled two simulations
per year from 2008 to 2011 with each simulation starting on the last quarter moons of August
and September, based on observations of coral mass spawning events [41,42,43]. These dates
were 23 August 2008, 22 September 2008, 13 August 2009, 12 September 2009, 1 September
2010, 1 October 2010, 21 August 2011, and 20 September 2011.

The dispersal model included the following parameters to quantify connectivity: time and
frequency of spawning, pelagic larval duration, settlement behaviour, and larval mortality
(Table 1). In each simulation, the amount of larvae released was proportional to the reef area
within each reef unit. For each simulation, we used a maximum pelagic larval duration (PLD)
of 30 days [24,31,44] and a mortality rate of 20% day'. Although the influence of mortality is
well recognized [45,46], field-based data is extremely limited. A recent review [45] and labora-
tory data on several corals [47,48] suggest mortality is often variable in time (often higher ear-
lier in the larval duration period) and within a cohort, but generally on the order of 5% day ™" to
10% day ', with some corals experiencing up to approximately 35% day ™ mortality [48]. We
modelled a full range of mortality rates, but use the 20% day " rate for illustration purposes.

The primary output of each simulation represented an estimate of the total amount of larvae
transported between each of the 423 reef units, including local-retention. We calculated a time-
averaged connection strength by averaging the total settled larvae across simulations and the
probability of larval dispersal among all reefs. Dispersal networks were used to visualize these
connection strengths among all possible source-destination reef pairs (Fig 2).

Connectivity Assessment

Centrality Measures. We used a centrality measure to represent conservation value. In
our connectivity network, we transformed the edge weights using x—connection strength, where
x is next whole number greater than the largest connection strength value. In this way, connec-
tion strength is the same rank-order as geographic distance, a prerequisite of these centrality
measures. Similar to White et al [27] and Holstein et al [31], we calculated betweenness and
closeness centrality measures using values in our reef network. The Python package NetworkX
was used for the network analysis. Betweenness centrality is calculated by determining the
number of times a particular node (i.e., reef patch) serves as a stepping-stone in the shortest
paths between all other pairs of nodes in the network. This measure can be used to identify
important stepping-stones that facilitate connectivity in a network. Closeness centrality values
are higher for a particular node when its total distance to all other nodes in the network is
lower. This measure indicates how close a particular node is to the other nodes in the network.

MPA Network Design: Marxan Overview. We used Marxan (v. 2.42) [49,50], a widely
adopted conservation planning software, for selecting marine conservation priority areas when
considering coral larval dispersal connections between reef units across the Caribbean Basin
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Table 1. Descriptions and values of coral larval biological parameters used in the dispersal simulations.

Larval Biological Parameter

Time and frequency of
spawning (e.g. lunar, annual)

Maximum pelagic larval
duration (PLD)

Pre-competency period
Settlement behaviour

Local density and fecundity
Larval mortality

Migration rate threshold to

determine ‘meaningful’
connectivity

Description

This defines the larval release times in the model. More
spawning opportunities have significant implications on the
local-to-regional connectivity patterns.

The PLD representing the maximum amount of time larvae
can spend in the water column.

The period of early development when larvae are not
capable of settlement. This is often between 2—7 days for
many invertebrates.

Probability of larvae settling if they encounter a suitable
habitat cell.

Represents the relative reproductive output from individual
reef patches.

This daily mortality rate of larvae while dispersing.

This limit, in terms of settlement likelihood, provides a way

of distinguishing between ecologically relevant connectivity.

See [39] for a more in-depth discussion and considerations
with respect to reproductive output.

Value

We performed eight dispersal simulations—two per year
—that started on the dates of the last quarter moon
-based on observations of coral mass spawning events in
the Caribbean (23 August 2008, 22 September 2008, 13
August 2009, 12 September 2009, 1 September 2010, 1
October 2010, 21 August 2011, 20 September 2011).

We used a maximum PLD of 30 days.

Larval competency was modeled using a gamma
cumulative distribution function [38] that allowed all of the
larvae to reach full competency in 3 days [39,48].

After reaching competency, when larvae are over coral
habitat they settled at a rate of 75% per day.

The amount of larvae released was proportional to the
amount of reef area per habitat patch.

At each daily time-step (24 hours) during the simulation a
mortality factor of 20% was applied to the amount of
settled larvae for that time step.

We used 1/1,000,000 larvae as a cut-off for ecologically
relevant connectivity.

doi:10.1371/journal.pone.0144199.1001

and Gulf of Mexico. Marxan selects a set of planning units that best minimize predefined costs,
while attempting to meet certain user defined conservation targets. An example target may be
the desire to include 20% of all reef area within the set of priority areas, or more generally, 20%
of a conservation feature whatever it may be (e.g. a particular habitat, species). The primary
result of Marxan is a set of priority areas which are selected as a balance of the user-defined tar-
gets and the underlying costs. Results provide decision-makers with a portfolio of sites that can
be evaluated for inclusion in a conservation area network design [11,27,51,52].

Targets are set by the user for each conservation feature under consideration for inclusion
in the resulting set of priority areas. Marxan has several other inputs (some of which are
optional) that inform the algorithm about the cost of creating a potential set of priority areas
from an input set of planning unit sites [49]. Using the “objective function,” Marxan evaluates
a potential set of conservation priority areas based on a score of the sites or planning units that
are selected for inclusion in the set of priority areas. In our case, these will be the reef planning
units. The general form of this function is:

ZsimCOSt + BLM ZmesBoundary + mem CFPF X Penalty + Cost Threshold Penalty (t)

[49]

The Cost represents the sum of the costs associated with the planning units or sites that will
comprise the selected conservation priority area. These can be the actual cost associated with
acquiring the area, or opportunity costs, or some entirely different metric of cost as defined by
the user.

The Boundary represents the actual length of the boundary of the selected priority area.
Using the actual length of the boundary allows Marxan to prioritize solutions that create
reserve systems with smaller external boundaries. This has the effect of creating clumped prior-
ity areas which may be desirable in certain situations (e.g. potential for easier designation and
management). Costs are sometimes alternatively used as “boundaries.” In this research we
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Fig 2. Strength of reef connections based on modeled transported coral larvae. These values represent an average of eight coral larvae dispersal
simulations between 2008-2011. The width and color of the lines represent the strength of connection. The darker red and orange areas indicate high
amounts of settled coral larvae transported along that connection, while the shades of blue represent smaller amounts of settled larvae.

doi:10.1371/journal.pone.0144199.9002

demonstrate the use of the strength of the connection between reefs as a boundary cost between
reef units. In this way, as Marxan seeks to find potential priority areas by minimizing the exter-
nal boundary, it clumps the priority areas based on the strength of the connections between
reef units. In other words, a reef unit with a strong connection will be more likely to be selected
than a disconnected reef, especially if has similar amounts of other costs and contributes simi-
larly to meeting the user defined targets.

The Penalty, often referred to as the “conservation feature penalty factor” is a term that
allows the user to express a cost associated with a set of priority areas that do not meet the
established targets. Increasing this value will cause Marxan to increase the total cost of the solu-
tion in the case where a target is not met for a set of priority areas. Thus, increasing a conserva-
tion feature’s penalty makes it more likely Marxan will select an output solution that will meet
the target for that conservation feature. Finally, the Cost Penalty Threshold is a cost associated
with exceeding the total user-defined cost for the potential set of priority areas. For this study,
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we applied a cost penalty value between 1.0-1.4 which allowed the algorithm to find a reason-
ably efficient solution.

Selecting a set of conservation priority areas is iterative and Marxan offers several algo-
rithms that can be selected from to determine the process whereby the objective function is
implemented. The factors in the objective function are affected by the makeup of the initially
selected set, and then recalculated for the current selected priority areas for each iteration.
Therefore, the solution is complex and the algorithm works towards a final solution that meets
user-defined conservation targets while minimizing cost —represented by ¢ in the formula
above. In practice, Marxan is run a number of times, each with different initial solution which
may produce different final results. The primary output in this case, is the “best” solution over
all the runs, which is the one that meet the targets and captures the lowest overall cost (includ-
ing the penalty factors). Another commonly used output is the “sum of solutions” which will
report the number of times each planning unit or site was included in the set of priority areas.

Marxan-based Conservation Scenarios. In order to explore the differences between a typ-
ical Marxan analysis and one which includes connectivity data, we compare the results of
Marxan using two scenarios: a) a typical scenario where conservation targets are set using reef
area (per reef unit) and a boundary file that uses a transformation of Euclidean distance to reef
units (i.e. nearby reefs effectively shared a larger common boundary); and b) a connectivity-
based scenario where conservation targets are set using local retention and betweenness cen-
trality (per reef unit) and a boundary file that uses the asymmetric strength of connection val-
ues calculated between reef units. We chose to use Euclidean distance in the first scenario
because reef units rarely shared an actual boundary, and we needed a surrogate for boundary
length in order to clump model results and provide a manageable output solution. To test the
influence of using a boundary length modifier, a third scenario with a single 30% target of reef
area was tested, but it didn’t use a boundary file. The results appeared to be driven solely by the
reef units with the largest reef area and lowest cost, since Marxan was simply balancing the
selection of reef units by reef area and cost.

We evaluated and compared results of the two scenarios using two stratification schemes: a)
a single region strata (i.e. where targets can be met anywhere within the study area); and b) a
multiple region stratification using the ten marine ecoregions (i.e. where targets are met within
each marine ecoregion). For all scenarios, we set a 30% target and penalty factor of 10 for the
conservation feature(s) being considered in each scenario and ran 100 repetitions with one mil-
lion iterations each using the simulated annealing algorithm with iterative improvement, com-
monly used by Marxan users [53]. The decision to use a 30% target and a penalty factor of 10 is
illustrative. We experimented with other values that resulted in more or less areas being
selected, but 30% seemed like an appropriate balance for demonstrating our research purpose.
When running Marxan, it is helpful to visualize the results using different target values as an
exploratory measure so that one can better understand the tradeoffs between various inputs
values [51]. For scenario “a,” setting a target of 30% for the single conservation feature of reef
area meant that Marxan would be seeking to select at least 30% of the reef area within the study
area. Failure to do so would result in a penalty factor of 10. In scenario “b,” we used the betwee-
ness centrality and local retention values that had been assigned to each reef unit and assigned
the target of 30%. In other words, we desired that Marxan include in its solution 30% of all the
betweeness centrality values by reef unit (favoring the highly connected reefs) and 30% of all
local retention values by reef unit (favoring large self-sustaining reefs). A Boundary Length
Modifier (BLM) value of 0.17 was used for both scenarios after calibrating by analyzing bound-
ary length and cost relationships for multiple runs at various BLM values. Planning unit cost
per reef unit was derived by taking the average value from a 1 km cell cumulative global marine
threat model developed by Halpern et al [54].
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Selection of Connectivity Features. For the connectivity-based Marxan scenario, we set a
30% targets for a) local retention of larvae; and b) betweenness centrality of reef units. Local
retention of larvae is a measure of the proportion of larvae that were released that remain in
the natal patch. Higher values of local retention suggest that a reef is more likely to be self-sus-
taining [55]. Upon evaluation of the centrality measures, we determined that betweenness cen-
trality was best suited in the Marxan analysis because it identifies important reefs that are
important pathways within the network.

Selection of Boundary Length. The Boundary Length Modifier (BLM) parameter is a
multiplicative factor in the Marxan algorithm, which attempts to minimize the boundary
length to area ratio, thus increasing the continuity of the solution set. High BLM values force
the clustering of the solution set, whereas low BLM values allow for a more fragmented set to
be selected as a model solution. Typically, boundary length often is represented by the mea-
sured length of the boundary between each pair of planning units that share a common border.
In the Marxan selection algorithm, removing planning units that share a large common bound-
ary will incur a greater cost than removing those that have a smaller common boundary or no
boundary at all. In our analysis, we used the reef units as the planning units, however, these
units did not share any actual common boundaries as they exist apart from each other. In the
reef area target scenario, the boundary length was based on Euclidian distance between reef
units. However, since Marxan expects connected planning units to have larger values, we first
scaled all the distance pairs to a range of 0-1 and then reversed them to be on a scale of 1-0: a
value of 1 meaning that that pair had a distance of 0 (meaning a self-connection) and 0 being
the pair of reef units furthest from each other. For the connectivity-based scenario, we used the
asymmetric strength of connection values calculated between reef units and a similar operation
to scale connection strength values. In this scenario, it was not necessary to reverse these as the
values were already in an order that descended from the strongest connections down to the
lowest. In choosing a BLM value for each Marxan scenario, we calculated a calibrated value
based on an analysis of boundary length and cost using multiple runs.

Results

Our results are summarized in the following products: Animation of the larval transport mod-
els, analysis of the larval dispersal (received and contributed) and local retention by Exclusive
Economic Zone (EEZ), analysis of centrality measures by reef unit, and a comparison of
Marxan scenarios.

Larval Transport Animations

Visualization of larval dispersal probabilities is a useful tool for understanding ocean dynamics
and how coral reef ecosystems depend on each other. We created of a series of hourly anima-
tions showing modeled larval dispersal for each spawning event. An example of the data used
to create several frames within the animation for the spawning event on August 21, 2011 can
be seen in Fig 3. These animations can be accessed at the following link (http://tnc.usm.edu/
connectivity/animations.zip).

Larval Dispersal summarized by EEZ

Using the modeled reef connection strength results, we analyzed larvae recruitment and settle-
ment exchange rates as well as local larval retention based on 32 Exclusive Economic Zones
(EEZ). Figs 4, 5 and 6 help answer questions such as: “Outside each individual marine jurisdic-
tion, where do coral larvae come from?” (e.g. Outside of Cuba, where do Cuba’s coral larvae
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Fig 3. Visualization of a 30-day simulated coral spawning event based on NOAA’s Real-Time Ocean
Forecast System (RTOFS) ocean current data starting on August 21, 2011. The amount of coral larvae
released was based on reef area. These maps represent time steps during the 30-day pelagic larvae duration
model, representing coral larvae distribution and concentration after a) 10 days; b) 20 days; and c) 30 days.
These data were used to create the hourly animations for each of the eight spawning events.

doi:10.1371/journal.pone.0144199.g003

come from?) and “Into what jurisdictions do an individual jurisdiction’s coral larvae settle?”
(e.g. In what countries do Cuba’s coral larvae settle?).

Fig 4 graphs the results of EEZ coral connectivity analysis in three ways. The first graph (Fig
4A) shows modeled coral larvae settlement rates by EEZ averaged across the eight modeled
spawning events. Total larvae received are the red bars to the left (indicating the total modeled
larvae the model settled within each corresponding EEZ) and contributed larvae are the blue
bars to the right (representing the total modeled larvae that originated within each EEZ and
settled anywhere). Cuba, Bahamas, and Belize are the top EEZs that both receive and contrib-
ute larvae to other EEZs. In the second graph (Fig 4B), the same data are visualized, except we
exclude local retention (i.e. larvae that originates and settles within the same EEZ). For exam-
ple, according to the model, Belize captures much of its own larvae, receiving much less larvae
that originate outside its EEZ. Honduras on the other hand, receives the most incoming larvae
from other EEZs, while contributing the second highest level of larvae to other EEZs. In the last
graph (Fig 4C), we see the a ratio of contributed coral larvae by EEZ showing the proportion of
all settled larvae that originates within each respective EEZ (denominator) to all settled larvae
contributed to other EEZs (numerator). This is same as the blue bar in (b) divided by the blue
bar in (a) for each EEZ. St. Kitts and Nevis is the only jurisdiction in which a higher percentage
of originating settled larvae settled outside its own EEZ. These values should be thought of as
larvae probabilities or percent incoming or outgoing, not the prediction of actual larvae num-
bers, and are largely influenced by an EEZ’s reef area, ocean current patterns, and geographic
location.
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Fig 4. a) Modeled larvae settlement rates by EEZ averaged across eight spawning events showing total received larvae (red) and contributed
larvae (blue). The red bar indicates the total modeled larvae received and settled within each corresponding EEZ. The highest amounts of larvae
received and contributed are largely influenced by an EEZ’s reef area, ocean current patterns, and geographic location. Refer to the individual
country maps to see these results in map format. The blue bar represents the total modeled larvae that originated within each EEZ and settled
anywhere. b) The same data, but ignoring larvae that originates and settles within the same EEZ. For example, according to the model, Belize
receives very little larvae that originate outside its EEZ. However, Belize contributes more larvae to other EEZs than any other EEZ. Honduras on
the other hand, receives the most incoming larvae from other EEZs, while contributing the second highest level of larvae to other EEZs. c) Larvae
contribution ratio by EEZ showing the proportion of all settled larvae that originates within each respective EEZ and is contributed to other EEZs.

doi:10.1371/journal.pone.0144199.9004
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Fig 5. a) Modeled larvae settlement that originates and settles within the same reef unit (i.e. local -retention); b) Modeled larvae settlement of that

originates and settles within the same EEZ.

doi:10.1371/journal.pone.0144199.9005

We also evaluated local retention by reef unit, or the degree to which each reef unit is self-
sustaining (larvae originates and settles in the same reef unit). Fig 5(A) shows the spatial distri-
bution of modeled local retention rates by reef unit. Fig 5(B) is a graph of the same informa-
tion, only summarized by EEZ, showing the sum of all values for connections where both the
“from” and “to” reef units were within the same EEZ.

Although Figs 4 and 5 highlight important connectivity spatial patterns and ranking of sum-
maries by EEZ, they lack the ability to provide from-to information. For example, we can see
Belize contributes significant larvae amounts to other jurisdictions, but to which jurisdictions
do the larvae settle? Conversely, when considering Honduras, from where do the receiving lar-
vae come? In order to address these questions, we created a connectivity matrix that summa-
rized all the unique combinations of from-to relationships by EEZ jurisdiction pairs using the
connection strength dataset (Fig 6). This matrix shows the relative strength of each country
connection based on the amount of settled larvae received (x-axis) and contributed (y-axis)
from each respective EEZ. For example, when interpreting the matrix, it is apparent that much
of the contributed larvae that originated in Belize are received in Honduras, with smaller
amounts going to both Mexico and Nicaragua. On the other hand, the strongest external con-
tribution that Honduras makes is to Nicaragua.

Coral connectivity network analysis

The results of each of the two centrality measures (betweenness (a), closeness (b)) calculated as
part of the network graph analysis are shown in Fig 7. The sum of each of these measures by
marine ecoregion appears next to the respective map for each measure. Upon interpreting
these maps, it becomes apparent that betweenness captures many of the important bridges that
maintain connectivity within the region while the other two measures characterize the core or
center of the network. For this reason, and the fact that previous reef connectivity research had
used this measure, we use the betweenness scores for target setting in the Marxan analysis.
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contributed (y-axis) settled larvae.

doi:10.1371/journal.pone.0144199.9g006

Based on model results, reefs on the edges of larger islands or land masses that are closest to
other islands have higher betweeness centrality measures (i.e. Cuba, Hispaniola, Belize, and
Honduras). Island clusters such as The Bahamas and northern side of Cuba score high in this
measure due to the high density of reefs in these areas.
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Fig 7. a) Betweenness centrality measures by reef unit indicating the importance of each reef unit’s role in maintaining network connectivity. The
corresponding graph shows betweenness centrality measures summed by marine ecoregion; b) Closeness centrality measures by reef unit
indicating how long it will take to spread something from a particular node to the other nodes in the network. The corresponding graph shows

closeness centrality measures summed by marine ecoregion.

doi:10.1371/journal.pone.0144199.9007

Marxan results

Figs 8, 9 and 10 show the results of the Marxan analysis comparing the best solutions for the
two scenarios: a) targets set using reef area (per reef unit) and a boundary file that uses the
Euclidean distance based measure to reef units; and b) a connectivity-based scenario where tar-
gets are set using local retention rates and betweenness centrality (per reef unit) and a bound-
ary file that uses the asymmetric strength of connection values calculated between reef units.
All targets were met in each of the best solutions presented. Fig 8 shows the results using a 30%
target for reef area under two scenarios: (a) no stratification of reef units (i.e. region as a
whole); (b) stratification using ten marine ecoregions. For the first scenario, the solution steers
the selection of the 30% target to the reef units with the highest reef area at the lowest cost
(based on the marine threat model [54]) using Euclidean distance based measure to reef units
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Fig 8. Typical Marxan best solution (not considering coral connectivity) that met a 30% target for reef area only as summarized by reef unit: a)
regional assessment (no strata) and b) stratified by marine ecoregion. These results were based on 100 repetitions using a million iterations per run with
a calibrated BLM value of 0.17. A penalty factor of 10 was used and a boundary file based on the Euclidean distance between reef units. The calculated cost
value by reef unit was derived from the Global Map of Human Impacts to Marine Ecosystems [54].

doi:10.1371/journal.pone.0144199.9008
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betweenness centrality values by reef unit: a) regional assessment (no strata); and b) stratified by
marine ecoregion. These results were based on 100 repetitions using a million iterations per run with a
calibrated BLM value of 0.17. A penalty factor of 10 was used and an asymmetric boundary file based on the
amount of settled larvae that traveled between reef units. The calculated cost value by reef unit was derived

from the Global Map of Human Impacts to Marine Ecosystems [54].

doi:10.1371/journal.pone.0144199.g009
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Fig 10. Marxan coral connectivity selection frequency (i.e. summed solution) that met a 30% target set for local retention and betweenness
centrality values by reef unit: a) regional assessment (no strata); and b) stratified by marine ecoregion. These results were based on 100 repetitions
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of settled larvae that traveled between reef units. The calculated cost value by reef unit was derived from the Global Map of Human Impacts to Marine
Ecosystems [54]. Reef units shaded in red and orange represent those areas that are likely to contribute more to coral reef connectivity.

doi:10.1371/journal.pone.0144199.9010
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as the boundary length. When compared to the no strata results, the marine ecoregion results
select 30% of the high reef area-lower cost reef units in each strata, allocating a more represen-
tative selection across ecoregions. These solutions can be used as a control to compare the
results of the second scenario that integrates the connectivity data for each reef unit and uses
the asymmetric strength of connection values calculated between reef units as the boundary
length (Fig 9). By comparing these two scenarios, the important reef units that maintain con-
nections in the larval transport model begin to emerge. When no stratification is used (Fig 9B),
reef units are selected heavily throughout the core of the network such as the Greater Antilles,
including the northern coast of Cuba, Inagua Island in the Bahamas, and areas on the west and
east ends of Hispaniola. Interestingly, Little Cayman and Cayman Brac are selected as they rep-
resent an important connection bridge, yet no reef units are selected in the Eastern Caribbean
perhaps due to the isolated location of these islands. The exception is Bermuda which is charac-
terized by a large reef area and stronger local retention rates. The results of the marine ecore-
gion stratified runs (Fig 9B) identify the highest connectivity value reef units within each
ecoregion based on the model. This solution would likely represent a more resilient design
since high connectivity value reef units are selected across the region and not clustered together
at the network core. Fig 10 shows the calculated Marxan selection frequency (i.e. summed solu-
tion) of the connectivity-based scenario which indicates how many times a reef unit was
selected in the algorithm, representing a measure of how important a reef unit is for achieving
targets set for the connectivity values. Like Figs 8 and 9, results are shown with (a) no stratifica-
tion, and (b) stratification by marine ecoregion. These maps can be used to prioritize reef units
that consistently contribute to meeting connectivity targets within a regional and marine ecore-
gional context. Finally, the connectivity results can be overlaid onto existing protected area
boundaries to identify weaknesses in the current design in regards to coral reef connectivity.

Our results indicate that of the total coral reef area (16,186 km?) mapped within the study
area, approximately 6,104 km? (37%) were selected in the Marxan connectivity-based scenario
stratified using marine ecoregions. Of these reef areas selected, only 1,424 km? are included
within the existing MPA network, indicating that approximately 77% of all coral reefs selected
as having a high connectivity value are not included in the existing regional MPA network. We
used the current World Database on Protected Areas [56] and The Nature Conservancy’s
Marine Protected Area Database of the Insular Caribbean [57] to assess levels of protection,
although a vast majority of these parks do not implement management activities (i.e. paper
parks). Table 2 shows the breakdown of coral reef area numbers by marine ecoregion and the
percentage of selected high value reefs within the existing MPA network. Fig 11 shows the high
connectivity value reef units selected by marine ecoregion overlaid onto the current MPA net-
work. Provided that a majority of these high connectivity reef areas are not included in network
represents an opportunity for multiple jurisdictions to work collaboratively to expand protec-
tion of these critical reef areas, thereby promoting resiliency in the network.

Discussion

This paper addresses some of the marine connectivity challenges identified in Lagabrielle et al
[16]; specifically, integrating connectivity into the design of MPA networks and providing con-
nectivity information that promotes transboundary cooperation and management. Recent con-
servation assessments in the Caribbean and Gulf of Mexico highlight major gaps in marine
protection extent (i.e. MPA boundaries) and severe deficiencies in management efforts
[57,58,59]. Consequently, many countries are taking actions to expand marine protection and
bolster management resources. For example, in the Caribbean, several nations and oversea ter-
ritories have committed to the Caribbean Challenge Initiative to effectively conserve at least
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Table 2. Breakdown of coral reef area numbers by marine ecoregion and the percentage of selected high value reefs within the existing MPA
network.

Marine Ecoregion Total Coral Reef = Selected as High Connectivity High Connectivity Reef within % of High Connectivity Reef
(km?) Coral Reef (km?) MPA Network (km?) within MPA Network
Bahamian 2,910.67 1,189.75 6.42 0.54%
Bermuda 739.79 739.77 61.18 8.27%
Eastern Caribbean 920.14 266.98 39.83 14.92%
Floridian 910.05 453.00 212.82 46.98%
Greater Antilles 4,899.78 1,423.91 356.38 25.03%
Northern Gulf of 226.25 82.01 0.00 0.00%
Mexico
Southern Caribbean 556.34 156.43 134.48 85.97%
Southern Gulf of 452.89 336.77 291.74 86.63%
Mexico
Southwestern 2,801.31 867.05 27.80 3.21%
Caribbean
Western Caribbean 1,768.99 588.05 293.43 49.90%
TOTAL 16,186.21 6,103.73 1,424.08 23.33%

doi:10.1371/journal.pone.0144199.t002

20% of marine habitats by 2020 and putting in place a new sustainable finance architecture
that will generate long-term funding for marine and coastal management. With increasing
efforts to expand marine protection in the Caribbean Basin and Gulf of Mexico, a unique
opportunity exists to incorporate connectivity information to improve and strengthen MPA
networks. Marine connectivity modeling has evaded most marine conservation projects due to
the high level of sophistication of the model, availability of the data, and the expertise needed
to successfully set up, run, and interpret the results [12,22,60]. However, in recent years, there
have been enormous improvements in our ability to model ocean currents on spatial and tem-
poral scales that have facilitated progress towards ecosystem-based management. Our results
take advantage of consistently mapped coral reefs and recent improvements in oceanographic
data and computer simulation programs, to track the potential movement of larvae following a
spawning event in a very precise manner, integrating weather and tide information that further
increases the accuracy and reliability of these models. This information provides critical insight
to coral reef managers seeking to understand how coral reefs are connected throughout the
region and can be used as systematic decision support tools for developing a set of regional
management strategies that may include establishing new MPAs, protecting specific marine
species, and threat abatement for trans-boundary ecosystems.

When comparing the connectivity model results to previous regional models, one can find
common areas of strong connections, breaks, and isolations. Roberts [61] was the first to use
surface current patterns to map dispersal routes of pelagic larvae and theorize that sites sup-
plied copiously from “upstream” reef areas will be more resilient to recruitment overfishing,
less susceptible to species loss, and less reliant on local management than places with little
upstream reef. Genetic analysis provides both a valuable tool for measuring genetic structure in
marine populations and a means of exploring connectivity predictions with empirical genetic
data. Our results follow very similar patters described by Cowen et al [21] finding generally
weak larval exchange along the north-western Caribbean tract as described by Taylor and Hell-
berg [62] and Severance and Karl [63] and a division between the eastern and western Carib-
bean. The Bahamian Archipelago is also weakly isolated as described by Baums et al. [23];
Taylor and Hellberg [62]; and Vollmer and Palumbi [20] were validated by Foster et al [19]
through genetic analysis of two coral species. However, Foster et al [19] had inconclusive
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reef unit), overlaid onto the World Database on Protected Areas [56] and The Nature Conservancy’s Marine Protected Area Database of the Insular

Caribbean [57].
doi:10.1371/journal.pone.0144199.g011

results regarding the Mona Passage as a strong genetic barrier as described by Baums et al [23];
Cowen et al [21]; and Taylor and Hellberg [62]. Despite the fact that some connectivity models
have been validated using drift buoys and genetic testing [64,65], validation of our connectivity
results using genetic analysis is not really appropriate since we are not attempting to model
processes such as gene flow, post-settlement, demographics, or mutations.

While the results of this study help to identify general connections between coral reef areas,
it is important to note several model limitations such as the treatment of all coral reef areas as
equal in their ability to release larvae (proportional to the amount of reef area) when we know
that reefs vary in their species composition, condition; and health depending on environmental
conditions. Other limitations include the scale at which these ocean circulation models operate
(i.e. 8km cell), which does not take into account local-scale processes, as well as the level of
uncertainty in the use of biological parameters. For example, the use of a constant maximum
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pelagic larval duration (PLD) of 30 days for all coral larvae is applied and may be considered
typical for most corals, however, PLD varies between coral species. There also exists uncer-
tainty regarding the scale of larval dispersal and whether populations are mostly self-seeded or
are maintained principally by recruits arriving from nearby or even distant reefs [33,46,66].
Our connectivity analysis focuses on larvae of broadcaster corals that “broadcast spawn" into
the water to spread offspring. Finally, we used a constant larval mortality rate of 20% when
these rates vary by species. Survival of pelagic marine larvae is an important determinant of dis-
persal potential but few estimates of larval survival are available [67]. Cowen et al [46] suggest
that connectivity models often overestimate larval exchange rates because of their inability to
adequately account for diffusion and mortality. Jones et al [68] suggest that larval retention
and the spatial extent of connectivity in both corals and fish operates independently of larval
duration and reef size and is largely influenced by geographic setting Research by Hogan et al
[22] highlights the unpredictable nature of connectivity in the real world, and underscores the
need for more temporally replicated, empirical measures of connectivity to validate and inform
management decisions when using these models. Despite these limitations, our connectivity
model is an attempt to address the lack of connectivity data in regional MPA design-integrat-
ing the best available data in order to gain insight into regional patterns of coral dispersal and
identify important areas to protect from both an ecological and political perspective.

Conclusions

Despite the many challenges in predicting larval dispersal [69], we demonstrate how a marine
connectivity model aids in the identification of important reef connections between coral pop-
ulations. Urgent action is needed through collaborations by regional governments to design
resilient MPA networks that incorporate connectivity information. As stated by Kennedy et al
[70], many Caribbean reefs are expected to experience continued structural decline by 2080. In
addition, Micheli et al [71] suggest a high vulnerability of Caribbean coral reefs to diversity loss
and that protection of multi-species assemblages is needed to maintain ecosystem functions
and services. Based on our analysis, only 28% of high connectivity value reefs are included in
the current regional MPA network. Our results provide a multi-jurisdictional decision-support
tool for coral reef managers who are seeking insight into the behavior of regional coral larval
dispersal patterns across the Caribbean Basin and Gulf of Mexico. Based on model output, we
identify and prioritize important coral reef linkages zones and spheres of dependence that can
be used as a basis for improving coral reef management across multiple jurisdictional bound-
aries [26]. Modeling the potential direction and magnitude of larval dispersal that is produced
across surrounding marine jurisdictions, and integrating these results into a systematic site
selection process, serves to guide regional cooperation and promote the collaborative and stra-
tegic expansion of marine protected areas aimed at preserving key ecological connections. Ber-
glund et al [72] suggest that connectivity may be more important than habitat quality as
selection criterion for MPAs when targeting species with long-distance dispersal; however
more research is needed on characterizing and testing predicted dispersal traits for specific spe-
cies [73]. McCook et al [12] provide a helpful set of ‘rules of thumb’ or practical guidelines that
can be applied currently to protect connectivity in marine systems. Innovative new approaches
to design MPA networks utilize decision frameworks and can be integrated with model-based
connectivity estimates that examine multiple species and scales as well as potential tradeoffs
between representation and connectivity [25,74]. These tools are further assisting multi-juris-
dictional marine conservation efforts to coordinate policy actions, integrate connectivity infor-
mation, and make more informed decisions regarding MPA size, spacing, and location.
However, given the limitations of connectivity models and the need to consider other aspects
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of MPA design [10], a portfolio of approaches should be used to protect marine species and
habitats, including but not limited to MPAs [14,75]. Ultimately, we hope this study provides
guidance on preserving key ecological connections upon which corals depend, but more
importantly, incentive that will foster a more coordinated and collaborative regional coral reef
management strategy.
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