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Introduction and background

Superparamagnetic iron oxide nanoparticles (SPION), as magnetic
resonance (MR) imaging contrast agents or magnetic targeting carri-
ers, have potential applications in diagnostics, imaging, cell and drug/
gene delivery for cardiovascular diseases. SPION are highly magnetic
particles that cause magnetic field perturbations, which can be
identified on T2* weighted images [1]. Clinically, SPION allows non-
invasive detection of the region of myocardial infarction and the peri-
infarct zone based on a multiparametric cardiovascular MR approach
[2, 3], characterization of acute MI pathology by detecting infiltrating
macrophages and altered perfusion kinetics [4] and non-invasive
visualization of the aorta and aortic diseases [5]. Preclinically, a large
number of animal studies have been performed with SPION and car-
diac magnetic resonance imaging to deliver, track or determine the
efficacy of stem cell therapy in the heart in the past 10 years [1].
More recently, magnetic targeting has emerged as a promising and
novel strategy for ischaemic heart disease [6–10], in which SPION
can direct drugs, genes or cells to the target site under a magnetic
field gradient.

Superparamagnetic iron oxide nanoparticles’ biocompatibility
with the target organ is the first prerequisite for clinical translation,
and iron oxide nanoparticles have long been believed to have low
toxicity and are well-tolerated in the human body. However, with the
expanding application of SPION, toxic effects, such as oxidative
stress and inflammatory reaction, have increasingly attracted atten-
tion. Iron oxide nanoparticles accumulate in lysosomes (following
cellular internalization), in which the low pH breaks the iron oxide
core down into iron ions. It has been reported that iron oxide nano-
particle inhalation exposure may induce lung cytotoxicity via oxida-
tive stress and biphasic inflammatory responses in Wistar rats [11].
In vitro studies have also suggested that iron oxide nanoparticles

mediate activation of microglia in the brain [12] and differentiation
of blood mononuclear cells into pro-inflammatory macrophages to
secrete higher levels of pro-inflammatory cytokines [13]. In addition,
iron oxide particles stabilized with coatings, such as dextran or citric
acid, induced toxic effects on the behaviour and function of endo-
thelial cells [14–16] and activated the expression of genes related to
oxidative stress [17]. Moreover, the oxidative injury caused by
SPION can be suppressed via antioxidant poly (trolox) nanoparticles
binding to and internalizing in endothelial cells [16]. Thus, could
the invasion of SPION produce similar side effects in the
myocardium?

Iron oxide nanoparticles with systemic administration were mainly
cleared by the reticuloendothelial system and renal excretion, result-
ing in cytopathological effects on the lungs, liver and kidneys, while
the heart and brain remain free from adverse effects because of lim-
ited iron deposits [18]. A recent clinical study also showed that a sin-
gle dose of intravenous iron oxide administration has a beneficial
effect on LV remodelling in patients with acute ST-elevation myocar-
dial infarction [19], in which the underlying iron deficiency with a
decline in iron circulating levels was reported [20]. However, this situ-
ation is quite different from local delivery of SPION-mediated thera-
peutic agents (stem cells, gene or drug) in the treatment of ischaemic
heart disease. First, intramyocardial injection of SPION-mediated
agents contains large amounts of iron oxide nanoparticles, and the
local quantity of SPION deposition in the myocardium is higher than
that reported in previous intravenous studies [21–23], in which
SPION was administered systemically and proved to be a relatively
safe and efficient MR contrast agent. Second, the heart is not a
monocyte-macrophage organ, and iron clearance occurred more
slowly in the heart than in the liver [24]. Thus, it is difficult for macro-
phages to migrate away from the massive SPION introduced by
SPION-mediated agents. Moreover, SPION-mediated therapeutic
agents target the ischaemic or injured lesion rather than the normal
myocardium. Thus, the injected SPION easily accumulates in situ for a
prolonged period of time due to the lack of blood flow and mechanical
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contraction in the ischaemic or necrotic region [24, 25]. Magnetic
resonance monitoring of SPION-containing stem cells in an animal
model of myocardial infarction demonstrated that the iron particles
could persist in the infarct lesion for several months [25, 26]. Third,
this situation is even worse in the context of SPION-based magnetic
targeting therapy introduced in cardiovascular diseases [6, 7, 27].
Magnetic attraction could attenuate the loss of SPION-containing
therapeutic drugs/cells via venous drainage, and subsequently
increase the heart stay by approximately 3–10-fold [7]. SPION may
accumulate in the ischaemic myocardium in a highly clustered fash-
ion when employed as magnetic carriers in targeting therapy. Thus,
local delivery of SPION-mediated therapeutic agents might induce
myocardial iron overload, particularly in the setting of myocardial
infarction or magnetic targeting.

Another important question is whether SPION accumulation
has toxicity effects on ischaemic myocardium. Although there is
little information concerning the biological effects of SPION on
myocardial tissues, the myocardium toxicity of excess non-SPION
iron have been extensively explored. First, both primary haemo-
chromatosis (a genetically determined condition resulting in iron
overload) and secondary hemochromatosis (such as repeated
transfusion, thalassaemia or sickle cell anaemia) can result in iron
overload cardiomyopathy, with the pathogenic mechanism of that
myocardial iron overload induces the formation of reactive oxygen
species (ROS) via the Fenton reaction [28, 29]. The myocardium
is one of the most sensitive tissues to iron, as demonstrated by
the fact that myocardial injury and heart failure are a common
presentation of hemochromatosis [24]. In chronic iron overload,
iron toxicity is dose-dependent [30]. Second, recent studies have
demonstrated that haemorrhagic myocardial infarction can result in
local iron depositions within the infarct zones, which can be a
source of prolonged inflammatory burden in the chronic phase of
myocardial infarction, most likely resulting in LV negative remodel-
ling [31] and ventricular arrhythmias [32]. Third, acute myocardial
ischaemia (specifically after reperfusion) can generate ROS via
activation of the oxidative stress system [33] and then directly
injuring the cell membrane of cardiomyocytes and induce cell
death [34]. SPION deposition might further enhance oxidative
stress levels in ischaemic myocardium, thereby promoting more
cardiomyocyte death.

The free radical-mediated pathway is the principal mechanism of
iron toxicity in cardiomyocytes [35]. Iron can be taken up by ventricu-
lar myocytes via the sarcolemmal L-type Ca2+ channel [36] in a dose-
and time-dependent manner [37]. Iron excess produces highly toxic
hydroxyl radicals via the Fenton-catalysed Haber-Weiss reaction,
which damages the lipid-rich cell membrane, and is known as lipid
peroxidation. Cellular lipid peroxidation produces polyunsaturated
fatty acids and increases toxic aldehydes. The aldehyde products can
form a covalent link to proteins (aldehyde-protein adducts), rendering
the loss of cell membrane integrity. Structures located on the cell
membrane, such as Na+-K+ ATPase and 50-nucleotidase, were
affected thereafter. Oxidative stress-mediated iron toxicity also affects
other cellular organelles and their functions. Consequently, iron-
induced myocardial injury occurred.

Hypothesis

Based on the available studies, it is logical to assume that local
myocardial delivery of SPION-mediated therapeutic agents might
produce myocardial iron overload, resulting in deterioration of myo-
cardial injury and exacerbating cardiac function via oxidative stress-
mediated iron toxicity, and undermining therapeutic effects. This
hypothesis could be confirmed in an animal study. First, SPION-
mediated therapeutic agents (such as SPION-labelled stem cells,
etc.) are intramyocardially injected into peri-infarcted zones in an
acute myocardial infarction rat model. Second, it should be investi-
gated whether SPION deposition in the heart causes myocardiocyte
loss and deteriorates the structure and function of the ventricle.
For example, T2-star magnetic resonance (MR-T2*) was used to
accurately evaluate cardiac iron status and detect early global ven-
tricular dysfunction; lipid peroxidation products (8-iso-PGF2a and
malondialdehyde, etc.) in the myocardium reflect the oxidative
stress mechanism; and histology was performed to examine myo-
cyte apoptosis, inflammation and fibrosis. Third, the efficacy of
novel SPION coated with antioxidants (such as N-Acetylcysteine or
Trolox) was investigated in attenuating oxidative stress-mediated
cardiac injury, further validating the SPION’s adverse effects and its
mechanism.

Implication

The evaluation of SPION compatibility with myocardium, particularly
with the ischaemic myocardium, is an urgent problem that needs to
be resolved before the clinical translation of SPION in the cardiovas-
cular field. If our hypothesis is true, then protective measures
should be taken into consideration before developing clinical applica-
tions. Given that SPION toxicity mainly stems from oxidative stress,
surface modification with an antioxidant (such as N-Acetylcysteine
or Trolox) may be a new method used to suppress oxidative damage
and injury.

In conclusion, local delivery of SPION-mediated therapeutic
agents might produce massive and persistent iron overload in ischae-
mic myocardium, consequently deteriorating myocardial injury. Thus,
antioxidant coating may be a new strategy used to suppress the
harmful properties of SPION.
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