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Abstract

Background: The identification of genes and uncovering the role they play in diseases is an important and
complex challenge. Genome-wide linkage and association studies have made advancements in identifying genetic
variants that underpin human disease. An important challenge now is to identify meaningful disease-associated
genes from a long list of candidate genes implicated by these analyses. The application of gene prioritization can
enhance our understanding of disease mechanisms and aid in the discovery of drug targets. The integration of
protein-protein interaction networks along with disease datasets and contextual information is an important tool in
unraveling the molecular basis of diseases.

Results: In this paper we propose a computational pipeline for the prioritization of disease-gene candidates.
Diverse heterogeneous data including: gene-expression, protein-protein interaction network, ontology-based
similarity and topological measures and tissue-specific are integrated. The pipeline was applied to prioritize
Alzheimer’s Disease (AD) genes, whereby a list of 32 prioritized genes was generated. This approach correctly
identified key AD susceptible genes: PSEN1 and TRAF1. Biological process enrichment analysis revealed the
prioritized genes are modulated in AD pathogenesis including: regulation of neurogenesis and generation of
neurons. Relatively high predictive performance (AUC: 0.70) was observed when classifying AD and normal gene
expression profiles from individuals using leave-one-out cross validation.

Conclusions: This work provides a foundation for future investigation of diverse heterogeneous data integration
for disease-gene prioritization.

Background
The rapid accumulation of high-throughput data along
with advances in network biology have been fundamen-
tal in improving our knowledge of biological systems
and complex disease. The emergence of network medi-
cine [1] has explored disease complexity through the
systematic identification of disease pathways and mod-
ules. Via the analysis of network topology and dynamics,
key discoveries have been made including identification
of novel disease genes and pathways, biomarkers and
drug targets for disease [2]. Network theory is making

important contributions to the topological study of bio-
logical networks, such as Protein-Protein Interaction
Networks (PPIN) [3]. The study by Xu et al. [4] ana-
lyzed topological features of a PPIN and observed that
hereditary disease-genes from the Online Mendelian
Inheritance in Man (OMIM) database [5] have a larger
degree and tendency to interact with other disease-
genes in literature curated networks. Both Chuang et al.
[6] and Taylor et al. [7] have indicated that the altera-
tions in the physical interaction network may be a indi-
cator of breast cancer prognosis. Goh et al. [8]
demonstrated that the majority of disease genes are
nonessential and located in the periphery of functional
networks. Research by [9] discovered that genes con-
nected to diseases with similar phenotypes are more
likely to interact directly with each other.
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Identification of candidate genes associated with physio-
logical disorders are a fundamental task in the analysis of
complex diseases [10]. Genome-wide association studies
and linkage analysis have been pivotal in the identification
of candidate genes, however, the large list of resultant
genes returned are time-consuming and expensive to ana-
lyze [11]. The availability of high-throughput molecular
interaction network provides and the application of net-
work analysis tools such as clustering or graph partitioning
have proved valuable in disease gene prioritization [12].
For instance, PPIN data integrated with genome-wide
expression profiles using DNA arrays and/or next genera-
tion sequencing enabling the modeling of networks have
aided our understanding of how biological networks oper-
ate. A number of computational approaches to prioritize
candidate genes have been proposed including: ToppGene
[13] and GeneWanderer [14] which rank candidate genes
based on known associations with disease genes using
diverse data sources and methodology. The study by
Vanunu et al. [15] applied a diffusion- based method
named PRINCE to prioritize genes in prostate cancer, AD
and type 2 diabetes. Wu et al. proposed the resource
AlignPI [16] which applied a network alignment approach
predict disease genes. The algorithm VAVIEN [17] was
also developed to prioritize disease genes based on topolo-
gical features of PPINs.
These diverse studies confirm the importance and need

of improving methods to integrate diverse ‘omic’ sources
to uncover candidate disease genes in biological systems.
To address this need, we have developed a prioritization
pipeline, which integrates diverse heterogeneous informa-
tion. We illustrate the implementation of this framework
using Alzheimer’s Disease (AD) as a Case Study. AD is the
most common neurodegenerative disease which is both
genetically complex and heterogeneous. Pathological char-
acteristics of AD include presence of amyloid peptide pla-
ques, mature senile plaques and neurofibrillary tangles and
loss of neurons in conjunction with the presence of oxida-
tive stress [18]. AD can be divided into two categories
early onset AD (EOAD) (patients < 65) and late onset AD
(LOAD) (patients > 65). A set of gene mutations including
APP, PSEN1 and PSEN2 involved in the amyloid beta and
tau pathways have been associated with hereditary AD.
Using genome-wide association studies, Lambert et al. [19]
identified the gene encoding APOE in LOAD as a risk fac-
tor along with 11 new loci. Furthermore, studies have sug-
gested that AD is a multifactorial disease in which many
pathways are involved. This highlights the progress, which
has been made in determining the genetic underpinnings
of AD. However, there is further need for an understand-
ing of AD mechanisms to develop more specific diagnostic
tests and novel drug therapies to target this disease.
Our proposed pipeline integrates AD gene-expression

and network data along with ontology-based semantic

similarity, topological information and tissue information.
The integration of biological data such as semantic simi-
larity which is independent of the gene expression profiles
and PPIN used to obtain the significant hubs is advanta-
geous in providing objective prioritization criteria. To eval-
uate the perfromance of our proposed method we (1) train
an Random Forest classifier using features generated using
the prioritized gene candidates to predict AD sample out-
come using leave-one out cross-validation (LOOCV); (2)
perform enrichment analysis and (3) compare the candi-
date gene list to a manually curated reference dataset of
verified known and susceptible AD disease genes. Further-
more, we investigate the tissues in which AD candidate
disease-genes are expressed through incorporation of tis-
sue-specific expression data.
The remainder of the paper is organized as follows, in

Section 2 the integrative framework is described along with
details on datasets and PPINs used in the analysis. Section
3 provides a summary of the results obtained and conclu-
sions along with future work is presented in Section 4.

Methods
Prioritization Workflow
The schematic workflow of our computational integrative
approach for disease gene prioritization is shown in
Figure 1. Firstly, PPIN and gene-expression are integrated
to provide an initial list of prioritized genes. Secondly, we
incorporate additional data in the form of network topol-
ogy and ontology-based semantic similarity to provide
further prioritization. This list of genes is then evaluated
using enrichment analysis and measurement of tissue
specificity.

AD gene expression data
Human AD gene expression data was obtained from the
Gene Expression Omnibus (GEO) database. (http://www.
ncbi.nlm.nih.gov/geo/). The selected profile GSE4757 was
generated using the platform GPL570: Affymetrix Human
Genome U133 Plus 2.0 Array. The study by Dunckley et
al. [20] examined the transcriptome of entorhinal neurons
from six cortical areas with or without neurofibrillary tan-
gles (a histopathology feature of AD) using Laser capture
microdissection. The dataset consists of gene expression
profiles of NFT-bearing entorhinal cortex neurons from
10 mid-stage AD patients (Disease) compared with 10 his-
topathologically normal neurons (Control) from the same
patients and brain region. These represent the different
stages of AD according to the pattern of disease spread.
Using the MAS5.0 function in R the CEL files were firstly
normalized. Probes in expression profile were then
mapped to corresponding NCBI Gene IDs. The average
expression value was calculated in cases where the Gene
ID related to more than one probe resulting in 20,539
unique Gene IDs.

Browne et al. BMC Genomics 2015, 16(Suppl 9):S2
http://www.biomedcentral.com/1471-2164/16/S9/S2

Page 2 of 10

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


A total of 10,106 significant genes were obtained using
the significance analysis of microarrays (SAM) [21] tech-
nique, a regularized t-test approach, using the false dis-
covery rate (FDR = 0.98). Differentially expressed (DE)
genes are genes whose expression levels are significantly
different between two groups of experiments.

Human protein-protein interaction network
The PPIN was constucted using data from literature
curated sources along with the recent Y2H screening by
Rolland et al. [22]. The literature based dataset consists of

11,045 binary human protein pairs extracted from seven
publically available databases including BioGRID [23], DIP
[24], Biomolecular Interaction Network Database (BIND)
[25], HPRD [26], InACT [27], Protein Data Bank (PDB)
[28] and Molecular INTeraction database (MINT) [29].
The protein pairs were filtered on evidence where pairs
that are only supported by two or more pieces of evidence
are included. Protein pairs were also obtained from Y2H
experimentation whereby 15,517 opening read frames
(ORFs) were systematically screened using the platform
hORFeome v5.1 (Space II) resulting in 13,944 pairwise

Figure 1 Overview of Computational Framework to Prioritize Disease Gene Candidates.
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interactions [22]. Both these data are integrated to pro-
duce a PPIN consisting of 7,783 nodes and 22,621 protein
pairs.

Toplogical analysis
AD gene expression data was mapped to the PPIN via
NCBI geneIDs using Cytoscape version 3.2.1 [30]. This
resulted in an AD disease specific network consisting of
5,457 nodes and 10,852 protein pairs. Hub genes were
defined based on the measurement of network topological
features (1) degree and (2) betweenness centrality using
Cytoscape version 3.2.1 [30].

Degree connectivity
Degree is a measure of the number of edges that connects
a node. Genes with a high degree of connectivity within a
network have large numbers of interacting partners. In
PPINs it has been observed that genes with high degrees
of connectivity are more likely to be essential as genes.
Furthermore, many interacting partners in a network tend
to be involved in important cellular processes [1]. Using
this assumption, the top genes with the highest degree dis-
tribution were selected as hub proteins. This approach has
previously been applied by Taylor et al. [7]. The degree
cut-off threshold for selecting hubs is defined as:

AVG + 2 ∗ (Std) (1)

where AVG is the average degree across all DE genes
in the PPINs and Std, the standard deviation [31].
Betweenness centrality
Betweenness is a topological feature of a network measur-
ing information flow through the network. In biological
networks, betweenness measures the paths through which
signals can pass through the interaction network. Yu et. al.
[32]. identified betweenness as an important topological
property of a network where nodes with high betweenness
control most of the information flow. The betweenness
centrality Cb(n) of a node n is computed as follows:

Cb (n) =
∑

s�=n�=t
(θst(n)/θst) (2)

where s and t are nodes in the network different from n,
θst denoting the number of shortest paths from s to t, and
θst(n) is the number of shortest paths from s to t that n
lies on. Betweenness centraility is calculated in Cytoscape.
Using the node betweenness distribution, genes located in
the top 50% are selected as hub genes.

Network variation of hub genes
For each hub protein in the PPIN the average of Pearson
correlation coefficients (PCC) between the hub and each
of its respective partners was calculated for both disease
and control groups. This method has previously been

applied by Taylor et al. [7] to measure network variations
among candidate genes and their interacting genes. To
determine if interactions are varied, the difference of AD
gene expression correlations of PPIs in disease and control
samples is calculated. The average hub difference
(AvgPCC) off correlation (Pearson’s correlation co-efficient
(PCC)) values between the disease and control groups was
calculated as follows:

AvgPCC =

∑n
i=1(Di − Ci)

n
(3)

where Di and Ci represent the correlations of a hub
and its interactors for the disease and control groups
respectively and n the number of i interactors for a
given hub.
Genes that are significantly different between the disease

and control groups were selected as follows: (1) labels
from the AD expression data were randomly assigned to
either the disease or control group. (2) The AvgPCC was
recalculated as RandomPCC by repeating the analysis
defined in equation × 1000 times in order to calculate ran-
dom distribution values. (3) P values for each hub was cal-
culated by:

∑A vgPCC ≥ RandomPCC
1000

(4)

A network of significant hub genes was generated
using significant cut-off threshold of P <= 0.05. P values
are adjusted using Bonferroni correction. Random reas-
signment of the expression data was taken by randomly
shuffling the expression data gene labels. This method
of random reassignment retains the topological network
structure of the interactome during the randomization.

Ontology based semantic similarity
Genes involved in phenotypically similar diseases are
often functionally related on the molecular level [33].
Based on this observation, the semantic similarity
between hub genes and their interactors has been
selected to analyze hub genes based on the Gene Ontol-
ogy (GO) [34]. The GO is a controlled vocabulary
describing the charateristics of gene products. Semantic
similarity measures evaluate information two genes
share. The functional similarity between two proteins is
estimated using encoded information in the GO hierar-
chies. In this study Wang’s measure of similarity [35] is
applied to the Biological Process hierarchy. This measure
determines the semantic similarity of two GO terms
based on the locations of terms in the GO graph and
their semantic relations with their ancestor terms. Given
a GO term A, TA denotes the set of all its ancestor terms
including term A itself. SA(t) can be defined as the contri-
bution of a term t ∈ TA to the semantics of A based on
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the relative locations of t and A in the graph. Given GO
terms A and B respectively, the semantic similarity
between these two terms, SGO(A,B), is defined as:

SGO(A, B) =

∑
t∈TA∩TB

(SA(t) + SB(t))
∑

t∈TA
SA(t) +

∑
t∈TB

SB(t)
(5)

As one gene may be annotated by many GO terms,
similarity between two genes Sim(G1,G2), is then calcu-
lated by taking the average semantic similarity scores for
all pairs of their associated terms. The similarity score
can range between (0,1), whereby a value closer to 1
indicates close relatedness of the two genes in biological
process. Wang’s measure was implemented using the
GOSemSim package in R [36], taking the median
semantic similarity between a hub protein and its
interactors.

Construction of AD reference dataset
A reference dataset containing known and susceptible
AD genes was constructed using the OMIM ‘morbid
map’ table [5]. Known and recently discovered AD sus-
ceptibility genes in detailed in the study by Lamberet et
al. [19] were also included. This resulted in a list of 52
AD related genes.

Tissue specific gene expression data
Candidate genes were filtered using tissue-specific gene
expression data retrieved from BioGPS [37] to deter-
mine if these genes are expressed in tissues where AD is
observed including the tissue locations: whole brain and
prefrontal cortex. This dataset contains the transcription
levels of 84 human tissues and cell lines and was pro-
cessed using the method described by Lopes et al. [38].
A list of 570 housekeeping genes were also included,
obtained from [39].

Classification of disease outcome
Construction of feature sets for individual samples
were generated using the prioritized hub genes in
order to classify sample outcomes applying the
approach proposed by Taylor et al. [17]. Using the gene
co-expression values for each sample in the AD dataset,
the absolute difference in gene co-expression CoeDiff
values of the prioritized genes and their interactors was
calculated by:

CoeDiff =
n∑

i=1
(Imi − Gi)i = 1 (6)

where the difference between the gene expression
values of each prioritized gene G and its interactors Im
is calculated. This was evaluated for all prioritized pro-
teins across each sample in the AD dataset.

Results and discussion
Using an integrative approach defined in the Method sec-
tion, diverse heteregenous data obtained from AD gene
expression, network topological analysis, along with
semantic similarity and tissue-specific information are
combined to to generate and analyze candidate AD genes.

Selecting differentially expressed genes
The microarray GSE4757 was analyzed using Signifi-
cance Analysis of Microarrays (SAM) to identify signifi-
cantly expressed AD related genes in R using the SAM
5.0 package from [40]. A total of 10,107 significantly
positive differentially expressed (DE) genes were
observed from 20,539 genes in the AD microarray data-
set based on the two class (disease and control)
unpaired t-test, using the false discovery rate (FDR =
0.98). These DE genes were selected for the construction
of the AD specific PPIN. An overview of the top 10 DE
genes is presented in Table 1 along with the SAM score
based on the t-statistic value.

Construction of AD PPIN
The protein pairs in the human PPIN applied in this
study have been derived from both small-scale studies
described in literature and large-scale high-throughput
Y2H experimentation. We integrate both these data in
the construction of the PPIN to improve interactome
coverage. Protein pairs obtained from small-scale studies
are considered high quality, however, it has been
observed by Rolland et al. [22] that their coverage of the
interactome is limited to a narrow dense zone. Protein
pairs obtained via high-throughput Y2H experimenta-
tion have demonstrated distributed homogeneously
across the interactome [22].
AD gene expression data was firstly mapped to the

PPIN via NCBI geneIDs using Cytoscape version 3.2.1
[30]. This network was further filtered to include only
the 10,107 DE genes identified from the SAM analysis.
The mapping of DE genes with the PPIN resulted in an
AD disease specific network consisting of 3,795 nodes
and 5,410 protein pairs.

Identification of hubs through network topology analysis
Hub genes were firstly defined based on network topo-
logical features using Cytoscape version 3.2.1 [30]. The
AD PPIN is represented as an undirected graphs, G =
(V,E), whereby V represents a set of nodes (proteins)
and E = {(u, v)|u, v ∈ V} , the set of edges connecting the
nodes. An overview of the global properties of the net-
work is presented in Table 2. Using Cytoscape, a total
of 174 hub genes were selecting based upon the topolo-
gical analysis measures degree distribution and between-
ness centrality. Genes with a high degree of connectivity
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and genes with low connectivity but high betweenness
were selected using the cut-off thresholds defined in the
Methods section. Table 3 presents the number of hubs
obtained using these measures. These two measures
have been selected as studies of model organisms have
observed that proteins with high degree of connectivity
tend to be encoded by essential genes [41]. Furthermore,
detection of these genes leads to larger numbers of phe-
notypic outcomes compared to genes with lower con-
nectivity [42]. However, not all disease genes in humans
are essential genes. Goh et al. [8] found that non-essen-
tial disease genes tend to be tissue specific located at
the functional periphery of the interactome and do not
necessarily encode hubs. Both Yu et al. [32] and Joy et
al. [43] demonstrated how nodes with a low degree of
centrality but high betweenness are important in a net-
work. Taking this into consideration, we also include
betweenness as an indicator of centrality.

Prioritization of hubs
Step 1: Integration of co-expression and PPIN
To further filter the list of 174 identified hub genes and
select significant hubs we integrated the AD gene expres-
sion data with the PPIN. The network variation of the hub
genes and their interactors was calculated using the
AvgPCC equation defined in Methods. PCC values

between the hubs and their interactors were calculated for
both the disease and control groups. Significant hub genes
were selecting using the Bonferroni corrected cut-off
threshold of P < 0:05. A total of 22 genes were identified.
Step 2: Gene ontology semantic similarity analysis
The semantic similarity between hub genes and their
interactors has also been selected to prioritize hub genes
based on the Gene Ontology (GO). It has been observed
that genes involved in phenotypically similar diseases
are often functionally related on the molecular level
[33]. In this study, the semantic similarity between a
gene hub and it’s interacting partners was performed
using Wang’s [35] measure of similarity detailed in
equation 4. This was applied to the GO Biological Pro-
cess hierarchy as a quantitative measure of functionality
similarity between gene pairs using the R package
GOSemSim [36]. To obtain the similarity value for the
hub and all its interactors, the median similarity was
taken across all protein pairs. The semantic similarity
values obtained ranged between 0 and 1. The hub gene
semantic similarity distribution was sorted in ascending
order and hubs with GO semantic similarity greater
than 0.5 selected. This resulted in a total of 10 priori-
tized hubs. Combining candidate genes output from
analysis in Step 1 and Step 2 resulted in a list of 32
prioritized hub genes summarized in Table 4.

Table 1 Overview of the top 10 differentially expressed genes obtained from the Alzheimer’s microarray dataset using
SAM analysis.

Gene Symbol Gene Description Score

Scd stearoyl-CoA desaturase (delta-9-desaturase) 3.41

CCDC79 coiled-coil domain containing 79 3.10

STAU2 staufen, RNA binding protein, homolog 2 (Drosophila) 2.78

Hist1h2bc histone cluster 1, H2bi; histone cluster 1, H2bg; histone cluster 1, H2be; histone cluster 1, H2bf; histone cluster 1, H2bc 2.72

HIST1H2BE histone cluster 1, H2bi; histone cluster 1, H2bg; histone cluster 1, H2be; histone cluster 1, H2bf; histone cluster 1, H2bc 2.69

HIST1H2BF histone cluster 1, H2bi; histone cluster 1, H2bg; histone cluster 1, H2be; histone cluster 1, H2bf; histone cluster 1, H2bc 2.56

HIST1H2BI histone cluster 1, H2bi; histone cluster 1, H2bg; histone cluster 1, H2be; histone cluster 1, H2bf; histone cluster 1, H2bc 2.53

HIST1H2BG histone cluster 1, H2bi; histone cluster 1, H2bg; histone cluster 1, H2be; histone cluster 1, H2bf; histone cluster 1, H2bc 2.52

DSTYK dual serine/threonine and tyrosine protein kinase 2.50

Lrrc16a leucine rich repeat containing 16A 2.47

Table 2 Overview of the global properties of the AD specific PPIN.

Nodes Edges Clustering Co-Efficient Avgerage Degree Average Betweeness Centraility

3,795 5410 0.026 2.85 0.009

Table 3 Analysis of AD PPIN Topological Features to
Identify Hub Genes.

Number of Nodes

High Betweenness
(Bottlenecks)

128

Selected Hub Genes 175

Table 4 List of significant hubs obtained from gene co-
expression network analysis.

Approach Number of Prioritized
Hubs

Network Variation using PPIN and Gene
Expression

22

Gene Ontology 10
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Evaluation
Functional annotation enrichment
GO and pathway enrichment analysis using the DAVID
resource [44] was applied to investigate the biological
implications of the prioritized hub gene list. Functional
annotation was obtained by extracting the most over-
representative GO terms (Biological Process, Cellular
Component and Molecular Function) for the groups of
genes under observation with respect to the whole gen-
ome taken as the reference background set (p-value
<0.05). We applied this approach to measure if the
prioritized hub genes are more enriched in GO terms or
involved in pathways than what would be expected by
chance. The number of GO terms and KEGG pathways
are summarized in Table 5.
Enrichment analysis of the prioritized hub genes iden-

tified significant biological processes modulated in AD
pathogenesis including: neuron differentiation, neuron
projection morphogenesis, neuron projection develop-
ment and regulation of neuron apoptosis. Furthermore,
significant KEGG pathways including: the Wnt signaling
pathway and the TGF-beta signaling pathway both of
which have been implicated in neurodegenerative dis-
eases [45,46] These results highlight the potential of this
approach in using prioritized hubs for the prediction of
AD biomarkers.

Reference dataset comparison
The list of prioritized hub genes were compared to the
reference dataset consisting of 52 AD related genes. A
total of 9 AD susceptible genes from the list of hub genes
identified were identified summarized in Table 6. Muta-
tions in PSEN1 are the most common cause of early
onset of AD. TRAF1, is a critical regulator of cerebral
ischemia-reperfusion injury and neuronal death [47].
LZTS2 has shown associated with late onset AD [48].

Tissue analysis
The prioritized gene hubs were analyzed to determine if
gene hubs are expressed in tissues in whereby by AD is
observed including the prefrontal cortex and whole
brain. Tissue specificity is an important component of
network analysis as genetic diseases often target specific
tissue(s). Therefore, perturbations of pathways or pro-
teins may have differential effects among diverse tissues

[49]. Using tissue specific expression data from BioGPS
[37] along with housekeeping genes obtained from
Lopes et al. [38], we identified that 4 of the prioritized
gene hubs are located in the whole brain and/or the
prefrontal cortex tissues.
Disease outcome classification
Using the prioritized gene-candidate list along with gene
expression values from the GEO dataset GSE4757, we
constructed a feature vector applying the approach
described in Methods using Equation 6. These features
measure the differences in absolute co-expression values
between the prioritized genes and their interactors
across each sample in the dataset. The aim of this
approach is to determine if measured differences in co-
expression values of prioritized genes and their interac-
tors can predict sample outcome. A total of 32 feature
values (obtained using each of the genes in the priori-
tized list) were generated for each instance in the AD
dataset. The AD dataset has a total of 20 individual
samples, 10 AD and 10 normal. We use these as labels
when measuring the classification performance. Classifi-
cation of sample outcome using this vector was per-
formed using the Random Forest classifier [50] in the
WEKA toolbox [51]. Leave one out cross validation
(LOOCV) was implemented, whereby, for a dataset with
n samples, n experiments are performed. Each experi-
ment uses n-1 samples for training and the remaining
sample for testing. The performance was assessed by a
receiver operating characteristics (ROC) curve which
plots the true positive rate against the false positive rate
at various threshold settings. The area under the ROC
curve (AUC) was estimated for each of the prioritization
approaches described in Table 7. Reasonable AUC
values were observed for the various prioritization
approaches ranging from 0.73-0.70 as presented in Table 7
and illustrated using ROC curves in Figure 2. This analysis
suggests that the integration of diverse data in the prioriti-
zation of protein hubs are indeed useful for sample

Table 5 Number of Enriched Gene Ontology Terms and
KEGG Pathways.

Number of Terms

GO Biological Process 135

GO Molecular Function 19

GO Cellular Component 17

KEGG Pathways 5

Table 6 List of AD Susceptible Genes Idenfied from the
Prioritized List of Gene Hubs.

Gene
Symbol

Gene Name

LZTS2 leucine zipper, putative tumor suppressor 2

MTUS2 KIAA0774

TRAF1 TNF receptor-associated factor 1

FHL3 four and a half LIM domains 3

REL v-rel reticuloendotheliosis viral oncogene homolog
(avian)

CARD9 caspase recruitment domain family, member 9

TFCP2 transcription factor CP2

MID2 midline 2

KRT38 keratin 38
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outcome prediction. Interestingly, we can see a slight
decrease in classification performance when gene hubs
prioritized using topological features are integrated with
gene hubs prioritized using GO semantic similarity. This is
compared to using only the topological or GO semantic
similarity prioritization approach only.

Conclusions
In this study, we have proposed a novel computational
framework that integrates diverse heterogeneous includ-
ing gene expression, network topological features: degree
and betweenness along with GO semantic similarity and
tissue specificity information to prioritize and analyze
disease-gene candidates. Our proposed pipeline provides
the flexibility to integrate other heterogeneous data
sources. To illustrate our approach, AD was applied as a
Case Study. AD is a chronic neurodegenerative disorder
characterized by a progressive decline in memory and
cognitive abilities. It is estimated that 4-8% of the popula-
tion over 65 years of age suffers from this disease with
the rate of incidence increasing with age. Currently, only
the symptoms of AD are treated with no effective thera-
peutic strategy available. Using our pipeline, 22 priori-
tized candidate AD disease genes were generated.
Enrichment analysis revealed GO Biological Process

terms were enriched by the prioritized gene-list such as
regulation of neurogenesis and generation of neurons
which are linked to AD pathogenesis. Analysis of KEGG
pathways identified prioritized genes involved in path-
ways including Wnt signaling pathway and the TGF-beta
signaling pathway. AD susceptible genes: PSEN1 and
TRAF1 extracted from OMIN [5] and a recent study by
Lambert et al. [19] were identified using the prioritization
approach. A reasonable predictive performance (AUC:
0.70) was achieved when classifying AD and normal gene
expression profiles from individuals using a feature set
generated from the prioritized gene-list along with super-
vised classification using Random forest and LOOCV.
These results demonstrate that the integration of PPINs
along with disease datasets and contextual information is
an important tool in unraveling the molecular basis of
diseases. It is important to note that network based
approaches for candidate disease gene priortization need
to be viewed with care as the map of the binary human
PPIN is still incomplete. However, coverage of the
human interactome is increasing through systematic Y2H
and transcriptional interaction screens. This increased
coverage, quality, and diversity of human PPIN data will
provide further opportunities for the molecular charac-
terization and understanding of human disease [1].

Table 7 Summary of Disease Outcome Classification using Prioritized Genes.

Priortization Approach Description Hubs AUC Value

Topology Hubs prioirtized using network topology methods defined in Step 1 22 0.74

GOSim Hubs prioirtized using GO Semantic Similarity defined in Step 2 10 0.72

Toplogy_GoSim Union of priortized hubs from Step 1 and Step 2 32 0.7

Figure 2 ROC Curves illustrating the predictive performance of the Gene Hub Prioritization Approches.
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