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Abstract

Two eye-colour mutant strains, white (W) and yellow (Y) of house cricket Acheta domesticus

were established in our laboratory. We phenotyped and genotyped the mutants, performed

genetic crossings and studied the eye structure and pigment composition using light and

electron microscopy and biochemical analysis. We show that W and Y phenotypes are con-

trolled by a single autosomal recessive allele, as both traits are metabolically independent.

The analysis of the mutants‘eye structure showed a reduced number of dark pigment gran-

ules while simultaneously, and an increased amount of light vacuoles in white eye mutants

was observed. Significant differences in eye pigment composition between strains were

also found. The Y mutant had a lower number of ommochromes, while the W mutant had a

lower number of ommochromes and pteridines. This indicates that mutated genes are

involved in two different, independent metabolic pathways regulating tryptophan metabolism

enzymes, pigment transporter granules or pigment granule formation.

Introduction

Insect eye-colour mutants are important research models in biological sciences [1–5]. The

analysis of eye colour-linked mutations in D. melanogaster confirmed the chromosomal theory

of heredity and for the first time allowed linking a single gene with its locus on the chromo-

some (the sex chromosome) [6,7]. The majority of studies in this field use holometabolous

insect models such as Diptera [8,9], Coleoptera [10], Hymenoptera [11] and Lepidoptera

[12,13] while Hemimetabola are often neglected. Within Hemimetabola the Hemiptera order
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contains the most common hemimetabolous colour mutant groups [14–17]. The genes deter-

mine the eye colour traits code for proteins associated with the eye pigmentation and other

eye-independent functions. The eye colour mutants are commonly used as the experimental

models to study insect genetics [1,16,18,19], body pigmentation [5,20], general physiological

processes [2,21–23], behaviour [24,25] and aging [26]. In addition, the eye colour mutants and

genes related to this mutation have recently been studied as potential markers for genetic

transformation in various insects [10,27].

The colour of insect compound eye is broadly determined by the nature of different pig-

ments [5]. Ommochromes and pteridines are essential pigments that contribute to eye pig-

mentation [4,5,28–30]. Ommochromes are products of tryptophan metabolism while

pteridines are synthesised from guanosine triphosphate (GTP) [5]. A dysfunction of the trans-

porter or the enzymes involved in the synthesis pathway of these pigments leads to aberrant

pigment content and results in the modification of the wild type eye colour [10,11,24]. The

ommochromes and pteridines are important for eye functionality, reception of visual stimuli

[22,31], free radicals scavenging [5,32,33] and functionality of the immune system [34]. More-

over, the synthesis pathways of these pigments are tightly coupled with the metabolism of bio-

active compounds or key neurotransmitters such as dopamine and serotonin [5,35]. The

guanine derived from GTP and a cofactor of the three aromatic amino acid hydroxylase

enzymes, the tetrahydropterin (BH4) are required for the synthesis of dopamine [36], while

tryptophan is a precursor of serotonin [37]. Studies showed that Drosophila melanogaster eye

colour mutants have altered levels and distributions of dopamine and serotonin neurotrans-

mitters [24,37].

The mutations that affect insect eye pigmentation can be divided, depending on the cate-

gory of pathway they target, into four groups affecting: (1) xanthommatin biosynthesis, (2)

pteridine biosynthesis, (3) transmembrane transport of eye pigments and/or pigment precur-

sors, and (4) pigment granule formation [30,38–40]. Several genes regulating the processes

listed above had been identified in D. melanogaster [1]. The transmembrane transport of eye

pigments and/or pigment precursors depends on three transporter genes: white, scarlet and

brown [40,41]. The formation of the pigment granules, which are the pigment-containing

organelles located within the pigment cells, depends on several genes such as garnet and light,
which are involved in the delivery of proteins necessary for granule biogenesis and mainte-

nance [41].

The cricket (Orthoptera, Gryllidae) is the fundamental hemimetabolous insect model for

the fields of behavioural research [42] and leg regeneration [43]. A comparison between this

hemimetabolous evolutionary older insect species and holometabolous D. melanogaster can

provide valuable comparative information about the metabolism and functions of insects’ eye

pigments. It is known that in hemimetabolous insects, such as the Hemiptera, the eye colour

mutations are derived from the changes in a single gene [15–17]. So far, only one eye colour

mutant has been reported in Orthoptera, in the yellow-eyed Gryllus bimaculatus strain from

Japan [44]. However there is no information about the gene(s) affected by this mutation [45].

Yellow (Y) and White (W) eye colour strains of the house cricket Acheta domesticus derived

from the spontaneous mutations were established in our laboratory in Katowice, Poland in

2015. The mutated-eye phenotype is observable in all developmental stages from the nymph to

imago. In order to characterise these two mutated strains and make them available for further

research, we first determined if these were sex-independent and single gene mutations, and

then we investigated in detail the eye pigment granules and pigment content in the mutants.

Eye colour mutants of house cricket
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Materials and methods

Establishment of yellow and white eye colour cricket strains

A single yellow-eye (Y) imago male was found by chance in a laboratory culture of wild-type,

black-eyed (B) crickets devoted mostly to a behavioural and toxicological genetic research in

2015 at the University of Silesia in Katowice, Faculty of Biology and Environmental Protection,

Poland. In order to establish a yellow-eye color colony, the yellow-eye male was paired with

the black-eye females. The obtained offspring were all black-eyed. These black-eye progenies

(F1) were subsequently interbred and produced both black- and yellow-eye offspring (F2). The

yellow-eye females and males were isolated to establish a pure yellow-eyed strain. In the third

generation, four white-eye females and three males were found. The yellow (Y, genotype WW/

yy) and white (W, genotype ww/yy) eye phenotypes had persisted in the colony for over one

year, since 2015. The black-eyed (B, genotype WW/YY) strain used in this study is the original

laboratory strain in which no further yellow or white-eye mutants were observed. All strains

were reared at 300 ± 2˚C and 40% ± 10% relative humidity with a 12:12 light:dark cycle (light

source: incandescent lamp Spectrum W0J21508, T8 G13 18W 6500K). During their whole life,

the insects had access to shelter, water and food ad libitum.

Genetic crosses

To determine the relationship between genes and heredity, crosses between all strains were

conducted. Males and females, 5 days after imaginal molt, were used for the experiment. In

each testcross 24 pairs were tested: 12 pairs for males and females (from all strains) in different

configurations (yellow male x black female, black male x yellow female etc.). Eye colour was

assessed at the 3rd-instar nymph stage in the filial generation. Although the sequencing of the

wild type and mutated genes is still in progress and the exact source of phenotype changes

remains unknown, for the purpose of this study the observed traits were assigned to the theo-

retical genes: y—yellow eye gene, and w—white eye gene. For the clarity of the crosses descrip-

tion, the Wild strain (B) was described as WW/YY, the Yellow strain as—WW/yy, and the

White strain as—ww/yy.

For backcross procedure, heterozygous individuals (F1) from crosses of BxW (Ww/Yy),

BxY (WW/Yy), WxY (Ww/yy) were crossed with recessive homozygote: White (ww/yy) or

Yellow (WW/yy) respectively, in both sex configurations. All configurations were made in six

replicates. Phenotypes from obtained progeny were counted, and an analysis of the frequency

distribution was conducted utilizing a Chi-square test or binominal test.

Light and transmission electron microscopy (TEM)

Adult specimens (males) of the wild-type and eye colour mutants (20 specimens from each

strain) were decapitated. Their head capsules were opened, and the eyes were isolated. The

morphology of the eyes was analysed using an Olympus SZX16 stereoscope. A series of images

were acquired using an Olympus DP72 digital camera mounted on the stereoscope. For light

and TEM microscopy, the eyes were fixed with 2.5% glutaraldehyde in a 0.1 M sodium phos-

phate buffer (pH 7.4) at 4˚C for 24h. After washing in phosphate buffer (5 times, 30 min each),

the material was post-fixed in 1% osmium tetroxide in a 0.1 M phosphate buffer (4˚C, 2h),

rinsed with the same buffer and dehydrated in a graded series of ethanol (30%, 50%, 70%, 90%,

96% and 100%, each for 15 min), acetone (2 times, 15 min each) and then infiltrated succes-

sively through mixtures of acetone and Epon 812 resin (3:1, 1:1, and 1:3). Thereafter, the mate-

rial was embedded in Epon 812 resin (Fullam Inc., Latham, NY, USA) and polymerised into

the resin blocks at 60˚C for 48 h. The semi- and ultra-thin sections were cut with a diamond
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knife using a Leica Ultracut UCT25 ultramicrotome. Semi-thin sections (600 nm thick) were

stained with 1% methylene blue in 0.5% borax and analysed using an Olympus BX60 light

microscope. Ultra-thin sections (70 nm thick) were stained with uranyl acetate and lead citrate

and examined with a Hitachi H500 transmission electron microscope. A quantitative analysis

of light vacuoles was made on horizontal eye sections (light microscopy) from wild and mutant

cricket strains. The comparison of the area was made on sections cut below crystal cone (visi-

ble rhabdomeres). The analysis of digital photos was performed with the use of ImageJ soft-

ware on randomly selected areas (500x500 pix) [46]. Light vacuole areas were quantified as the

percentage of selected squares.

Pigments extraction

To determine the biochemical basis of the yellow and white-eye phenotype, ommochromes

and pteridines were extracted using two different methods described by Nijhout (1997) and

Tomic-Carruthers et al.(1996) [47]. The 10-day-old imagoes (males) were used to extract the

pigments (females were tested in a preliminary study, and there was no difference in pigment

content between females and males). For ommochromes and pteridines extraction, 6 pairs of

eyes were isolated from insects of each phenotype. For ommochromes extraction, the eyes

were homogenised individually in 1% HCl in methanol (150 μL/50mg of tissue) and extracted

in the dark for 1 hour. Each homogenate was centrifuged at 10 000 rpm for 10 min. For pteri-

dines extraction, the eyes were homogenised individually in a mixture of 3.5% aqueous ammo-

nia and n-propanol 1:2 (150 μL/50mg of tissue) and extracted in the dark for 1hour. The

homogenates were centrifuged at 10 000 rpm for 10 min.

Thin layer chromatography (TLC)

TLC is one of the most fundamental compound separation methods, often used in insect eye

pigment analysis. 5 μL of pigments extract was applied to HPTLC plate (Pre-coated HPTLC

plates Nano-Adamant layer 0.2 mm, silica gel 60) under dim light. Extracts from six insects

per strain were used in this method. After drying for 10 minutes, the plate was placed in the

chromatographic horizontal chamber. Two different mixtures were used as a developing sol-

vent: phenol: water (3:1) for ommochromes, and 1% aqueous ammonia and n-propanol (1:2)

for pteridines. The plate was developed for 90 min and dried in the dark for 12 hours. Dry

plates were visualised using a UV transiluminator (365 nm) and archived digitally for further

analysis. For spots detection, Rf values and areas determination, the digital images were ana-

lysed with CpAtlas v. 2.0 [48] software. To determine spots colour, ImageJ software was used

for RGB values measurement [49].

Spectrophotometry

The overall concentration of compounds in the extraction mixture was evaluated by spectro-

photometry. Concentration of both ommochromes and pteridines was measured on micro-

plates (UV Cornstar GE half- area 96 wells) using an Infinite M200 TECAN reader. For

pteridines, the supernatant was diluted at 1:3 ratio with the extraction solution. Thereafter, the

mixture was applied into the wells, and the clear extraction solvent was used as a baseline. The

absorbance value was measured at the 230–350 nm (2 nm step) wavelength range. Ommo-

chromes extraction solvents were used undiluted, and the clear extraction solvent was used as

a baseline. The absorbance value was measured at the 230–650 nm (2 nm step) wavelength

range. For each group of pigments, six replicates per phenotype were used.

Eye colour mutants of house cricket
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Spectrofluorometry

The fluorescence value of compounds in the extraction mixture was evaluated by spectrofluo-

rometry. The fluorescence of ommochromes and pteridines was measured with a microplate

reader (Spark 10M TECAN) on Thermo Fisher Scientific- Nunclon 96 Flat Black microplates.

Due to a too high emission, the extraction solution was diluted 40x for pteridines, and 200 μL

of mixture was applied into the wells. Ommochromes extraction solution remained undiluted.

Clear extraction solvent was used as the baseline. The excitation wavelength was set on 365

nm, and the emission value was quantified at the spectrum window 400–600 nm (excitation/

emission bandwidth 20 nm, integration time 250 s, 1 nm step). For each pigment group, six

replicates per phenotype were used.

Statistical analysis

The statistical analysis was performed using Prism 6.0 GraphPad software. The dependence

tests were used to compare expected frequencies and the frequencies of traits obtained in

genetic crosses. Depending on the number of groups, either a binominal or Chi^2 test was

used. A parametric ANOVA test (Tukey test, p<0.05) was used for quantitative analysis of the

absorbancy maxima, TLC spots and white vacuoles area.

Results

Genetic crosses

The series of crossbreeds between individuals from studied lines provided a complete set of

information about the inheritance of the studied traits (Table 1). In heterozygous generation

(F1), all individuals exhibited a dominant phenotype, black or yellow; black eyes for B x Y and

B x W crosses, and yellow eyes for Y x W. The next generation (F2), derived from crossing het-

erozygous BY and WY individuals consisted of typical unigenous distribution (3:1) of pheno-

types, with the black and yellow dominant phenotype, respectively. A similar distribution was

observed independently of sex sets. The more complex picture appeared in the F2 generation

after B x W cross. Observed distribution fitted the model 12:3:1 (black: yellow: white). In this

model, the offspring containing the recessive homozygotic white gene and heterozygotic yel-

low gene or dominant homozygotic yellow gene (ww/Yy, ww/YY) expresses black eye pheno-

type. The results of the B x Y and Y x W crosses indicate that the two observed phenotype

traits are determined by two independent genes. There is no evidence that these traits are asso-

ciated with the sex. This interpretation is supported by the result of the series of backcrosses

(Table 2). The results of heterozygotes and recessive homozygotes crosses (Y and W) are simi-

lar to the expected distributions (1:1).

Structure of the A. domesticus eyes

Each examined strain (wild type and mutants) had a characteristic, distinctive eye colour. The

wild-type had black coloured eyes (Fig 1A), while the mutants had yellow (Fig 1B) or white

eyes (Fig 1C). The single eye is hemispherical and consists of hundreds of hexagonal omma-

tidia (Fig 1A–1C), which rest on a basement membrane (Fig 2A–2C). In both the wild-type

and the mutants, the spatial organization of the ommatidia was regular, and they were

arranged parallel to each other (Fig 2A–2I). A single ommatidium is composed of a smooth

cornea, a crystalline cone surrounded by primary pigment cells, a cluster of the retinula, and

the secondary pigment cells (Fig 2A–2I). Lateral membranes of retinula cells form finger-like

microvilli, which are arranged in rhabdom in the central part of the ommatidium (Figs 2A–2I,

3A, 3D and 3E). In the basal part of the eye, the axons of retinula cells of each ommatidium
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exit the eye through the holes in the basement membrane (Fig 2B and 2C). The cytoplasm of

retinula cells is rich in mitochondria, swollen cisterns of rough endoplasmic reticulum [50],

free ribosomes, multivesicular bodies, lamellar bodies, vesicles with an electron-lucent content

(Fig 3A–3E) and light vacuoles (Fig 2D–2F). Clusters of mitochondria accumulate in the vicin-

ity of rhabdom membranes (Fig 3A, 3D and 3E). In the wild type eye, the cytoplasm of retinula

cells contained multiple granules with homogeneous or heterogeneous electron-dense content

(Fig 3A and 3C). On the semi- and ultrathin sections of the yellow eye mutant, the cytoplasm

of retinula cells contained a small number of fine, electron-dense granules (Fig 3D), while in

the white-eyed mutants, such granules were never observed (Fig 3E). Furthermore, in the wild

type eye, many electron-dense granules were found in the cytoplasm of pigment cells lining

the outside of each ommatidium. These granules were not noticed in both yellow and white

mutant pigment cells (Figs 2A–2I, 3D and 3E). Many light (low electron density) areas, inside

and outside of cells, are visible in horizontal and longitudinal sections of ommatidia of the

white strain crickets. The analysis of the region occupied by light vacuoles in horizontal eye

sections from all the strains was conducted. Obtained results confirmed significantly higher

occurrence and a greater surface occupied by light areas on the eye sections from the white

strain in comparison to the yellow and black strains (Fig 4).

Composition of eye pigments in wild type and mutant eyes

The TLC analysis of pigment composition was based on the colour and retardation factor (Rf)

of the obtained spots. The results of isolation and separation of pigments from each strain

were digitally captured (Fig 5). Although it was not possible to accurately identify most of the

isolated compounds (Table 3), the TLC analysis showed that the major changes in the mutant

strains involved the ommochromes pigments. In the chromatogram of the black strain, three

brown spots were observed with a dominant, dark 5th spot (xanthomatine) which is the main,

dark color visual pigment in insects. The major phenotypic difference between wild type and

mutant cricket strains was the absence of this brown pigment. The yellow-eyed strain lac the

brown pigment (which in the wild type obscures light-coloured pigments), while the white-

eyed crickets lacks all eye pigments. In the case of the yellow-eyed crickets, it is hard to tell if

the yellow colour is caused by the ommochrome or pteridine pigments because both these pig-

ments cause yellow colouration of the tissue.

Table 1. Results of genetic crosses.

generation F1 phenotypes generation F2 phenotypes P value P (two-tailed)

parental

phenotypes

number of offspring observed

distribution

theoretical

distribution

number of offspring observed

distribution

theoretical

distribution

Binominal test (one tailed)

female male B Y W Sum B Y W B Y W B Y W Sum B Y W Ba Yb Wc

B Y 967 0 0 967 1 0 0 1 0 0 2966 935 0 3901 3,04 1 0 3 1 0 0,0703 0,1391 ns

Y B 1192 0 0 1192 1 0 0 1 0 0 3141 1047 0 4188 3,01 1 0 3 1 0 0,5059 > 0,9999 ns

Y W 0 1342 0 1342 0 1 0 0 1 0 0 1376 441 1817 0 3,12 1 0 3 1 0,3109 0,6184 ns

W Y 0 1191 0 1191 0 1 0 0 1 0 0 1085 350 1435 0 3,1 1 0 3 1 0,3088 0,6045 ns

Chi-square

B W 1054 0 0 1054 1 0 0 1 0 0 2944 698 316 3958 11,9 2,82 1,27 12 3 1 21,86 �

W B 985 0 0 985 1 0 0 1 0 0 3350 727 360 4437 12,08 2,62 1,29 12 3 1 38,04 �

Eye colour in offspring of intraline, reciprocal or F1 crosses between black (B), yellow (Y) and white (W) eye house crickets. Predicted genotypes:

a—WW/YY, Ww/Yy, ww/YY, ww/Yy

b—WW/yy, Ww/yy

c—ww/yy.

https://doi.org/10.1371/journal.pone.0216281.t001
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Table 2. Results of genetic backcrosses.

Parental strains for backcrosses

Parental phenotypes of heterozygote Phenotype of

recesive

homozygote

Number of offspring Theoretical

distribiution

Observed

distribiution

P value

F/M F M B Y W Sum Ba Yb Wc B Y W Chi2 value

BW x W 1936 814 884 3634 2a 1b 1c 2,13 0,90 0,97 18,28

BW x W 1336 498 805 2639 2 1 1 2,03 0,75 1,22 71,84

WB x W 814 398 420 1632 2 1 1 2,00 0,98 1,03 0,6029

WB x W 644 330 316 1290 2 1 1 2,00 1,02 0,98 0,307

Binominal test (one tailed)

BW x Y 1274 1306 0 2580 1d 1e 0 0,99 1,01 0 0,2708

BW x Y 1818 1804 0 3622 1 1 0 1,00 1,00 0 0,4145

WB x Y 1552 1586 0 3138 1 1 0 0,99 1,01 0 0,5439

WB x Y 1292 1344 0 2636 1 1 0 0,98 1,02 0 0,1603

BY x Y 1318 1304 0 2622 1f 1g 0 1,01 0,99 0 0,4291

BY x Y 1190 1206 0 2396 1 1 0 0,99 1,01 0 0,3796

YB x Y 828 872 0 1700 1 1 0 0,97 1,03 0 0,1485

YB x Y 1056 1118 0 2174 1 1 0 0,97 1,03 0 0,0954

YW x W 0 1058 1064 2122 0 1h 1i 0 1,00 1,00 0,3796

YW x W 0 1090 1124 2214 0 1 1 0 0,98 1,02 0,4248

WY x W 0 1272 1218 2490 0 1 1 0 1,02 0,98 0,1441

WY x W 0 1199 1241 2440 0 1 1 0 0,98 1,02 0,3952

Eye colour in offspring of intraline, reciprocal backcrosses between heterozygotes and recesive homozygotes of house crickets (black (B), yellow (Y) and white (W) eye).

Predicted genotypes of the offspring:

a—Ww/Yy, ww/Yy

b—Ww/yy

c—ww/yy

d—WW/Yy, Ww/Yy

e—Ww/yy, WWyy

f—WW/Yy

g -WW/yy

h—Ww/yy

i—ww/yy.

https://doi.org/10.1371/journal.pone.0216281.t002

Fig 1. Differences in eye colour of three examined strains. Wild-type black (A), yellow eye mutants (B), white eye mutants (C). Stereo microscope

images. Bar is equal to: A. = 0.88 mm, B. = 0.81 mm, C. = 0.82 mm.

https://doi.org/10.1371/journal.pone.0216281.g001
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In summary, the yellow eye strain lacks 6 out of 11 spots present in the black eye strain.

Moreover, in the samples from the yellow eye insects, there is one additional pigment spot

(designated as # 10) not observed in the other strains. In the white strain insects, only 2 spots

out of 11 spots present in the wild strain are observed.

TLC analysis of the pteridines showed the differences in the qualitative and quantitative

compounds composition between the wild type and mutant strains. The chromatogram

showed the presence of six spots in the wild type strain and only five spots in the yellow eye

strain. The white eye strain had only half of the spots present in the wild type strain. It is possi-

ble that the lack of the yellow colour in the white strain is associated with the lack of ommo-

chromes and pteridines.

Spectrophotometric measurement of eye pigments in wild type and mutant

eyes

Spectrophotometry analysis of absorbance pattern of the ommochromes solution showed two

distinct peaks of absorbance: a large peak at 280 nm and a much smaller peak at 400 nm. For

both of these peaks, the absorbency values are lower for the mutant strains than for the black

strain. These results correspond with thin layer chromatography results: more pigments bands

are present in the eyes of black crickets than in the mutant eyes. (Fig 6A).

For pteridines, only one absorbance peak was observed. In the black strain, there is an evi-

dent absorbance peak at 292 nm. The black strain exhibited a two-fold higher absorbance than

the yellow and white strains, which were both similar to each other. This result does not corre-

spond with the results of the TLC assay and suggests the presence of other compounds unde-

tectable by the TLC assay (Fig 6B).

Statistical analysis reveals quantitative differences between mutant strains and the wild type

in pteridines for the absorbance peak value - 280nm. There was no difference between mutant

strains (Fig 7A). For ommochromes, the quantitative analysis for two visible peaks (280 and

400 nm) was conducted. In both cases, the differences between mutants and the wild type were

observed. Significant differences between mutants were observed only at 280 nm (Fig 7B and

7C).

Spectroflourometric measurement of eye pigments in wild type and mutant

eyes

In the fluorometry method only the fluorescent compounds give a positive signal. So, it is pos-

sible to see which spots on the TCL plate are the fluorescent compounds. We used fluorometry

to quantitate fluorescent compounds in the wild type and mutant strains. In both pigment

(pteridines and ommochromes) groups, the baseline fluorescence (solvent fluorescence) was

low and stable. We found that the different strains differed in the quantity of ommochromes.

The most profound difference was observable at the 410–490 nm spectrum range. There was a

strong reduction of overall signal in the yellow and white strain, which corresponded to the

reduced number of spots on the TLC plate. The highest fluorescence was observed in the black

strain, lower in the yellow strain and the lowest in the white strain. Fluorescent emission in the

white strain was residual and close to the background emission. When samples were excited

Fig 2. General morphology of the eye of Acheta domesticus. The single eye consists of hundreds of ommatidia, which consist of the smooth

cornea (co), crystalline cone (cc), primary pigment cells (ppc), retinula cells (rc) and the secondary pigment cells (spc). Lateral membranes of

retinula cells form microvilli, which are arranged in the rhabdom (rh). Basement membrane (black arrow), axons of retinula cells (a), nucleus (n).

Wild-type black (A, D, G), yellow eye mutants (B, E, H), white eye mutants (C, F, I). Longitudinal sections (A-F), cross sections (G-I). Light

microscope. Bar is equal to: D. = 17.12 μm, E. = 18.69 μm, F. = 19.56 μm, G. = 8.56 μm, H. = 9.34 μm, I. = 9.78 μm.

https://doi.org/10.1371/journal.pone.0216281.g002
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Fig 3. Ultrastructure of retinula cells within the eye of a house cricket. Numerous mitochondria (m), swollen cisterns of rough endoplasmic

reticulum (RER), free ribosomes, multivesicular bodies (mb), lamellar bodies (lb) and vesicles with an electron-lucent content (arrows) are present in the

cytoplasm of retinula cells (rc). In the wild-type, numerous granules (g) are present. Rhabdom (rh), secondary pigment cells (spc). Wild-type (A-C),

yellow eye mutants (D), white eye mutants (E). TEM, bar is equal to: A. = 1.71 μm, B. = 1.29 μm, C. = 0.91 μm, D. = 1.52 μm, E. = 1.52 μm.

https://doi.org/10.1371/journal.pone.0216281.g003
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with 495 nm wavelength, the white and yellow emission curves overlapped and the signal had

similar intensity (Fig 8A).

The fluorescence measurement of pteridines also revealed differences between strains.

Extracts from the eyes of the yellow strain exhibited much higher fluorescence than that of the

black strain and also had a different curve shape (Fig 8B). This result can be interpreted as a

sign of physiological adaptation and is observed in the wavelength range 435–475 nm; proba-

bly the absence of the brown pigments in the yellow eye caused more intense synthesis of pteri-

dines to protect the eyes against light. Moreover, the white strain exhibited the lowest signal

intensity, close to the background. This result confirms reduced content of pteridines in the

white eye visible on the TLC plate (Fig 5).

Discussion

In this study we would like to present the characteristic of yellow and white eye colour mutant

strains of house cricket (Acheta domesticus). Our results provide new information about the

novel eye colour mutation in hemimetabolous insects from the Orthoptera order. Previous

reports focused either on holometabolous insects [5] or presented only a general overview of

the single gene mutations for hemimetabola [15,17,51]. Our results are in agreement with the

Fig 4. Comparison of the area occupied by light vacuoles in horizontal eye sections from all cricket strains. ANOVA test, p<0.05. Different

letters indicate statistically different groups.

https://doi.org/10.1371/journal.pone.0216281.g004
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data from D. melanogaster eye colour mutants where the content of pteridines and ommo-

chromes is altered [24].

Genetics

The eye colour mutant individuals were easily distinguishable starting from the first-instar

nymph stage of development. The crossing experiments demonstrated that the yellow and

white eye phenotypes were inherited as a simple Mendelian autosomal recessive trait. The

Mendelian ratio of 3:1 observed for BB x YY, YY x WW crosses and 12:3:1 for BB x WW

crosses, and Mendelian ratio 1:1 in backcrosses of BY x YY and YW x WW confirmed a single

gene nature of both traits. The lack of changes in the distribution, regardless of multiple repli-

cations and sex setups, clearly ruled out that the traits are sex-related. Similar conclusions

about mutations and sex relation are also true for other hemimetabolous insects [15,17,52].

Only in one species of Hemiptera, the eye colour mutation was sex-linked [16] contrary to D.

melanogaster where the eye colour mutations are mainly sex-linked [53].

The obtained phenotypes and results of BWxBW crosses close to 12:3:1 indicated that the

insects with the genotype ww/YY, ww/Yy have a black eye phenotype. This also indicates that

the black eye trait (the presence of dark brown pigments) is connected with the yellow gene

and masks the white eye phenotype. The white eye phenotype requires the mutation in both

genes. The lack of the pleiotropy effect indicates a genetic and metabolic independence of both

Fig 5. Thin layer chromatography of eye pigments. Image of TLC plates in UV light (345 nm) with profiles of

isolated compounds: A) ommochromes B) pteridines for all three tested strain mutants: black- (B), yellow- (Y) and

white- (W) eye. Numbers correspond to spots numbers in Table 3.

https://doi.org/10.1371/journal.pone.0216281.g005
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mutated genes. It is difficult to compare these results to other studies on similar subjects

because they usually describe single changes in the phenotype [54]. Further analysis is neces-

sary to better understand the genetic basis of the observed mutations.

Eye structure

The development and the structure of the insect eye are determined by a number of biochemi-

cal and genetic factors [5,55,56]. Although the genes regulating eye development and structure

Table 3. Results of TLC analysis with calculation of Rf values and spot areas for A) pteridines and B) ommochromes. Different letters indicate statistically different

groups, ANOVA Tukey test p<0.05.

A) B Y W

colour spot nr. rf mean area ± SD

Mint 1. 0.308 656.8 ± 87.3

light blue 2. 0.436 7401.4 ± 1003.7 a 5299.8 ± 724.6 b

summer sky 3. 0.543 1696.5 ± 327.8 a 6660.8 ± 356.1 b

pattens blue 4. 0.647 3439.4 ± 759.3 a 4999.4 ± 439.8 b 1671.4 ± 235.7 c

light blue 5. 0.728 1285.1 ± 199,2 a 619.4 ± 287.9 b 4090.6 ± 1021.3 c

dodger blue 6. 0.777 1001.9 ± 173.2 a 595.7 ± 211.5 b 6608.3 ± 1105.6 c

B) B Y W

colour spot nr. rf mean area ± SD

turquoise 1. 0.189 1485.6 ± 259.8

Blue 2. 1594.5 ± 302.4

Teal 3. 0.209 197.2 ± 37.6

dark blue 4. 0.248 655.7 ±116.2

Black 5. 0.289 2737.4 ± 146.3

Blue 6. 0.323 3045.5 ± 591.6 a 5127.2 ± 726.9 b

dodger blue 7. 0.38 2849.1 ± 231.7 a 4083.8 ± 592.4 a

cerulean 8. 0.46 419.8 ± 87.7

light blue 9. 0.493 4192.4 ± 878.9 a 7757.7 ± 453.2 b 6074.6 ± 907.5 b

sapphire 10. 0.52 163.4 ± 45.7

Blue 11. 0.608 1366.8 ± 112.5 a 3258.3 ± 293.4 b 2512.4 ± 198.9 ab

cerulean 12. 0.66 120.1 ± 26.2

cobalt 13. 0.727 840.6 ± 389.6 a 789.4 ± 187.4 a 1567.7 ± 392.1 b

https://doi.org/10.1371/journal.pone.0216281.t003

Fig 6. Spectrophotometry of ommochromes (A) and pteridines (B). Differences in the absorbency of pigments isolated from the eyes of black-, yellow- and white-

eye mutant strains of house crickets.

https://doi.org/10.1371/journal.pone.0216281.g006
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are well known, there is no information on the relationship between these genes, the eye colour

and the process of pigment granules formation. Changes were described in other holometabo-

lous insects [23,50]. So far, there are only two reports describing spontaneous eye colour muta-

tion in the holometabolous insect (in the honey bee Apis melifera), which affects the structure

of the ommatidia; the limao mutant (yellow eyes) [50] Chartreuse red (reddish-brown eyes)

mutant, and laranja (orange eyes) mutant [57]. The analysis of the eye structure in D. melano-
gaster eye-color mutants (white, scarlet, vermilion, brown) did not show changes in the omma-

tidia arrangement or ultrastructure [24,58,59]. There are reports about D. melanogaster retina

degeneration due to the effect of constant light exposure [60–63]. Described modifications

became aggravated with age. Our study showed that the mutant strains of crickets have no pro-

found changes in the eye structure. Only the presence of numerous big white vacuoles (pre-

sumptive autophagosomes) in the white eyes might indicate some differences; probably a

massive autophagy process within the cells [57]. Simultaneously there are some big white

spaces between ommatidia, probably lacunae, like in Drosophila white mutant eyes [60]. These

lacunae may represent the first signs of retinal degeneration. It can suggest some ommatidia

degradation processes. In light of these observations it will be necessary to analyse the imago

eye structure during ageing to determine the dynamic of the potential changes with time.

Cricket mutants from our breeding room had constant access to shelter so they can behaviou-

rally regulate light exposure. It would be interesting to check if this factor can increase eye

degeneration in crickets.

Fig 7. Mean absorbency (±SD) for pteridines at 280 nm (A), ommochromes at 280 nm (B) and 400 nm (C).

ANOVA test, p<0.05. Different letters indicate statistically different groups.

https://doi.org/10.1371/journal.pone.0216281.g007

Fig 8. Spectrofluorometry of ommochromes (A) and pteridines (B). Differences in the fluorescence of pigments isolated from the eyes of black-, yellow-

and white- eye mutant strains of house crickets.

https://doi.org/10.1371/journal.pone.0216281.g008
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In the light of the discussed results, the presented mutants can be a source of new informa-

tion about genes, proteins and processes related to the development and function of the com-

pound eye in insects. They may also help to link the role of granules and their pigments to the

development and metabolism of the eye, as this aspect is generally overlooked. It will also

allow assessing the influence of the composition of the pigments on physiology and percep-

tions in eye colour mutants.

Eye pigments

There is a general belief that the colour of insect eyes is mainly determined by the type of

ommochromes [64–66]. However, many studies indicate that eye pigmentation is a cumulative

effect of the interplay between various ommochrome and pteridine pigments [4,41,67]. We

show here that the wild-type eye contains both types of pigments. We also show that the white

eye mutants have reduced amounts of pteridines and ommochromes in comparison to the

wild-type. Consistent with lower pigment levels in the mutants, there is a reduction in the

number of pigment granules in the yellow eye strain, and a complete absence of granules in

the white eye strain. However, it is still unknown if the lower amount of pigments leads to a

reduced number of pigment granules or vice versa.

All three methods of analysis applied here showed that the content and composition of the

ommochromes differs between cricket strains. There is a significant difference in the quantity

of eye pigments and the identity of pteridines and ommochrome pigments. Especially, the lack

of brown pigments, i.e. xanthomatin, which give the cricket eyes a distinctive dark brown col-

our, seems important [68]. The yellow eye phenotype results from the lack of xanthommatin,

which masks yellow pigment (xanthopterin) in the wild type eye. In the white eye all the colour

pigments (in visible light) are absent. What is interesting is the effect of much higher fluores-

cence of pteridines extracted from the yellow mutant eye than that of the black strain (Fig 8B)

the same as bigger areas of some spots on TLC plates (Table 3). The described effect is espe-

cially strong in pteridines from both mutants strains. This result can be interpreted as physio-

logical adaptation. Probably the absence of the brown pigments in the yellow eye caused more

intense synthesis of pteridines to protect eyes against light. The second possible explanation is

an accumulation of intermediate pigments as the effect of the enzyme mutation. There is no

information about similar effects in literature. This, together with the lack of pteridine pig-

ments, suggest the relationship of the mutated gene with both synthesis pathways of ommo-

chromes and pteridines at the substrate level [24,35].

The results regarding the content of pigments obtained using the described methods indi-

cate their unevenness with respect to each other. In several articles, the quantitative analysis of

the content of pigments in extracts is carried out using only spectrophotometry [52,69]. Our

results obtained from pteridine samples clearly indicate differences between methods, espe-

cially in the comparisons between the strains. In the case of the yellow strain, the accumulation

of pigments can be seen in fluorometry, while similar results cannot be obtained using spectro-

photometry (absorbance). Similarly, for the white strain, fluorometry shows a much lower

content of pigments than spectrophotometry. Therefore, we believe that to compare the con-

tent of fluorescent pigments in extracts, spectrofluorometry or TLC is more suitable than spec-

trophotometry. We also believe that for a more complete picture, at least two out of three

methods should be used in such analyses. It also seems crucial to measure the whole fluorimet-

ric spectra and not only report the single peak values, which gives a fuller picture of the sample

pigment composition [15,17].

There is a considerable number of genes and proteins related to the eye pigments synthesis

pathways. The three main genes associated with the changes in eye colour, localised in the fruit
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fly genome, are white, brown and cardinal. Proteins encoded by the white gene form a trans-

porter complex with the proteins encoded by the other two genes, respectively for the trypto-

phan and guanine metabolites [5]. However, current knowledge in this area points to

numerous genes associated with these pathways, the mutation of which can lead to colour

changes in the insects‘eyes. It is difficult to precisely place the eye colour mutation within

those pathways. Moreover, due to the evolutionary divergence of homo- and holometabolous

insects, there are unquestionably significant differences in their ontogenesis and physiology.

The comparison of the mRNA sequence of selected genes, such as white, brown, vermilion, cin-
nabar, cardinal, scarlet from Gryllus bimaculatus (Asgard http://asgard.rc.fas.harvard.edu date

of access: 08.02.2018) and D. melanogaster revealed a low sequence similarity between these

orthologues. This suggests a low degree of similarity in eye pigments profiles between holo—

and hemimetabolous insects.

D. melanogaster is a model insect whose genes, enzymes and molecules involved in the eye

colour phenotype are well known. Much less is known about eye-colour mutants in other than

fruit fly insects. Even less is known about the relationship of tryptophan and guanine metabo-

lism pathways and their intermediate metabolites with insect physiology and behaviour

[10,66,70–72]. The available data show that insects with disrupted tryptophan pathway, thus

visual mutants, may be models for mammalian diseases and pathophysiology such as autism,

diabetes, Parkinson’s, and Alzheimer’s diseases [1]. Compounds like kynurenine or biopterin

are involved in pathophysiological processes [73–75]. Thanks to these and similar discoveries,

a cricket may become a useful model used in future genetic and physiological research.

Because of its relatively large size and hemimetabolous type of development, the cricket may

become an informative alternative to the fruit fly model [45].
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