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Abstract: Concretes with engineered thermal expansion coefficients, capable of avoiding failure or
irreversible destruction of structures or devices, are important for civil engineering applications,
such as dams, bridges, and buildings. In natural materials, thermal expansion usually cannot be easily
regulated and an extremely low thermal expansion coefficient (TEC) is still uncommon. Here we
propose a novel cementitious composite, doped with ZrW2O8, showing a wide range of tunable
thermal expansion coefficients, from 8.65 × 10−6 ◦C−1 to 2.48 × 10−6 ◦C−1. Macro-scale experiments
are implemented to quantify the evolution of the thermal expansion coefficients, compressive and
flexural strength over a wide range of temperature. Scanning Electron Microscope (SEM) imaging
was conducted to quantify the specimens’ microstructural characteristics including pores ratio and
size. It is shown that the TEC of the proposed composites depends on the proportion of ZrW2O8

and the ambient curing temperature. Macro-scale experimental results and microstructures have
a good agreement. The TEC and strength gradually decrease as ZrW2O8 increases from 0% to
20%, subsequently fluctuates until 60%. The findings reported here provide a new routine to design
cementitious composites with tunable thermal expansion for a wide range of engineering applications.

Keywords: ZrW2O8; cementitious composites; low thermal expansion

1. Introduction

Cementitious Composites (CCs) are facile, economical structural materials, which are most
widely applied in civil engineering [1]. But CCs have such innate shortcomings as brittleness, poor
tensile strength, and poor thermal conductivity. In order to enhance structural integrity, researchers
and engineers have usually focused on tuning their stiffness, strength, fracture toughness [2],
self-healing capability [3,4], ductility [5,6], hydration [7,8] and shrinkage [9,10] through filling
the cement matrix with micro-/nano- fibers [11], graphene [12,13], carbon nanotubes [14–17],
silica fume [18,19], magnesium oxide (MgO) [20,21], plasticizer [22,23], hardening accelerator [24],
and fly ash [25,26]. Among various loading conditions that often occur in concrete structures,
the thermal load is a ubiquitous one, especially in massive concrete structures, causing thermal
cracks or fractures, which are always the severest challenge for integrity and perfection of concrete
structures. Thermal-induced cracks are often found in massive structures, for example, dams,
bridges and buildings like China Three Gorges Dam, the Cathedral of Our Lady of the Angels
in California, USA, and Oddesund bridge in Denmark [1]. Until now, the problem of how to improve
concrete’s capability of resisting thermal load has not been effectively solved. Conventional approaches
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include enhancing concrete’s strength and lessening thermal stress. Enhancing concrete strength is
implemented by increasing the quantity of cement per cubic meter, which usually accompanies
increasing the Young’s modulus of the concrete and hydration heat of the concrete and causes easier
failure due to temperature amplitude. Lessening thermal stress is realized via controlling the initial
temperature of concrete, hydration heat by low-heat substitution of cement, embedded cooling pipes
and slicing unity into sections, which scarifies the unity of massive concrete structure and simultanously
results in higher costs and a longer construction process [27,28], since concrete is a poor conductor of
heat. The application of 3D (three dimensional) printing technology in concrete fabrication [29–31],
due to rapid prototyping, from fluidic to well-hydrated in a short time, without a mold, can lead
to severer thermal stress and distortion in 3D-printed cementitious composites, analogous to the
cementitious mortar.

According to classical thermo-mechanical theory, the upper limit of thermal stress is given as
σ = Eα∆T, where E is the Young’s Modulus, α the thermal expansion coefficient (TEC), and ∆T
temperature increment. Therefore, reducing concrete’s TEC is an alternative and soluble approach
that might lessen thermal stress. Recently, many artificially synthesized materials with negative
thermal expansion (NTE) spring up, for instance, Zirconium tungstate (ZrW2O8) and zirconium
pyrovanadate (ZrV2O7) [32–35], which provide opportunities to decrease the TEC of synthesized
composites. Metallic [36,37], metallic oxide [38,39], asphalt mastic [33] or polymeric [40] composites
have realized the NTE effect by mixed with ZrW2O8. Therefore, compared with conventional
approaches, tuning TEC via doping with ZrW2O8 makes CCs insensitive to temperature variation to
avoid cracks and ensure structural integrity without such side effects as extra elastic modulus increase,
extra hydration heat, and extra costs. ZrW2O8 as filler in cement matrix was preliminarily explored
in random synthesis [41]. But the feasibility of applying ZrW2O8 cementitious composites (ZCCs)
in concrete is determined by their strength, stiffness, and toughness. Whether the NTE property of
ZrW2O8 functions in the concrete structures’ service environment is also rarely evaluated in prior
research. Additionally, no one underscores the TEC of the concrete to lessen thermal stress.

Here, inspired by NTE synthesized composites, we present a new type of cementitious composite
with tunable low thermal expansion, by mixing them with differently proportional ZrW2O8. To assess
their feasibility in engineering applications, the macro-scale thermo-mechanical experiments are
performed to measure their TEC, compressive strength and flexural strength. The dependence of low
thermal expansion and flexural and compressive strength on ZrW2O8’s percentage is also investigated
by comparing the experimental results. Subsequently, the Scanning Electron Microscope (SEM)
imaging is conducted to observe samples’ microstructures including pore ratio and sizes, and to reveal
the thermal deformation mechanism in the micro-scale. The feasibility and applicability of ZCCs in
engineering applications are also discussed to ascertain the necessity of further researches on ZCCs.

2. Materials and Testing Methods

2.1. Materials

Standard cement mortars with 40 mm × 40 mm × 160 mm, mixed with different proportions
of ZrW2O8 were made according to Method of testing cement- Determination of strength (GB-T
17671-1999) [42]. Experiments were conducted to test the coefficient of thermal expansion and
the compressive and flexural strength. To explore ZrW2O8’s contribution to reducing the TEC of
cementitious composites, seven groups of specimens were designed by the weight of ZrW2O8 with the
weight ZrW2O8/Cement Ratio (Z/C) = 0%, 10%, 20%, 30%, 40%, 50%, and 60%, whereas per group
compromises three same specimens.

Ordinary Portland cement P.O42.5 (SanXia brand) used in this experiment as shown in Figure 1a
consists of such chemical compositions as 3CaO·SiO2 (C3S), 2 CaO·SiO2 (C3S), 3CaO·Al2O3 (C3A) and
4CaO·Al2O3·Fe2O3 (C4AF), ranging 48%, 26%,11%, and 16%, respectively. Chinese ISO standard sand
is adopted, whose grain size ranges from 0.08 mm to 2 mm. ZrW2O8, provided by Tiegao international
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trade limited company of Shanghai as shown in Figure 1a, is a gray powder composed of angular
particles typically in the size range from 4 µm to 7 µm. Drinking water is used to stir smooth.
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Figure 1. Fabrication of cementitious composites including synthesis, molding, hydration, solidification,
and maintenance. (a) ZrW2O8 and cement are the main ingredients of cementitious composites;
(b) The stirrer is used to blend uniformly all the ingredients; (c) The vibrator is employed to exclude
pores inside and densify composites; (d) Specimens are placed, hydrate and solidify in a water-bathing
maintenance environment.

2.2. Fabrication of Specimens

Fabrication of specimens includes such main stages as synthesis, molding, hydration,
solidification, and maintenance, as shown in Figure 1b–d. The composites consist of the cement,
standard sand, water, and different proportions of ZrW2O8 as shown in Table 1. In the first stage,
in order to evenly disperse ingredients, the synthesis has to obey the following procedures: the water,
the cement and ZrW2O8 are poured first into the pot of the planet-like stirrer (Figure 1b) ready to be
stirred for 30 s at a low speed. After that, standard sand is mixed into the composites with the high
speed of stirring 30 s. Before completing the synthesis, the stirrer pauses for 90 s and then keeps going
for 60 s. To avoid over-vibration or less-vibration of the mortar specimens, time deviation every step
should be controlled less than one second.

Later, the composites are cast into 40 mm × 40 mm × 160 mm molds. To make specimens denser,
the three linked molds with fluidic specimens should be vibrated on the specific machine as shown
in Figure 1c. After totally compacted, the specimens are maintained in the constant temperature and
moisture environment of 20 ◦C and 80%. This stage lasts for 24 h until specimens are removed from
the molds. Eventually, they are placed in a water-bathing environment to hydrate and solidify for
28 days as shown in Figure 1d.
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Table 1. Mix design.

No. ZrW2O8/Cement (%) Cement/(g) Sand/(g) Water/(mL) ZrW2O8/(g)

1 0 450 1350 225 0
2 10 450 1350 225 45
3 20 450 1350 225 90
4 30 450 1350 225 135
5 40 450 1350 225 180
6 50 450 1350 225 225
7 60 450 1350 225 270

2.3. Testing

To clarify ZrW2O8’s role on the improvement of thermo-mechanical properties, the TEC,
compressive strength, and flexural strength of differently proportional ZrW2O8 specimens was
investigated in sequence. All the specimens experienced same maintaining and thermally and
mechanically loading process. All the specimens’ fabrication and the testing methods abide by
Method of testing cements-Determination of strength (GB-T 17671-1999).

2.3.1. Testing the thermal expansion coefficient (TEC)

The TEC of specimens is measured by a strain meter (DH3815, Donghua Co., Ltd., Taizhou, China,
Figure 2a) within a glass-window thermal oven with a controlled temperature as shown in Figure 2b.
The temperature was gradually increased from room temperature (20 ◦C) to 120 ◦C and held for 30 min
for each step to achieve a homogenous temperature distribution. Two strain gauges pasted by epoxy
glue on literally opposite surfaces on the specific specimen are used to capture the thermal strains with
the temperature increase. To ensure the strain gauges to represent the real thermal strain of specimens,
we employ an extra constant strain gauge as the compensation, paste tightly two measured gauges
connected to the strain meter, and take the average value of both. Before performing thermal load,
we need to dry specimens more than 24 h and calibrate strain gauges. During the testing process,
we read the strain value after calm indication on the meter.
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Figure 2. Experiments of thermal strain, compressive and flexural strength testing. (a) The strain
meter aims to capture the thermal strain during the heating process; (b) The thermal load is realized
by increasing the temperature in the oven; (c) The compressive testing machine; and (d) the flexural
testing machine are applied to test the strength of specimens.
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2.3.2. Flexural Strength Determination

The flexural strength is tested by double-lever electric testing machine (KZJ-5, Xidong CO., Ltd.,
Wuxi, China) as tri-point bending style as shown in Figure 2c. The machine loads as the velocity of
50 N/s on the specimen and records the force, Ff, at the moment the specimen is destroyed. The flexural

strength is given by [σ] f =
1.5Ff L

b3 , where L is the distance between the supports, and b the width of
cross section area.

2.3.3. Compressive Strength Testing

After flexural strength determination, every specimen is split into two halves, which are
continuously used as samples to test the compressive strength on the testing machine (YAW-300,
Zhongke Co., Ltd., Wuxi, China) as shown in Figure 2d. The machine loads at the velocity of 2.4 KN/s
until the sample is destroyed.

2.4. Scanning Electron Microscope (SEM) Imaging

After performing macro-scale mechanical testing, the SEM imaging is conducted to observe
specimens’ pores ratio and size via SEM instrument (JSM-7500SEM, JEOL, Tokyo, Japan) and Analysis
Software (Image Pro-Plus, Media Cybernetics, Inc., Rockville, MD, USA). We take some minor pieces
of fragments from destroyed cross area on the specimens as imaging samples.

2.5. Theoretical Prediction of TEC

We adopt weighted average method in elastic modulus to prediction the TEC of ZCCs.
The theoretical model is conducted as

α =
αpEpVp + αsEsVs + αgEgVg

EpVp + EsVs + EgVg
(1)

where αp, αs, αg are the TECs of cement stone, sand and ZrW2O8, respectively, and Ep, Es, Eg the elastic
modulus of cement stone, sand and ZrW2O8, and Vp, Vs, Vg the volume fraction of cement stone, sand
and ZrW2O8. Here Vp + Vs + Vg = 1. The TEC of cement stone is 15–20 × 10−6 ◦C−1, TEC of sand
12 × 10−6 ◦C−1, and TEC of ZrW2O8 −8.7 × 10−6 ◦C−1.

3. Results and Discussion

3.1. Macro-Thermo-Mechanical Properties

Figure 3 reports the changes of thermal strains with the increase of temperature from room
temperature (20 ◦C) to 120 ◦C among different proportional ZrW2O8 cementitious composite specimens.
Figure 4 shows the evolutions of TEC, flexural strength, compressive strength and compression/flexure
ratio with the increase of ZrW2O8. The standard cement mortar’s compressive strength at 28 d age is
28 MPa, flexural strength is 7.8 MPa, which indicates that the experiments are reliable. According to
theoretical prediction mentioned above, we calculated the TEC of 0% ZCC, α0% = 8.93 × 10−6 ◦C−1,
and the TEC of 30% ZCC α30% = 4.08 × 10−6 ◦C−1, which is close to the experimental results and
further verifies the reliability of our experiments.

Comparing thermal strains in Figure 3a–i, we observe that in general, as the proportion of ZrW2O8

increases, the maximum thermal strain gradually falls from approximately 800 to 300 × 10−6, which is
62.5% of non-ZrW2O8 CCs. But, at a relatively low level of temperature increment, less than 80 ◦C, thermal
responses of all ZrW2O8 cementitious composites remain steady. When temperature moderately rises to
80 ◦C or higher, the thermal strains of all the specimens climb considerably high values, which vary with
the percentage of ZrW2O8. It manifests that sand and ZrW2O8 play the same roles in influencing the TEC
of the composite when the ambient temperature is less than 80 ◦C. After that, when ambient temperature
is larger than 80 ◦C, the negative thermal expansion (NTE) property of ZrW2O8 takes effect, pulling back
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positive thermal expansion from the sand. Hence, the TEC of ZCCs is a function of ambient temperature
rather than a constant value. In overall, the TEC of ZCCs reduces 65% with ZrW2O8 increase, compared
with non-ZrW2O8 CCs. However, in civil engineering applications, such as dams, bridges, buildings and so
on, most service environments or thermal loads are lower than 80 ◦C, which indicates that ZCC is a possible
candidate for reducing thermal stress or distortion.
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Figure 3. The thermal response of different proportional ZrW2O8 cementitious composites specimens
with Z/C = (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, and (f) 60%. (The titles in the legends in Figure 3
mean “ZrW2O8/Cement in weight—the number of the specimens with the same mix design”).

Furthermore, the strength of the NTE materials is crucial for potential applications. To study
the mechanical properties, especially the strength of the proposed composites, uniaxial compression
and 3-point flexure are carried out according to the standard testing method. The evolution of TECs,
flexural and compressive strength, as well as compression/flexure ratio with ZrW2O8’s proportion
increase in Figure 4, show that the TEC and strength gradually decrease as ZrW2O8 increases from
0% to 20%, and subsequently fluctuates until 60%. ZrW2O8 used in our experiment is a gray powder
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composed of angular particles typically in the size range from 4 to 7 µm, while Chinese ISO standard
sand adopted ranges from 80 µm to 2000 µm in grain size. Mixture of sand and cement causes capillary
cavities or voids between grains and cement particles. And ZrW2O8 powder will likely fill capillary
cavities or voids when it is doped. That is why the ratios and sizes of porosities decrease with increase
of ZrW2O8. In general, the strength of cement mortar decreases with the increase of percentage of
small-size particles, because small particles cause weaker binding in hydrated mixtures.
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Figure 4. The change of (a) thermal expansion coefficient (TEC), (b) flexural strength, (c) compressive
strength and (d) compression/flexure ratio with the increase of ZrW2O8 proportions.

3.2. SEM Analysis

In order to validate further macro-scale thermo-mechanical properties of ZCCs, the SEM imaging
is conducted to amplify 500 times the surface of fragments of specimens, which is produced from
flexural testing. SEM images of ZCCs of different percentages from 0% to 60% are listed in Figure 5a–g.

Comparison on ratios and sizes of pores imaged in those specimens as shown in Figure 5a–h
implies that the greater the proportion of ZrW2O8 is, the lower the porous rate and size are. In regard to
grain diameter of aggregates, the ISO sand is within 80–2000 µm, while ZrW2O8 is 4–7 µm. This is why
4–12 µm porous holes scatter in the section of pure cementitious composites, while fewer and smaller
capillary voids occur in ZCCs regardless of the proportions. Actually, the ZrW2O8, as a type of filler,
fills in the gaps of sand aggregates. When thermal load is exerted on the ZCCs or pure cementitious
composite, ZrW2O8’s negative thermal expansion takes effect by virtue of C–S–H binding. Therefore,
the existence of ZrW2O8 induces in ZCCs the reduction of the thermal expansion coefficient, however,
as the proportion of ZrW2O8 rises, the TEC does not continuously decrease but fluctuates especially
at 40%–60%. As for compressive and flexural strength, because ZrW2O8 only fills in 4–12 µm pore
holes (nevertheless, loads are usually borne by more than 80 µm bonded sand aggregates), the mixed
ZrW2O8 does not sharply shorten ZCCs’ strength, but keep stable on a 60%–70% strength of pure
cementitious composite as the proportion increase until 60%. In a word, microstructures of ZCCs
further confirm rationality of macro-scale mechanical testing.
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Figure 5. Scanning Electron Microscope (SEM) images of ZrW2O8 cementitious composites (ZCCs) of
such percentages as 0% (a), 10% (b), 20% (c), 30% (d), 40% (e), 50% (f) and 60% (g), the size and ratio of
the porosity of the ZCCs specimens in the SEM images (h). The ratios and sizes of porosities among
those specimens decrease with the increase of ZrW2O8’s proportions.
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4. Conclusions

In summary, to achieve cementitious composites insensitive to temperature variation, in order to
avoid cracks and ensure structural integrity without such side effects as extra elastic modulus increase,
extra hydration heat, and extra costs, we have demonstrated an approach to create ZrW2O8 cementitious
composites with tunable thermal expansion coefficient ranging from 8.65 × 10−6 ◦C−1 to 2.48 × 10−6 ◦C−1.
Through systematic macro-scale experiments on thermal expansion coefficient, compressive strength,
and flexural strength, we have shown simultaneously that the thermal expansion coefficient of the
cementitious composites can be tuned by varying the percentage of ZrW2O8 and the cementitious
composites possess the effective strength to endure considerable loads. In particular, negative thermal
expansion property of ZrW2O8 only plays a vatal role on compensating the positive thermal expansion when
the ambient temperature is more than 80 ◦C. SEM imaging indicates that approximate 10 µm pores scatter in
pure cementitious composites (0%), while fewer occur in 10–60% ZCCs, which further verify the macro-scale
mechanical experimental results. The results presented here not only demonstrate the development of a new
type of engineering cementitious composites with tunable thermal expansion but also offer a wide range
of potential applications in civil engineering structures, where thermal stress induced cracks are of great
concern in structural design. The findings provide us opportunities to extend the studies on ZCCs with
longer curing ages, and from cementitious mortar (without coarse aggregate) on the small specimens to the
concrete on the large specimens, to see how the materials developed can reduce thermal stress and maintain
the structural integrity under extreme environmental conditions or 3D printing processes. Future work
will be directed toward the real-world engineering applications of the newly developed cementitious
composites. Importantly, for the measurement of TEC and thermal field in engineering structures, we will
use the distributed optical fiber senor system. In addition, finite element-based computational models
will be developed to predict the temperature field and thermal stress field. Collectively, the testing and
computational modeling will provide us a better understanding on the effectiveness of the new developed
cementitious composites in various engineering applications.
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Nomenclature and Acronym

ZrW2O8 Zirconium tungstate
TEC Thermal expansion coefficient
SEM Scanning Electron Microscope
CCs Cementitious Composites
MgO Magnesium oxide
3D Three dimensional
σ Thermal stress
E Young’s Modulus
α TEC (Thermal expansion coefficient)
∆T Temperature increment
NTE Negative thermal expansion
ZrV2O7 Zirconium pyrovanadate
ZCCs ZrW2O8 cementitious composites
Z/C ZrW2O8/Cement Ratio
Ff Force while the specimen is destroyed in the flexural test
[σ]f Flexural strength
L Distance between the supports in three-point flexural test
b Width of cross section area.
αp, αs, αg TECs of cement stone, sand and ZrW2O8, respectively
Ep, Es, Eg Elastic modulus of cement stone, sand and ZrW2O8

Vp, Vs, Vg Volume fraction of cement stone, sand and ZrW2O8
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