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INTRODUCTION 
 

Sarcomas, a broad family of mesenchymal 

malignancies, exhibit remarkable histologic diversity 

[1]. Soft tissue sarcomas are malignancies caused by 

extra-skeletal connective tissue (including the 

peripheral nervous system) and consist of more than 80 

pathological types [2]. Sarcomas are rare; an estimated 

13,130 sarcomas are diagnosed each year in the United 

States, accounting for approximately 1% of 1,806,590 

new malignancies [3]. Many are highly aggressive and 

account for a high proportion of cancer mortality in 

young adults (in SEER data, seer.cancer.gov). Soft 

tissue sarcomas occur with great frequency in patients 

with specific mutations, such as the APC mutation and 

TP53 mutation [1, 4, 5].  

The tumor microenvironment (TME) is composed of 

various cell types (e.g., endothelial cells, fibroblasts and 

immune cells) and extracellular components (e.g., 

extracellular matrix, cytokines and growth factors) [6]. In 

the TME, immune cells and stromal cells are the two main 

types of non-tumor components and are indicated to be of 

great significance in the prognosis evaluation [7, 8]. A 

previous study reported that immune surveillance may 

play an important role in the progression of sarcomas [9]. 

The response rates were less than 20% with either 

pembrolizumab monotherapy or with combination 

ipilimumab/nivolumab therapy [10, 11]. However, 

effective responses to immune checkpoint blockade 
therapy have been observed in specific subtypes, 

including high-grade undifferentiated pleomorphic 

sarcomas, clear cell sarcomas and dedifferentiated 
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liposarcomas [10–13]. Different immune characteristics 

may have a significant impact on efficacy. Therefore, it is 

urgent to explore the features of sarcoma immune 

microenvironment cells and immune checkpoints, which 

may provide potential prognostic factors and treatment 

targets for clinical therapy.  

 

Immune microenvironment-related bioinformatic 

algorithms have been applied to cervical cancer [14], 

breast cancer [15], and gliomas [16], showing the 

effectiveness of the algorithms [17]. However, the 

practicality of immune scores for addressing sarcomas 

has not been studied. ESTIMATE (Estimation of 

STromal and Immune cells in MAlignant Tumor tissues 

using Expression data), an algorithm to calculate 

immune and stromal scores, predicts the infiltration of 

non-cancer components [18]. The Cancer Genome Atlas 

sarcoma (TCGA SARC) database is available to 

understand potential correlations between gene set 

profiles and overall survival from malignancies [19]. To 

better understand the proportions of immune cells in the 

TME, we used CIBERSORT (Cell type Identification 

By Estimating Relative Subsets Of RNA Transcripts) 

deconvolution software and ssGSEA (single sample 

Gene Set Enrichment Analysis) to determine the 

relative proportions of several distinct leukocyte cell 

types in sarcomas from microarray gene expression data 

of sarcoma patients [20, 21].  

 

Thus, we first obtained a list of genes that predict good 

outcomes in sarcoma patients by making use of the 

ESTIMATE, CIBERSORT and ssGSEA algorithms. 

Finally, we validated these genes in an independent 

sarcoma cohort from the Gene Expression Omnibus 

(GEO) dataset GSE17679.  

 

RESULTS 
 

Immune scores and stromal scores of sarcoma 

subtypes 

 

The gene expression profiles and clinical information of 

all 254 sarcoma patients with an initial pathologic 

diagnosis and their overall survival were downloaded 

from the database of TCGA. All sarcoma cases with 

complete gene expression data and clinical information 

in TCGA were included in our analysis. Among all 

cases, the pathological diagnoses included 58 (22.8%) 

cases of dedifferentiated liposarcoma (DDLPS), 103 

(40.6%) cases of leiomyosarcoma (LMS), 25 (9.8%) 

cases of myxofibrosarcoma (MFS), 9 (3.5%) cases of 

malignant peripheral nerve sheath tumor (MPNST), 10 

(3.9%) cases of synovial sarcoma (SS) and 49 (19.3%) 

cases of undifferentiated pleomorphic sarcoma (UPS). 

According to the ESTIMATE algorithm, the average 

immune scores of the UPS cases were ranked highest 

among all six pathological subtypes, followed by those 

of MFS, DDLPS, MPNST and LMS. The SS cases had 

the lowest immune scores (Figure 1A, P<0.001, one-

way ANOVA). Meanwhile, the stromal scores of 

DDLPS, MFS and UPS were ranked the highest among 

all subtypes, followed by MPNST and LMS. The 

stromal scores of SS cases were also the lowest (Figure 

1B, P<0.001, one-way ANOVA). These results showed 

the patterns of microenvironmental variance across 

these pathological subtypes. 

 

Based on the TCGA somatic mutation database, TP53, 

TTN, ATRX, MUC16, RB1 and MUC4 make up the 

highest frequency of somatic mutations in sarcomas 

(Figure 1C). We explored the relationship between the 

mutations of these genes and the immune scores and 

found that the mutation status was not correlated  

with immune scores (Figure 1D–1I, Student's t test), 

indicating that the main type of mutation in sarcoma 

might not cause specific changes in immune infiltration. 

 

To examine the correlations between overall survival 

and immune scores or stromal scores, we divided the 

cases into two halves (high scores and low scores). A 

Kaplan-Meier survival curve showed that the survival 

time of the high-immune-score group was longer than 

that of the low-score group (Figure 1J, P=0.001). 

Consistently, patients in the low-stromal-score group 

were significantly worse off in their overall survival 

times compared to the high-score group (Figure 1K, 

P=0.035).  

 

Gene expression profiles of immune/stromal scores 

in sarcomas 

 

To reveal the differential gene expressions in the immune 

score/stromal scores, we compared the RNA-seq data of 

254 sarcoma patients obtained from the database of 

TCGA. The differentially expressed genes (DEGs) in the 

immune/stromal groups with high or low scores have 

different characteristics. In terms of the immune-score 

groups, 1,396 genes were upregulated and 949 genes were 

downregulated in the high-score group compared with the 

low-score group (fold change>2, P<0.05). Similarly, for 

the stromal-score groups, the high-score group had 1,533 

upregulated genes and 969 downregulated genes (fold 

change>2, P<0.05) compared with the low-score group. 

Figure 2A, 2B plots the heatmap of the top 100 DEGs 

with high or low scores. In addition, the CIBERSORT 

deconvolution algorithm was used to calculate the 

proportions of 22 types of immune cells in sarcoma 

samples (Figure 2C and Supplementary Figure 1A). The 

type 2 macrophages in sarcomas made up the largest 
composition of all immune cells in the TME of sarcomas 

(except synovial sarcoma). The results indicate a 

suppressive TME in sarcomas. 
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To further reveal the biological processes, cellular 

components and molecular functions of the DEGs, we 

performed a functional enrichment analysis of the genes 

that were upregulated in the high-immune-score group 

that fold change>3. The top gene ontology (GO) terms 

identified included immune (including innate and 

adaptive) response, plasma membrane and chemokine 

activities. (Figure 2D–2F). 

Genes for survival prediction in sarcomas  

 

To explore the potential roles of individual immune-

related DEGs on the overall survival of sarcoma 

patients, we used univariate Cox regression analyses 

and Kaplan-Meier survival curves. Among the DEGs 

upregulated in the high-immune-score group, a total of 

528 DEGs were significantly related to good overall 

 

 
 

Figure 1. Immune/stromal scores of different sarcoma subtypes and survival. (A, B) Immune scores and stromal scores for different 
sarcoma subtypes. One-way ANOVA was applied. (C) Top 10 somatic mutation of TCGA sarcoma cohort. (D–I) Distribution of immune scores 
for TP53, TTN, ATRX, MUC16, RB1 and MUC4 mutant/wildtype sarcoma cases. Student's t test was applied. (J, K) The Kaplan-Meier survival 
curves of immune scores and stromal scores. Sarcoma cases were divided into high- and low-score groups based on the median. The sample 
number for each group was listed in brackets. Statistical significance was determined using the log-rank test. 
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survival, as determined by univariate Cox regression 

analysis. Functional enrichment analysis showed a 

strong association between these genes and the immune 

response as well. The top GO terms mainly included 

immune responses, plasma membrane, T cell receptor 

complex, chemokine activity and receptor binding 

(Figure 3A–3C, Supplementary Table 1). 

 

After performing log-rank tests in the TCGA SARC 

cohort and validating these good-prognosis-related 

genes with the GEO dataset GSE17679, we extracted 

information indicating that NR1H3, VAMP5, GIMAP2, 

GBP2, HLA-E and CRIP1 were highly expressed in the 

immune microenvironment and were most significantly 

associated with predicting good outcomes in sarcoma 

patients (Figure 3D–3I, Supplementary Figure 2). 

 

Protein-protein interactions among prognosis-

related genes  

 

To better understand the interplay among the identified 

DEGs, we obtained protein-protein interaction (PPI) 

 

 
 

Figure 2. Comparisons of differentially expressed genes (DEGs) with immune scores and stromal scores. (A, B) The 100 top 

differentially expressed genes of high- and low- immune scores and stromal scores. The cohort was divided into high- and low-score groups 
based on the median. (C) The proportion of immune cells estimated by the CIBERSORT algorithm with outputs in which P<0.05 in 119 
sarcoma samples. (D–F) Enrichment analysis of differentially expressed genes between groups with high and low immune scores. DDLPS: 
dedifferentiated liposarcoma, LMS: leiomyosarcoma, MFS: myxofibrosarcoma, MPNST: malignant peripheral nerve sheath tumor, SS: synovial 
sarcoma and UPS: undifferentiated pleomorphic sarcoma. 
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networks using the STRING tool. The networks were 

mainly made up of six modules, which included 514 

nodes and 1,635 edges.  

 

The top three significant modules were selected for 

further study. In the cell chemotaxis network (Figure 

4A), CCL13, CXCL9, C3, CCL5 and CXCL13 were the 

core nodes since they had the highest expressions. For 

the immune response network (Figure 4B), most nodes 

were correlated with the response to interferon-gamma, 

including ICAM1, HLA-B, HLA-F, and HLA-D family. 

For the leukocyte mediated immunity network (Figure 

4C), BTK, TYROBP, CTSS, CTSC and LYZ had 

higher degree values and were enriched in leukocyte 

degranulation and myeloid leukocyte activity. 

 

The prognostic model of immune checkpoint 

modulators in sarcomas 

 

In sarcoma patients, the efficacy of emerging immune 

checkpoint blockade therapies (such as PD1 inhibitors) 

has been linked to the expression of immune checkpoint 

signaling molecules and immune cell infiltration fractions 

[22]. We performed a univariate Cox regression analysis 

of 20 immunomodulators on six pathological subtypes of 

sarcoma patients. B2M and CD40 were associated with 

the good prognostic value among DDLPS patients 

(Figure 5A). ICOS, TIGIT, CD274, CD276, CD47, 

IDO1, CD27 and PDCD1LG2 predicted good outcomes 

for LMS (Figure 5B). No immunomodulators had 

prognostic value for MFS, MPNST and SS (Figure 5C–

5E). Moreover, LAG3, IDO1, TNFRSF14, PDCD1LG2, 

CD86, B2M, CD40 and HAVCR2 were associated with 

favorable outcomes in UPS patients (Figure 5F). 

 

The prognostic factors identified by univariate Cox 

analysis were further analyzed in a multivariate Cox 

model for LMS and UPS. The results indicated that 

CD276 was an independent risk factor (Figure 5G). 

According to the immune risk score, the immuno-

modulator model for LMS was established based on the 

combination of TIGIT, CD276, CD47 and IDO1 after

 

 
 

Figure 3. Genes for survival prediction among sarcoma patients. (A–C) Enrichment analysis of good survival-related genes among 
sarcoma patients. (D–I) The Kaplan-Meier survival curves for sarcoma patients further separated into the high and low expression groups 
based on the quartiles of the NR1H3, VAMP5, GIMAP2, GBP2, HLA-E and CRIP1 mRNA levels, separately.  
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the stepwise selection, and the prognosis index was 

calculated as follows: 

 

 
 

Figure 4. Network analysis results of the top 3 protein-
protein interaction networks for DEGs significantly 
associated with overall survival. (A–C) The cell chemotaxis 
network, immune response network and leukocyte 
mediated immunity network. The gradient color scale 

indicates the log value of expression fold change (log2 (FC)), and 
node sizes reflect the number of interactions identified for each 
protein. FC: fold change. 

Risk score = -0.3529 × expTIGIT + 4.4598 × expCD276 − 

3.0041 × expCD47 − 0.6090 × expIDO1 

 

where exp indicates the log2(mRNA expression). 

 

Similarly, a predictive model for UPS was also 

established according to the regression coefficients. The 

results indicated that IDO1 and CD40 could be 

independent risk factors (Figure 5J). The model had the 

power to calculate the prognostic risk score by the 

following formula: 

 

Risk score = -1.3995 × expIDO1 − 8.8754 × expCD40  

 

where exp indicates the log2(mRNA expression). 

 

Patients with a high-risk score in the immunomodulator 

model tended to have unfavorable outcomes. The 

Kaplan-Meier curves showed that a high-risk score was 

significantly associated with poor prognoses in LMS 

and UPS (Figure 5H, 5K). The area under the curve 

(AUC) values of the receiver operating characteristic 

(ROC) were 0.735 and 0.839, respectively, which 

indicated that these models had great value in 

estimating patient survival (Figure 5I, 5L).  

 

Prognostic value of infiltration immune cells in 

sarcoma 

 

To assess the predictive value of immune cells in the 

TME, we examined the relationship between overall 

survival and different immune cell distribution patterns. 

For each patient, the relative infiltration scores of the 28 

immune cell subpopulations were calculated using 

ssGSEA (Supplementary Figure 3). As shown in Figure 

6, Kaplan-Meier survival analyses showed that activated 

B cells, effector memory CD4+ T cells, effector memory 

CD8+ T cells, immature B cells, immature dendritic cells, 

mast cells, monocyte, natural killer cells, plasmacytoid 

dendritic cells, T follicular helper cells and Th1 cells 

were significantly associated with improved prognoses.  

 

DISCUSSION 
 

There is increasing awareness that sarcomas are one of 

the most challenging obstacles when trying to promote 

immune responses to cancer. The current understanding 

of the sarcoma TME is limited, but previous studies have 

demonstrated that sarcomas might be cold tumors and 

that suppressor cells, including tumor-associated 

macrophages and myeloid-derived suppressor cells 

(MDSC), constitute the immune infiltration rather than 

exhausted CD8+ T cells [23, 24]. Moreover, PD-L1 

expression is relatively low in sarcomas, and the 

mutation burden is also relatively low [19, 25]. To 

improve the therapeutic treatments for sarcomas, research 
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on immunomodulators and the infiltration of immune 

cells would be the appropriate future efforts. 

 

First, by comparing the DEGs in the two groups of 

samples with high and low immune scores, we found 

that the high-score group, with better prognoses, was 

enriched in immune-related pathways such as T cell 

costimulation, immune receptor binding, and antigen 

processing via MHC-I and cytokine activity. After 

performing validation in both TCGA dataset and GEO 

 

 
 

Figure 5. Immunomodulators significantly associated with prognosis in sarcoma. Forest plots of univariate Cox-regression analysis 

for 20 immunomodulators in the (A) DDLPS, (B) LMS, (C) MFS, (D) MPNST, (E) SS and (F) UPS. Forest plot of multivariate Cox analysis for the 
immunomodulators model in the (G) LMS and (J) UPS. The hazard ratio with 95% CI and P-values were illustrated in the figure (* p < 0.05, ** 
p < 0.01, *** p < 0.001). The immunomodulator model significantly predicts OS in (H) LMS and (K) UPS, and the high- and low- risk groups 
were divided based on the median. Receiver-operating characteristic (ROC) analysis of one-year survival prediction by the immunomodulator 
model in (I) LMS and (L) UPS. AUC: area under the curve, DDLPS: dedifferentiated liposarcoma, LMS: leiomyosarcoma, MFS: 
myxofibrosarcoma, MPNST: malignant peripheral nerve sheath tumor, SS: synovial sarcoma, UPS: undifferentiated pleomorphic sarcoma and 
HR: hazard ratio.  
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dataset GSE17679, we extracted a group of immune-

related genes, including NR1H3, VAMP5, GIMAP2, 

GBP2, HLA-E and CRIP1 that were most significant to 

predict good outcomes in sarcoma patients. These 

immune-related genes were rarely studied in tumors but 

has certain therapeutic value. NR1H3 promotes the 

monocyte to macrophage transition and prolongs the 

length of survival in nasopharyngeal carcinoma [26]. 

GTPases of Immunity-Associated Proteins (GIMAPs) 

are related to the regulation of apoptosis in lymphocytes 

[27]. Guanylate-binding proteins (GBPs) mediate a 

broad scope of innate immune functions in response to 

several pro-inflammatory cytokines [28]. Similarly, 

VAMP5, HLA-E and CRIP1 have been confirmed to be 

involved in immune regulation [29, 30]. Extracting the 

potential of these molecules in anti-tumor response 

seems to be necessary for future work. 

 

Besides, we extracted six protein-protein interaction 

modules, all of which are related to immune responses. 

MHC molecules present antigens for cells in the 

adaptive immune system, including cytotoxic CD8+ T 

cells. Loss or downregulation of class I MHC was 

observed in a large percentage of soft tissue sarcomas 

patients [31–33]. For sarcoma patients with low MHC-I 

expression, their overall survival and event-free survival 

significantly worsened compared with those in the high-

expression group [34]. Meanwhile, many cytokines 

have been employed for several sarcoma subtypes with 

intriguing results. Tumor necrosis factor α and 

melphalan (TNF-ILP) have benefited patients with 

locally advanced primary and recurrent extremity 

sarcoma in multimodal treatments [35]. Finding 

antigen-presenting molecules and cytokines related to 

favorable prognoses will help to design new clinical 

trials for sarcomas.  

 

We further assessed the prognostic value of 

immunomodulators in sarcomas. Immune checkpoint 

inhibition is an encouraging approach for immuno-

therapy, namely the removal of the "brakes" of the 

immune system [36]. Building on the limited clinical 

success of immune checkpoint agents for sarcomas, 

immunomodulators are expected to treat cancer 

effectively and durably [11, 37–40]. Tawbi et al. 

reported that in a single-arm phase II study of 

pembrolizumab among 40 patients with soft-tissue 

sarcoma, seven patients (18%) showed an objective

 

 
 

Figure 6. Correlations of immune cell scores and overall survival in sarcoma. (A–K) Infiltrating immune cells significantly associated 

with improved prognosis. The high- and low-score groups were divided based on the top 30% and the bottom 30% infiltrating scores 
calculated by ssGSEA algorithm, respectively) 
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response, including four of 10 patients (40%) with UPS, 

two of 10 patients (20%) with liposarcoma, and one of 

10 patients (10%) with SS [11]. The initial results of the 

CTLA-4 blockade ipilimumab and dasatinib study 

showed no response per the Response Evaluation 

Criteria in Solid Tumors (RECIST) or Immune-Related 

Response Criteria [39]. Thus, extracting new specific 

checkpoints has become necessary. The checkpoint 

molecules analyzed in this study represented immune 

response signals, including costimulatory, coinhibitory 

and situation-dependent signals. Two immune 

checkpoint modulators (e.g., B2M and CD40) were 

associated with good prognostic value for DDLPS, 

seven modulators (e.g., ICOS, TIGIT, CD274, CD276, 

CD47, IDO1, CD27 and PDCD1LG2) were identified 

as prognostic molecules for LMS, and eight modulators 

were significantly correlated with UPS outcomes in the 

univariate Cox regression model. In the immuno-

modulator risk score model, the combination of TIGIT, 

CD276, CD47 and IDO1 had a certain value in 

estimating survival of LMS patients, while IDO1 and 

CD40 had a higher predictive value for UPS, as 

indicated by the AUC. These immune response signals 

may be future targets in sarcoma treatment to further 

rev up or release the brakes of the immune system [41]. 

 

Finally, we evaluated the prognostic value of infiltrating 

immune cells in sarcoma. The results showed that 11 

kinds of highly infiltrating immune cells were 

predictors of longer overall survival, most of which 

have been confirmed in previous studies. After B cell 

activation by T helper cells initiates the humoral 

immune response to most protein antigens, T follicular 

helper (Tfh) cells provide signals to B cells, including 

cytokines and cell surface ligands, to direct isotype 

switching and activate germinal center formation, 

somatic hypermutation, and affinity maturation [42–44]. 

Tfh cells regulate humoral immunity and cell-mediated 

anti-tumor responses and improve overall survival [45, 

46]. Evaluating the functions of Tfh cells and exploring 

their interactions with B cells and T helper cells in 

sarcoma therefore represents a potential therapeutic 

strategy. Our results were in accordance with previous 

research, showing that Tfh cells, T helper cells and B 

cells infiltration predicts good prognoses in several 

cancers. 

 

In conclusion, this study revealed distinct immune 

infiltration patterns and indicated that immunomodulators 

are essential determinants of sarcoma prognoses. 

Moreover, we extracted a list of tumor microenvironment 

related genes that could be useful for outlining the 

prognoses of sarcoma patients. The number of cohorts 
included in the study was small. Larger scale sequencing 

data will be tested for future work. The evolution of this 

comprehensive investigation will lead to the elucidation of 

the immunological mechanisms that affect sarcoma 

progression and the development of immunotherapeutic 

sarcoma trials. 

 

MATERIALS AND METHODS 
 

Database and differentially expressed genes analysis 

 

The Level 3 RNA sequencing (RNAseq) data, somatic 

mutation data and clinical information of 254 sarcoma 

patients were downloaded from The Cancer Genome 

Atlas (TCGA) hub by the University of California, 

Santa Cruz, Xena browser (https://xenabrowser. 

net/datapages/). TCGA RNA sequencing data show the 

gene-level transcription estimates, as in log2(x + 1) 

transformed RSEM normalized counts. 64 cases from 

the Gene Expression Omnibus (GEO) database 

GSE17679 (https://www.ncbi.nlm.nih.gov/geo) were 

enrolled as a validation set. RNA expressions data for 

GSE17679 were using Affymetrix Human Genome 

U133 Plus 2.0 Array. The pan-cancer analysis was 

performed on the Gene Expression Profiling Interactive 

Analysis 2 (GEPIA2) webserver (http://gepia2.cancer-

pku.cn/), which integrated RNA expression and clinical 

data from 33 TCGA cohorts. Differentially expressed 

genes (DEGs) were obtained using the R package 

edgeR [47]. Fold change>2 and P<0.05 were set as the 

cut-offs to screen for DEGs.  

 

Immune infiltration algorithm 

 

To infer the fractions of stromal and immune cells in 

tumor samples, we applied the ESTIMATE algorithm to 

calculate the immune and stromal scores [18]. In 

addition, a deconvolution approach, the CIBERSORT 

algorithm [20], was introduced to estimate the fractions 

of 22 immune cell types. After 100 permutations of 

calculations, samples with outputs in which P<0.05 

were considered to be available for further analysis. 

Finally, the resulting CIBERSORT values were defined 

as the immune cell infiltration fractions of each sample. 

Moreover, ssGSEA [21] was used to quantify the 

relative infiltration scores of 28 immune cell types in 

the TME. Feature gene panels for each immune cell 

type were collected from a recent publication [48]. The 

enrichment score in ssGSEA represented the relative 

abundance of each immune cell type. 

 

Functional enrichment analysis and PPI network 

 

For functional analysis, gene ontology (GO) analyses 

were conducted via DAVID (The Database for 

Annotation, Visualization and Integrated Discovery) [49]. 

False discovery rates (FDR)<0.05 were considered 

significant. The protein-protein interaction (PPI) networks 

were retrieved from the STRING database [50]. 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
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The DEGs list was used for protein-protein interaction 

(PPI) analysis in Cytoscape (v3.7.1, National Resource 

for Network Biology, https://cytoscape.org/). Samples 

with outputs with interaction scores>0.9 were 

considered in further study. Only individual networks 

with 10 or more nodes were included for Molecular 

COmplex DEtection (MCODE), which could explore 

clusters based on subnetwork module analysis to find 

densely connected components. 

 

Statistical analysis 

 

The Kaplan–Meier survival curves with the log-rank test 

were used to estimate the correlation between DEGs or 

immune cell types and overall survival. The Mantel-Cox 

test was performed in the pan-cancer survival analysis for 

patients from 33 disease cohorts. Multivariate analyses 

applied stepwise selection and Cox proportional hazard 

regression model. Statistical analyses were performed 

using R version 3.6.0. For all tests, P<0.05 was 

considered to be statistically significant. 

 

Code availability 

 

R and other custom codes for analyzing data are 

available upon request to the authors. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Infiltration of immune cell subpopulations in sarcoma samples. (A) Stacked bar chart of immune cells 
estimated by the CIBERSORT algorithm in sarcomas samples. 

 

 



 

www.aging-us.com 2182 AGING 

 
 

Supplementary Figure 2. Validation of the DEG correlation extracted from the database of TCGA with overall survival in 
GSE17679. The Kaplan-Meier survival curves for sarcoma patients further separated into high and low expression groups based on the 
quartiles of NR1H3 (A), VAMP5 (B), GIMAP2 (C), GBP2 (D), HLA-E (E) and CRIP1 (F), separately. (G) Heatmap of the mRNA levels of prognosis-
related genes in dataset GSE17679. (H) The Mantel-Cox tests compare the survival contribution of NR1H3, VAMP5, GIMAP2, GBP2, HLA-E and 
CRIP1 mRNA levels (the top 30% and the bottom 30%, respectively) in patients from 33 cancer cohorts. The HR was restricted to the range 
−10 to 10 by replacing all values > 10 with 10 and all values < −10 with −10. HR: Hazard ratio. 

 

 
 

Supplementary Figure 3. Scores of immune cell subpopulations in sarcoma samples. Single-sample gene set enrichment analysis 
identified the relative infiltration of immune cell subpopulations for 254 sarcoma samples. The relative infiltration of each cell type was 
normalized by min-max normalization. 
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Supplementary Table 
 

 

 

 

 

Supplementary Table 1. Genes associated with good prognoses identified in TCGA. 

Interferon-γ-mediated 

signaling pathway 

CIITA, ICAM1, HLA-DQB2, HLA-A, HLA-C, OAS1, HLA-B, OAS2, HLA-E, TRIM22, HLA-

DQA2, HLA-F, B2M, OASL, CD44, IRF5, IFNG, IRF8, IRF1, HLA-DPA1, HLA-DPB1, 

GBP2, GBP1, HLA-DRA 

Antigen processing and 

presentation via MHC 

class II 

HLA-DQB2, HLA-DPA1, HLA-DPB1, HLA-DMA, HLA-DQA2, HLA-DOB, HLA-DRA 

Antigen processing and 

presentation via MHC 

class I 

TAP1, HLA-A, HLA-C, HLA-B, HLA-E, TAPBP, HLA-F, B2M 

Macrophage chemotaxis CCL2, LGALS3, CCL5 

Neutrophil chemotaxis CCL2, LGALS3, S100A9, CCL8, CCL5, VAV1, CCL18, CCL17, CCL22, CCL13, CCL23, 

IFNG, CSF3R, XCL1, XCL2, SYK 

Dendritic cell 

chemotaxis 

CCR7, CCR5, CCR2, CCL19, CCL5 

Positive regulation of T 

cell chemotaxis 

CCR2, TNFSF14, CCL5, XCL1 

B cell activation IKZF3, CXCR5, LAX1, ZAP70, CD79A, CD40, PRKCB, BTK 

 
 


