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Abstract

The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to
their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein
called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var
gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that
require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions
(HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they
share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a
uniformly random structure, but constraints on recombination will produce network communities that we identify using a
stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of
constrained recombination, before applying it to the Duffy Binding Like-a (DBLa) domain of var genes. We find nine HVRs
whose network communities map in distinctive ways to known DBLa classifications and clinical phenotypes. We show that
the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this
micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the
parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous
method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally
to any highly recombinant sequences.
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Introduction

The human malaria parasite Plasmodium falciparum causes

approximately 1 million deaths each year, primarily in young

children in sub-Saharan Africa [1]. In endemic regions, individ-

uals develop clinical immunity to severe disease in childhood, but

continue to suffer malaria infections and mild illness throughout

their lifetimes. This epidemiological pattern is poorly understood,

but appears to be caused by the gradual acquisition of a large

repertoire of antibodies following sequential exposure to different

parasite proteins [2–5]. The main candidate for eliciting protective

antibodies is the parasite-derived antigen PfEMP1 (P. falciparum

erythrocyte membrane protein 1), encoded in each parasite

genome by a large var gene family and expressed during infection

on the surface of infected red blood cells in a process of antigenic

variation [2,6–9]. Extremely rapid recombination among var genes

generates enormous diversity and complex mosaic structures

among these sequences [10–14], and recent field studies have

uncovered seemingly limitless var gene diversity in Africa [15].

Superinfection with multiple clones is extremely common, and

recombination can occur during meiosis in the mosquito, as well as

between var genes on different chromosomes of a single parasite

during asexual reproduction [14]. However, these observations are

at odds with the rapid acquisition of antibodies to common

PfEMP1 variants that are associated with disease [16], as well as

the finding that parasites from different continents share identical

sequence blocks despite millions of years of evolutionary separa-

tion [17].

The highly recombinant structure of var genes precludes the use

of standard phylogenetic tools, and the processes generating this

paradoxical relationship between parasite genetic structure and

the epidemiology of infection and disease remain unclear

[13,18,19]. Statistically rigorous and scalable techniques to

analyze evolutionary relationships between sequences generated

through frequent recombination are lacking. Classical phyloge-

netic analyses are designed to accommodate branching tree-like

relationships between genes generated by mutation, and therefore

require that highly recombinant regions, where evolutionarily

distant sequences may share mosaics, are removed, ignored, or

assumed to be absent [20–22]. Bockhorst et al. introduced an

approach to understanding the most conserved group of var genes

based on a segmentation analysis which divides a set of sequences
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into segments such that polymorphic sites in the same segment are

strongly correlated, while nearby polymorphic sites are either

weakly or not correlated [18,23]. While segmentation analysis is

useful to detect mutation-driven diversification following ancient

recombination or geographic separation, particularly for subsets of

more conserved var genes, it ultimately generates a tree-like

relationship between genes and does not accommodate recent and

ongoing recombination.

Networks provide a mathematical approach to representing and

studying complex relationships between genes [24], and network-

based techniques have produced valuable evolutionary insights for

many organisms ranging from viruses to eukaryotes [25]. Attempts

to introduce recombination within phylogenetic frameworks have

led to specialized techniques that produce phylogenetic (or

recombination) networks for small numbers of sequences when

recombination rates are relatively low, but these also focus on

conserved regions rather than providing insights into the

recombinant regions [26] (for a review see [27]). On the other

hand, ancestral recombination graphs have a strong theoretical

foundation but lack efficient approximations that are required for

rapid inference [28]. Networks have also been used to identify

large-scale clusters of global gene sharing and exchange [29] and

horizontal gene transfer of the plasmid resistome [30], as well as

differentiating horizontal and vertical flow of information in

[31,32]. In these approaches, all-to-all BLAST scores are

calculated and thresholded for a set of sequences, and the

resulting network is generally analyzed visually to assess large-scale

structure [22,25,29–32]. These analyses, however, rely on ad hoc

parameter choices, uncontrolled assumptions, or prior knowledge

of target clustering. And, while potentially useful for hypothesis

generation, a reliance on alignment scores contains an implicit

model for sequence mutation and substitution that is not justified

for highly recombinant var gene sequences. We have previously

taken a network approach to analyze clinical var gene domains

using short position-specific sequences [13]. Although this

approach uncovered distinctive structuring, with clustering that

reflected previous var gene classification schemes, it lacked a solid

theoretical basis and more importantly it was not generalizable to

other domains and genes.

Here we take a more sophisticated approach, applying rigorous

community detection methods that have primarily been developed

in the physics, statistics, and network science literature, to

construct and analyze recombinant gene networks in general,

and var gene networks in particular. We apply our technique to

previously published and annotated sequences of the var Duffy

Binding Like-a (DBLa) domain [18,33], which unlike other

domains is found in almost all var genes sequenced. We show that

networks constructed from different mosaic regions across the

domain vary widely in their community structure, uncovering a

new layer of micromodularity among var genes. Our results imply

a lack of coupled evolution within even a single domain. At the

same time, clear structures within networks correspond well, and

differentially, to previously published classifications that have been

linked to disease phenotypes. This structuring therefore provides a

mechanism to generate vast diversity while maintaining protein

structure and function, reconciling the paradoxical observations of

both common serological responses and almost limitless var

sequence diversity.

Methods

Plasmodium falciparum var gene data
We analyze 307 amino acid sequences from the DBLa domain

of the var genes of seven P. falciparum isolates published in [18].

PfEMP1 antigens exhibit modular structures, characterized by

between two and nine DBL and CIDR (Cysteine-Rich Inter-

domain Region) domains [18,34–36]. While there are many

different classes of these domains, indexed by a, b, etc., the N-

terminal region of the protein almost always begins with a DBLa
and CIDRa pair, each of which has been implicated in the

binding of infected red blood cells to various host receptors as well

as different disease pathologies. To highlight the diversity and

mosaicism of the DBLa domain we first apply standard

phylogenetic approaches to the 307 sequences. Sequence length

prior to alignment was widely distributed between 357 and 473

amino acids with median 420 and mode 398. Pair-wise alignments

using the standard tool MUSCLE [16,37] averaged 5.6% (or 23)

gaps. Due to the presence of highly variable regions, a multiple

alignment required an implausibly large number of gap insertions,

yielding an aligned length of 743. The remarkable diversity in

DBLa sequences is further illustrated in the unresolved nature of a

phylogenetic tree built from such an alignment (Figure S3).

General approach
Instead of using alignments to identify evolutionary signals

contained in highly conserved regions, we use them to identify and

remove conserved regions in order to focus on recombinant

mosaic sequences. The method uses three steps, which we

motivate here, and define in detail in the next sections: (i) Identify

highly variable regions (HVRs) across all sequences. (ii) Compare

sequences pair-wise within each HVR, generating a distinct block-

sharing network for each region. (iii) Statistically identify

communities in each network, which will represent groups of var

genes that recombine more frequently with each other than with

genes from other communities. These general steps are illustrated

in Figure 1.

To identify HVRs, we use the basic premise of an alignment as

a starting point: highly variable regions will require gap insertions

in order to find an alignment. In contrast with other methods used

to identify regions of conservation by discarding poorly-aligned

stretches [38], our explicit goal is to find contiguous poorly-aligned

regions, since these are likely to be mosaics resulting from

recombination. After identifying HVRs, instead of constructing

trees, we generate a complex network for each HVR using an

alignment-free process, where each vertex is a sequences and two

Author Summary

The human malaria parasite kills nearly 1 million people
each year globally. Frequent genetic exchange between
malaria parasites creates enormous genetic diversity that
largely explains the lack of an effective vaccine for the
disease. Traditional phylogenetic tools cannot accommo-
date this type of diversity, however, and rigorous analytical
tools capable of making sense of gene sequences that
recombine frequently are still lacking. Here, we use
network techniques that have been developed by the
physics and network science communities to analyze
malaria parasite gene sequences, allowing us to automat-
ically identify highly variable mosaic regions in sequence
data and to derive the network of recombination events.
We apply our method to seven fully-sequenced parasite
genomes, and show that our method provides new
insights into the complex evolutionary patterns of the
parasite. Our results suggest that the structure of these
sequences allows the parasite to rapidly diversify to evade
immune responses while maintaining antigen structure
and function.

Network Approach for Recombinant Malaria Genes
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sequences are connected if they exhibit a pattern of recombina-

tion. The structure of this network reflects the constraints and

extents of the recombination process. Since any two genes may

recombine in the absence of constraints on recombination,

deviations from a random network represent structured recombi-

nation, function, or evolution between var gene communities. To

analyze network structures, we use a community-detection

approach that can identify the patterns produced by constrained

recombination, by fitting a generative model called a degree-

corrected stochastic block model [39] to the network data. The

degree-corrected stochastic block model identifies communities by

picking out non-random patterns in the network connections

making it an appropriate choice among myriad community

detection methods. Each step is described in detail below.

Detailed approach
In the first of three steps, we take a set of amino acid sequences

and identify highly variable regions (HVRs). Starting from a

multiple alignment, each aligned position t is first assigned an

alignment score representing the fraction of input sequences that

are aligned at that position (i.e. not gap insertions). This score is

used to calculate an alignment indicator a(t) such that when all

sequences align with no gaps at position t, a(t) = 1; if there are any

gaps, a(t) = 0. We then identify regions where the sequences align

for G or more consecutive positions, that is, a(t) = 1 for G or more

consecutive t. These well aligned regions will serve as separators

between HVRs. We choose G sufficiently short, based on a simple

null model of sequences (SI1), that any highly conserved block of

significant length is removed from network construction since it

would obscure patterns of recombination. Thus, the HVRs will be

the regions in between the conserved regions that we have just

identified. However, very short HVRs will have so few amino

acids once gaps are removed in subsequent steps that they are

unlikely to reflect the mosaicism in which we are interested. So, we

define a minimum HVR size H, discarding those that are shorter.

These steps are illustrated in Figure 1A.

In the second step, we take each HVR and produce an

unweighted and undirected recombination network. Each node

represents a sequence, and each link represents a shared sequence

block, indicating a recombinant relationship between the two

sequences. Before comparing sequences, all gap insertions from

the alignment process are removed. First, we create a weighted

network in which the weight of each link is the length of the

longest substring shared between the sequences it connects

(Figure 1B). The result is an all-to-all undirected and weighted

network for each HVR. Thus, for sequences with multiple HVRs

Figure 1. Pictorial overview of sequence analysis method. (A) Starting from a multiple alignment of the domain of interest, four steps are
taken to identify highly variable regions (HVRs), as described in the text. We show the HVR identification process for the 307 DBLa sequences from
[18]. (B) For each HVR, a network is made in which each sequence is a node, and a link connecting two nodes corresponds to a shared sequence
block. (C) The set of pairwise connections above the noise threshold defines a complex network representing recent recombination events. (D)
Communities are inferred directly from this network using a probabilistic generative model. Steps B,C, and D are repeated for each of the HVRs
identified in step A.
doi:10.1371/journal.pcbi.1003268.g001
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there will be multiple networks. Next, we convert each all-to-all

weighted network into a sparse and unweighted network by

discarding links with weight below a threshold, and removing

weights from the remaining links (Figure 1C). Here we choose the

threshold in a way that controls the number of false positive links

that may have arisen by chance, as shown in Figures 2A and 2B.

The method for computing a noise threshold is based on a null

model for randomly assembled sequences using the properties of

each HVR, and not derived from network properties. Thus,

depending on the confidence one wishes to have in the validity of

the network’s links, a threshold may be computed from a selected

tolerable error rate. Derivation of the function used for this

computation is included in Text S1.

In the third and final step, we detect recombination commu-

nities, by taking an unweighted and undirected HVR network and

applying a degree-corrected stochastic block model [39] to identify

community structures, illustrated by Figure 1D. This model takes

as its input an unweighted, undirected network and the number of

communities k for which it should find a maximum likelihood fit,

and provides as an output a list of which nodes belong to which of

the k communities, also referred to as a partition. (Derivation and

maximization of the likelihood function are discussed at length in

Ref. [39] and efficient code has been made publicly available by

Karrer and Newman.) Because previous classifications included

between three and six types, we inferred community structures for

k = 3 to k = 6. Each HVR network may have different community

structure, similar to how in a standard approach, different loci may

generate different phylogenetic trees. However, clades in trees

represent distinct branches in an evolutionary history, while HVR

network communities represent distinct clusters of ongoing

recombination. Multiple trees may be combined to produce a

consensus tree, but HVR networks show no clear consensus. We

compare our resulting network communities to previous analyses

of var gene sequence groups. Weights are removed from the

network prior to community detection for two reasons. First, it is

unclear by what principle differences in weights should be

interpreted when defining communities. Second, the problem of

correctly inferring degree-corrected stochastic block model com-

munity structure in sparse and weighted networks is currently

unsolved. For these reasons, we interpret each network link as

evidence of some recombinant or hereditary history and treat

them equally by unweighting networks prior to community

detection. We validate this approach carefully as follows.

In order to confirm that our method is able to correctly recover

recombinant communities, we validate it on synthetic data by

creating sequences with varying constraints on recombination

between predefined groups. We begin by creating amino acid

sequences at random from an empirical amino acid frequency

distribution and separating them arbitrarily into three groups.

Then, we simulate recombination events in which two parent

sequences recombine to produce a child sequence, inheriting the

group label of one of its parents. We first choose a parent

uniformly at random from the population. Then, with probability

p, the other parent is chosen from the same group and with

probability (1-p) the other parent is chosen uniformly at random.

As p is increased from zero to one, the rate of inter-group

recombination goes to zero; the communities within the networks

produced by applying our sequence analysis method to the

synthetically recombined sequences become more well defined,

and the method becomes increasingly accurate in correctly

classifying nodes. As shown in Figure 3, our method is able to

recover recombinant communities perfectly in the presence of

strong constraints, and performs only slightly better than random

guessing when there are no constraints, as expected. Details of the

validation process are found in SI3.

Results/Discussion

Discordant patterns of recombination preclude a
consensus network

The characteristics and community structures of HVR networks

were diverse. Nine HVRs were found in the 307 DBLa sequences

Figure 2. Choice of link noise threshold. Choosing a noise threshold requires balance between two competing requirements for correctly
identifying network communities: minimize the number of incorrectly placed links, yet retain as many correctly placed links as possible to satisfy the
network connectivity requirements of the community detection method. (A) The probability of two sequences sharing a block while not actually
being related decreases as block length increases, modeled in S1. Each HVR’s length and composition are taken into account separately (colored
lines). Choosing a tolerance for false positives (grey line) specifies a minimum retained block length; since blocks are of integer length, the next
largest integer is the minimum retained block length (squares). Curves for HVRs 3 and 5 are plotted, for which we would select thresholds of five and
seven, respectively. Curves for all nine HVRs are shown in Fig. S6A. (B) For a choice of threshold 6 for HVR 1, the histogram of HVR 1 block lengths
shows that a vast majority of the blocks are below the threshold (white bars) and that the retained blocks are widely distributed (green bars, inset).
(C) Networks are fragmented as the block length threshold is increased and more links are discarded. The relationship between the size of the largest
component and block length threshold is shown for the least-connected (HVR3) and most-connected (HVR7) networks. Some thresholds allow too
many false positives, as described in panel A (grey lines), yet other thresholds fragment the network too much for reliable community detection
(shaded region). Those points that are plotted in color above the shaded region are both sufficiently error-free and well connected that we may
reliably infer network communities. For HVRs 2–4, even the most permissive false positive threshold results in a network that is too fragmented for
community detection (red circle). Curves for all nine HVRs are shown in Figure S6B.
doi:10.1371/journal.pcbi.1003268.g002
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[18], using HVR detection parameters of G = 8 and H = 6. These

parameters were chosen based on the previously described model

for false positive links (SI2), and HVR boundaries were not

dramatically affected by small changes to these parameters. The

nine HVRs found here corresponded partially to previously

identified variable regions over all DBL domains [33]. Since

HVRs are by definition highly variable, they consist of mostly gap

insertions—this diversity is highlighted by the fact that when gaps

were removed after HVRs were identified, sequences shrank by

57% on average. Noise thresholds were computed as shown in

Figure 2A such that, in expectation, 10 links (0.02%) or less are

false positives, yielding cutoff lengths of 5, 6, or 7 amino acids,

varying by HVR. Each HVR showed a wide range of sequence

lengths, and HVRs differed widely from each other in median

sequence length. HVR lengths, noise cutoffs, and the percentage

of links retained for community detection are found in Table 1.

The fraction of links above the length cutoffs varied by HVR,

shown in Figure 2B and Table 1. For HVRs 2–4, removal of links

below the cutoff fragmented the network and in such cases

community structure cannot be inferred. Figure 2C illustrates

graphically that there did not exist a threshold that both preserved

a large connected component and met our requirements for a low

false positive rate for HVRs 2–4.

Each remaining HVR network had identifiable communities,

examples of which are illustrated in Figures 4 and 5. This is

consistent with our previous network analysis [13], but provides

greater resolution and statistical certainty that these communities

represent genuine constraints on recombination. However, the

membership lists of communities derived from different HVRs

matched each other for only 38% of nodes on average. In addition

to having widely varying community structures, HVR networks

also differed from each other in component size and number of

components illustrated in Figure 4 and tabulated in Table 2.

Networks are visually illustrated in Figure 4 and the number and

size of components are given in Table 2. Regardless of the number

of communities detected, communities corresponded poorly to

each other across HVRs.

HVR networks lack consensus. Traditional phylogenetic

approaches often produce a consensus tree that reflects the most

likely evolutionary trajectory of a particular gene. However, if

patterns of recombination for two HVRs are relatively indepen-

dent of each other, we expect the communities of one HVR

network to match the communities of the other only to the extent

they match by chance. In contrast, HVR networks with similar

recombinational constraints will have common community

structures. In order to quantify the distance between community

assignments, we use the variation of information statistic [40],

which is a distance metric on partitions. A small value indicates

that two partitions are ‘‘close’’ to each other, such that the

composition of one is highly correlated with the composition of the

other. Figure 6A shows the pairwise distances between the inferred

communities for k = 3 and partitions defined by UPS and cys/

PoLV classifications, across HVRs. (Plots for all values of k are in

Figures S4 and S5B.)

In general, the communities of different HVRs were surprisingly

dissimilar, except HVRs 1 and 6, and, to a lesser extent, HVRs 1

and 5. We compared the observed distances to an estimated

distribution of pairwise distances for a null model in which we held

one partitioning constant and computed distances for 10,000

random permutations of the other, for each pair, shown as grey

symbols in Figure 6A and converted to z-scores in Figure S5B.

Two examples of the randomized distributions are shown in detail

in Figure 6B: the comparison of HVR 5 with HVR 9, and the

comparison of HVR 1 with HVR 6. While the distance between

HVRs 5 and 9 is smaller than the expected value of a random

permutation (top subplot) it is significantly closer to its expected

value than HVRs 1 and 6 (bottom subplot). We estimated

statistical uncertainty in these measurements and found that in all

cases, standard deviations were O(1022), much smaller than the

size of colored symbols plotted in Figure 6A. However, we note

that this estimate is one of many possible measures of statistical

uncertainty for network parameters, each of which is flawed in

some way, which we discuss fully in Text S4.

Although no pair of community assignments is farther apart

than expected at random, most other community assignments are

only very weakly similar to each other. The fact that individual

HVRs feature clear community structure implies that there are

evolutionary constraints on recombination; yet comparisons of

community structure between HVR networks reveal only slightly

more similarity than random, suggesting that recombinational

constraints at different positions are almost completely indepen-

dent of each other. Thus, variable selection pressures can be

accommodated even within a single DBLa domain (distances are

shown as a heatmap for all pair-wise comparisons in supplemental

Figure S4). These patterns suggest that mosaic sequences behave

as dynamic modules that can be shared among genes relatively

intact, with conserved inter-mosaic regions acting as alignment

guides in the recombination process. A key finding of this analysis,

therefore, is that the relative independence of different HVR

Figure 3. Performance on synthetic data. We validate our
method’s ability to detect constraints on recombination by testing it
on synthetic data with known structure. Sequences were generated at
random and divided into three communities, after which 1000
recombination events were simulated, described fully in S2. For each
recombination event, the two sequences were forced to be chosen
from the same community with probability p or were selected
uniformly at random with probability (1-p). As the probability that
recombination is constrained to within-community is varied from no
constraint (p = 0) to strict constraint (p = 1), the ability of our method to
correctly classify sequences into one of three communities increases
from very poor to perfect. The connected line shows the mean of 25
replicates, with whiskers indicating 6 one standard deviation. Two
example networks are shown for p = 0.1 and p = 0.9. The dashed line
indicates the accuracy of guessing communities uniformly at random,
which is slightly larger than 1/3 as explained in S2. Networks are
displayed using a force-directed algorithm that allows a system of
repelling point-charges (nodes) and linear springs (links) to relax to a
low-energy two dimensional configuration, allowing for visualization of
network communities.
doi:10.1371/journal.pcbi.1003268.g003
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networks precludes the use of ‘‘consensus’’ approaches sometimes

used to combine trees; HVR networks were sufficiently different

that they must be analyzed independently.

Relationship between HVR communities and previous
classification systems

In the absence of tools capable of handling extremely high rates

of recombination, var genes have been variously classified by their

domain structure and gene length, sequence characteristics,

upstream promoter regions (UPS), position within the chromo-

some, and direction of transcription [25,29–32,40,41]. However,

the correspondence of these groups, which only partially overlap,

remains ambiguous. As increasing volumes of var gene sequence

data are produced from studies in the field, understanding how

best to resolve and refine these approaches will be key to

interpreting study outcomes. We compared previous classification

systems, as well as each parasite genotype, to communities within

each HVR network.

Individual parasite var repertoires reflect population-level

diversity. Examining the sequences of individual parasites, we

found that each of the seven parasites’ var sequences are evenly

spread through the clusters of the network, rather than forming

genome-specific communities (Figure S1), consistent with previous

studies [10]. Regardless of how many communities k we choose,

each parasite had at least one sequence in each recovered

community, showing that a single parasite is not confined to an

identifiable genotypic community but instead has samples of all

major communities that we identified. This corroborates previous

research showing that var genotypic diversity within a single

parasite is as high as the diversity of the parasite population [20].

This pattern is also consistent with theoretical work has shown that

selective pressure on the var genes should create parasites with as

wide a variety of genotypes as possible for immune evasion, while

still preserving enough structure for adhesion and sequestration

[42]. Thus, each P. falciparum genome contains an antigenic

repertoire that is effectively sampled from the diversity of the

global pool of var genes.

While HVR networks tend to differ from each other, their

communities correspond to known upstream promoter sequence

(UPS) groupings and var gene length. Upstream promoter

sequences were previously categorized as UPS A to UPS E or

Not Determined (ND) [18]. DBLa with UPS D were not present

in the 307 sequences examined. The inferred communities in

HVRs 1 and 6–8 place nearly all UPS A sequences together,

plotted in Figure 7A. The remaining communities comprise a mix

of UPS B, C, and ND sequences. This implies that recombinant

mixing of UPS A with B or C is comparatively rare, leading to the

hypothesis that three ND sequences could be classified as UPSA:

IT4var24, PF07_0048, and IT4var51. Furthermore, we found no

evidence for a strong separation of var genes into distinct groups

for UPS B and C. Although UPS C genes are all found proximate

to the centromeres of P. falciparum genomes, recombination

appears to occur frequently between centromeric and subtelomeric

UPS B genes, consistent with studies of chromosomal positioning

during ectopic recombination [14,43], but not yet observed in vitro

[44].

Using the variation of information distance measure [40],

Figure 6A shows that the community structures of HVR 1 and

UPS communities are particularly close. This is reinforced by a

measurement of assortative mixing by label [45], shown in

Figure 6C, a measure of correlation among node labels that takes

into account the connections of the network and may be computed

without any community assignments. In particular, this reflects the

fact that in HVR 1, many UPS A nodes tend to link almost

exclusively to other UPS A nodes. Plots of all HVR networks

colored by UPS group are found in Figure S2. We also found

positive assortative mixing by var gene length (including all NTS,

DBL, CIDR, and ATS domains) implying that genes of the similar

length tend to link to each other, consistent with dynamical models

of var gene evolution [42] (Figure 6C). Thus, both UPS group and

gene length may play roles in constraining recombination,

suggesting that future models of evolution and recombination

must reproduce these results.

We confirmed and extended the Cys2/Cys4 and PoLV

classification schemes which previously identified and analyzed

patterns within the DBLa domain [10,46,47]. In an alignment-free

study of short tagged sequences corresponding to HVRs 5 and 6

from Kilifi, Kenya, it was found that sequences may be classified

based on the number of cysteine residues present in HVR 6, and

that more severe disease phenotypes were correlated with the

presence of only two cysteines [10,46]. These sequences are

referred to as ‘‘cys2’’ sequences, and others, most of which have

four cysteines, are referred to as ‘‘cysX.’’ The cys2/cysX

classifications can be further classified according to a set of

mutually exclusive sequences motifs called positions of limited

variability (PoLV), splitting cys2/cysX categories into six cys/

PoLV groups [10,47]. Since the HVR network approach creates

links based on shared block structure, it captures cys2/cysX and

cys/PoLV categorizations. Unsurprisingly, this is reflected most

strongly in HVR6 (Figures 6A and 6C), but is also present in

HVR1 whose nodes are strongly assortatively mixed by cys/PoLV

group (Figure 6C), corroborating the result that HVRs 1 and 6 are

structurally similar. There exists one community in HVRs 1, 6,

and 5 that contains most of the cys2 sequences (Figure 7B). The

correspondence of network structures with previous phenotype-

associated sequences also suggests that the HVR network

approach may be extended to map genotypic patterns to clinical

phenotypes when applied to an appropriate data set that includes

expression data and clinical information.

The DBLa domains we use here were previously analyzed and

categorized extensively using tree-based methods, revealing many

new subclassifications of the previously identified DBLa0 and

DBLa1 [41,43] as well as a new classification, DBLa2 [18]. We

examined HVR networks for evidence of strong associations

Table 1. Summary statistics for DBLa HVRs.

HVR 1 2 3 4 5 6 7 8 9

Med. length (min-max) 28 (22–48) 11 (8–17) 6 (4–9) 12 (6–15) 42 (30–57) 29 (25–47) 37 (16–40) 35 (21–49) 39 (8–76)

Length incl. gaps 88 27 17 28 106 91 54 68 92

Noise cutoff 6 6 5 5 7 6 6 7 6

% significant links 6.0 3.1 1.5 2.6 5.8 6.9 24.9 8.4 16.1

doi:10.1371/journal.pcbi.1003268.t001
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between network community structure and subclassifications, but

found that only DBLa1.3 sequences had a strong tendency to link

to other sequences from the same subclassification, particularly in

HVRs 7, 8, and 9, where they formed cliques on the periphery of

the networks. While the sequence differences of the DBLa1.3

subclass have already been noted [18], we also find that the DBLa0.3

subclass tended to link to each other in HVRs 1 and 8, though not in

a clique. No strong correlations were found between network

structures and the broader classes of DBLa0, DBLa1, and DBLa2,

and networks were not strongly assortative by DBLa class, as shown

in Figure 6C. This is perhaps unsurprising, given the different focus

of our method, but it highlights the fact that any classification of

recombinant genes that is based on a tree-like phylogeny may not be

informative about the process of recombination.

Var gene micromodularity facilitates diversity generation
without loss of function

Our approach highlights and analyzes the within-domain

modularity of DBLa. Var genes are by definition modular, with

Figure 4. Nine HVR networks colored by inferred communities. DBLa HVR networks show a wide range of characteristics, including
community size, number of components, and number of links. Nodes in each HVR are colored according to the best three-community partition
identified by the inference algorithm (see text). (Identical networks colored by upstream promotor are found in Figure S2.) HVRs 2–4 are sufficiently
fragmented that block model inference cannot be trusted. An interactive version of this figure with varying communities and node labels may be
found at http://danlarremore.com/var. Networks are displayed using a force-directed algorithm that allows a system of repelling point-charges
(nodes) and linear springs (links) to relax to a low-energy two dimensional configuration, allowing for visualization of network communities.
doi:10.1371/journal.pcbi.1003268.g004
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variable numbers and types of DBL and CIDR domains clustered

into larger groups that primarily correspond to UPS A and UPS B

or C. We have shown that in addition to modular domains that

can be shuffled between loci, there are also relatively regularly

spaced modular mosaics within the DBLa domain that are

shuffled, under constraints, between var genes. Previous studies

have suggested that the conserved blocks in DBL domains may

provide structural support for the protein while the variable

regions in between are loops in the protein designed specifically for

antigenic variation under diversifying selection [17,33]. Here we

offer a more nuanced hypothesis, shown schematically in Figure 8:

HVRs under related recombinational constraints may have

important functional roles in the PfEMP1 molecule, while other

HVRs may exist primarily for purposes of antigenic variation.

We find that HVRs 1, 6, and to a lesser extent 5, have similar

non-random network community structure that corresponds

strongly with structural amino acid residues and classification

systems with known associations with severe disease [47]. These

regions of the domain may therefore be functionally constrained

and play a specific role in binding. Interestingly, HVRs 5 and 6

correspond to the short tag sequences that have previously been

amplified from field isolates. If our hypothesis is correct, it would

explain why the clustering of these sequence tags exhibit

meaningful associations with disease outcome [46,48]. The

remaining HVRs 7–9, have highly heterogeneous community

structures that bear almost no relation to each other, suggesting

that their primary role is in the generation of diversity for the

purpose of immune evasion.

Having both correlated and uncorrelated recombinational

constraints across multiple HVRs thus provides at least two

important evolutionary benefits to the parasite: i) individual

mosaics that are functionally important can retain their function

without compromising the generation of diversity across the rest of

the domain, and ii) recombination could produce variants through

different combinations of modules more rapidly than mutation or

random recombination, and without risking the recombinational

equivalent of error catastrophe that occurs in systems with very

high mutation rates [49]. In other words, the parasite population

Figure 5. Stochastic block modeling identifies network communities. HVR 6 is shown in two forms, colored according to the best partition
into three communities. (A) A force-directed visualization of the network with the identified communities labeled by color. (B) Adjacency matrix in
which the ordering of rows and columns has been permuted to match the inferred communities. Diagonal colored blocks are within-community
links, and off-diagonal blocks are between-community links. The matrix is shown symmetrically to aid the eye.
doi:10.1371/journal.pcbi.1003268.g005

Table 2. Summary statistics for DBLa HVR networks.

HVR Network 1 2 3 4 5 6 7 8 9

N. components 1 39 106 51 10 8 2 20 4

Largest comp. (307) 307 112 18 183 298 291 306 273 293

doi:10.1371/journal.pcbi.1003268.t002
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may be rapidly shuffling ancient sequence mosaics into new

combinations across some HVRs, while also preventing the

degeneration of structurally important regions of the protein that

are involved in binding. The population of genes may thereby

balance a need for new diversity with functional requirements.

The varying correspondence of HVR communities with

previously defined var gene groupings implies that the different

classification schemes complement each other, providing insights

into different aspects of var gene evolution, likely representing

nested or hierarchical recombinant clusters. We measure the

extent to which previously defined groupings are reflected in the

links of our networks using assortativity, shown in Figure 6C.

Importantly, the DBLa group assortativity is much lower than all

the others, demonstrating further that while there are clear

structures in HVR networks, they are not the same as the

classifications based on trees. Such tree-based classifications

explain the development of large-scale structure over the relatively

longer timescales of mutation, whereas communities detected

within recombination networks here shed light on functional or

even mechanistic constraints on recombination occurring more

recently.

Conclusions
The method presented here can accurately extract block-

sharing networks from the most highly recombinant regions of

protein sequences. While a multiple-alignment is used to identify

Figure 6. Community structures vary across HVRs. (A) Variation of information (VI) measures the distance between two different partitions on
the same set of nodes (two different sets of community assignments). For a given HVR we compute pairwise VI distances to recovered communities
of other HVRs (colored symbols), cys/PoLV (+), UPS classifications (x), and to those in a null model (grey open symbols). Uncertainty in VI
measurements is discussed in detail in Text S4. (B) HVRs 1 and 6 are close to each other, indicating that their communities strongly match each other.
Histograms show the distributions of VI distances for one partition and 10,000 randomizations of the other. Top, the measured distance between
HVRs 5 and 9 falls within the distribution of randomizations, indicated by the arrow. Bottom, the measured distance between HVRs 1 and 6 falls well
outside the distribution of randomizations, indicated by the left arrow. For contrast, the silhouette of the top histogram is reproduced. (C) Most HVRs
show moderate but positive levels of assortativity [45], the tendency for nodes with similar labels or values to be connected. Assortativity varies by
HVR and by label (symbols). For all cases except DBLa classification (DBLa0, DBLa1, DBLa2), assortativity was significantly higher than expected by
chance. Solid lines with whiskers show mean assortativity 6 one standard deviation for 10,000 randomizations of labels. Z-scores may be found in
Figure S5A.
doi:10.1371/journal.pcbi.1003268.g006
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Figure 7. Correspondence of network communities to existing classifications. Bars show the UPS group (A) and cys/PoLV group (B)
composition of each of the three recovered communities. HVRs 1 and 6–8 show one community each in which a vast majority of UPS A sequences are
found. HVR 6 shows one community in which a vast majority of group 1, 2, and 3 sequences are found, which are all characterized by having only two
cysteines in HVRs 5 and 6.
doi:10.1371/journal.pcbi.1003268.g007
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HVRs (Figure 1A), we find that HVR boundaries are robust to

changes in alignment parameters, and the remaining steps of our

network extraction process (Figures 1B–D) are entirely alignment-

free. Since the structure of such networks reveals patterns of

recombination, strong communities within networks are indicative

of functional or evolutionary constraints on recombination within

the underlying population. By applying this technique to the

DBLa domain of var genes we find that different locations of the

domain produce different communities. Were the constraints

identical in each domain, we would expect network communities

to be similar to each other and exhibit small variation of

information distance. The fact that network communities differ

therefore indicates that while constraints exist at each location in

the domain, they also vary by location. We suggest that this lack of

correlation between constraints allows the DBLa domain to

possess exponentially more complexity while simultaneously

remaining functional, avoiding recombinant error catastrophe

despite extremely high rates of recombination.

The combination of principled and alignment-free network

construction methods with state-of-the-art generative models for

community detection may open the door to new research areas,

linking evolution, function, and clinical phenotypes in a range of

genetically diverse pathogens. While we demonstrate our method

using DBLa, it could also be applied to other highly recombinant

var domains, other P. falciparum genes such as the rif and cirs

families, or other pathogens, such as HIV, the pneumococcus, or

trypanosomes. Methodologically, extensions include the develop-

ment and application of stochastic block model community

detection in weighted networks, treating the separate HVR

networks as a single multiplex network [50], and generalizing

the current process to inexact sequence matches.

Supporting Information

Figure S1 Diversity of individual parasites. Sequences

from a single parasite (large nodes) are distributed evenly

throughout the recovered groups. Thus, the diversity within a

single parasite is comparable to the diversity of the entire network.

(A) HVR 1 with four inferred communities, highlighting the DD2

parasite, and (B) HVR 6 with three inferred communities,

highlighting the RAJ116 parasite provide two representative

examples. Figures depict differing numbers of communities to

show that single parasite genomes are distributed throughout

network communities, even as the number of communities

increases. An interactive version of this figure may be found at

http://danlarremore.com/var. Networks are displayed using a

force-directed algorithm that allows a system of repelling point-

charges (nodes) and linear springs (links) to relax to a low-energy

two dimensional configuration, allowing for visualization of

network communities.

(EPS)

Figure S2 Nine HVR networks colored by UPS group-
ing. DBLa HVR networks are colored by Upstream Promoter

Region (UPS) with categories of A,B,C, or Not Determined. An

interactive version of this figure with varying communities and

node labels may be found at http://danlarremore.com/var.

Networks are displayed using a force-directed algorithm that

allows a system of repelling point-charges (nodes) and linear

springs (links) to relax to a low-energy two dimensional

configuration, allowing for visualization of network communities.

(EPS)

Figure S3 Phylogenetic trees of DBLa sequences. (A) A

SplitsTree diagram displays a phylogenetic tree in which

ambiguous or recombinant sequences are linked with a cross-link,

as described in S3. The presence of many cross links and very little

reliable tree structure demonstrates the need for tools beyond

traditional phylogenetic trees and networks. (B) A phylogenetic

tree was constructed using RaxML 7.0 as described in S3, and

color-coded by UPS group. While the tree classifies nearly all

UPSA sequences together, poor bootstrap values indicate that this

phylogeny has low statistical reliability.

(EPS)

Figure S4 Pairwise distances between HVR communi-
ties. Similarities in community structures are measured here by

the variation of information (VI) metric [40], pairwise for each

HVR and for k = 3, 4, 5, and 6 communities, as well as cys/PoLV

and UPS classifications. Small distances on the 66-, 612-, and

618-diagonal stripes indicate that each HVR is more similar to

itself (regardless of the number of communities inferred) than it is

to any other HVR. This indicates that HVR networks do possess

distinct community structures, but that such structures vary widely

by HVR. A similar figure showing z-scores of VI from

randomization of labels is included in Figure S5B. VI values from

the regions in the black boxes are displayed graphically in

Figure 6A. Accordingly, HVRs 1 and 6 are much closer than any

other pair of partitions of two different HVRs for a variety of k

values.

(EPS)

Figure S5 Node label randomization tests. Results from

randomization trials show that the assortativities shown in

Figure 6C and some of the distances shown in Figure S4 are

statistically significant, because the probability that the null model

would yield as small or smaller distances is minute. (A) Each point

is an assortativity z-score calculated from 10,000 randomizations

of a network’s node labels, showing that network assortativities by

label and gene length reflect a preference of sequences to

recombine with other similar sequences. (B) Each point is a VI

z-score from 10,000 randomizations of node labels. As in Figure

S4, HVRs are more similar to themselves (with any number of

communities) than they are to each other. HVRs 1 and 6 are again

shown as more similar to each other than other pairs, followed

closely by HVR1 and UPS, and HVR6 and cys/PoLV

communities. It is important to note, however, that randomized

Figure 8. Schematic of HVR hypothesis. Each HVR of DBLa is highly
recombinant, yet recombinational constraints, as revealed by network
community structure, vary by HVR. We find that some are strongly
related (HVRs 1 and 6) while others are independent (HVRs 5 and 9).
This suggests that those HVRs that diversify and recombine under
constraints that are independent of each other may have the primary
purpose of immune evasion by diversity generation (red stripes). Those
HVRs whose recombinational constraints are related to each other may
recombine only under functional constraints (blue). Independent or
related constraints may also be found in other domains throughout the
larger PfEMP1 molecule.
doi:10.1371/journal.pcbi.1003268.g008
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variation of information distances are not normally distributed,

and so these z-scores should not be interpreted as such.

(EPS)

Figure S6 Choice of link noise threshold (Figure 2 with
all HVRs shown). While Figures 2A and 2C illustrate the

method by which link noise threshold is selected, we excluded

other HVRs to provide a more legible and understandable figure.

Here we show all nine HVRs. (A) The probability of two sequences

sharing a block while not actually being related decreases rapidly

for all HVRs. We exclude all block lengths falling above a noise

threshold (grey region) and choose the next largest block length as

the appropriate minimum block length (squares). (B) HVR

networks fragment as block length threshold is increased and more

links are discarded. Grey points indicate cases that are prohibited

due to the cutoff shown in Figure S6A, while colored points are

permissible. However, points in the grey shaded region are

prohibited due to fragmentation of the network. This precludes

analysis of HVRs 2–4, for which no suitable threshold exists that is

both low-noise and unfragmented, indicated by red circles.

(EPS)

Text S1 Null model for sharing of protein sequence
substrings. A detailed description of the approximation of the

rates at which sequences share substrings of varying lengths purely

by chance.

(PDF)

Text S2 Validation on synthetic data. A detailed descrip-

tion of the procedures used to generate and analyze synthetic data

for the purposes of validation.

(PDF)

Text S3 Detailed description of phylogenetic analyses
and software.

(PDF)

Text S4 Uncertainty in measurements of variation of
information from inferred partitions. A detailed discussion

of the current state of the literature in assessing the uncertainty in

community detection methods, variation of information, and other

network statistics.

(DOCX)
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