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SUMMARY

The integration of neuroimaging and transcriptomics data, Imaging Transcrip-
tomics, is becoming increasingly popular but standardized workflows for its im-
plementation are still lacking. We describe the Imaging Transcriptomics toolbox,
a new package that implements a full imaging transcriptomics pipeline using a
user-friendly, command line interface. This toolbox allows the user to identify
patterns of gene expression which correlates with a specific neuroimaging
phenotype and perform gene set enrichment analyses to inform the biological
interpretation of the findings using up-to-date methods.
For complete details on the use and execution of this protocol, please refer to
Martins et al. (2021).

BEFORE YOU BEGIN

This toolbox allows the user to identify patterns of gene expression which correlates with a specific

neuroimaging phenotype and perform gene set enrichment analyses to inform the biological inter-

pretation of the findings using up-to-date methods.

This section includes all necessary steps to setup a dedicated python environment and install the Im-

aging Transcriptomics toolbox.

Anaconda python environment

Timing: < 10 min

The imaging transcriptomics package works inWindows and Unix systems (Mac OSX, Linux) with Python

3 (>=3.6). To run the script or use the library without the risk of dependencies conflicts with other scripts

or libraries, we recommend installing everything in a dedicated Anaconda environment. The environ-

ment hereafter installed, will occupy about 1.1 GB of hard drive space (on a MacBook Pro with 1.4

GHz Quad-Core Intel Core i5 processor and macOS Big Sur). The creation of a dedicated environment

allows the user to avoid the accidental generation of conflicts with other software or Python versions.

Note: The occupied space might slightly vary between different systems (i.e., macOS, Linux,

Windows) due to the internal filesystem design.
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1. Anaconda can be downloaded from https://www.anaconda.com/products/individual and

installed following the specific instructions for individual computer specifications.

2. Once Anaconda is installed restart any open terminal and create a dedicated environment using

Python (version 3.7) and pip using the following command:

Follow the prompted instructions until the environment gets successfully created, for more details

on the creation of Anaconda environments please refer to the official documentation of anaconda

(https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).

3. Activate your newly created Anaconda environment by typing:

Before you proceed, make sure that you are in the correct environment (troubleshooting 1).

4. We will now install the ENIGMA Toolbox (https://github.com/MICA-MNI/ENIGMA), a package

released by the ENIGMA consortium that contains plotting functions used by the Imaging Tran-

scriptomics toolbox to create some plots. To install the ENIGMA Toolbox, run the following com-

mands:

Note: Some errors may appear during the installation of the toolbox, to resolve them please

refer to troubleshooting 4.

5. The last pre-requisite before installing the package is the installation of the pypls library to

perform partial least square regression (PLS). This can be done using the following command:

CRITICAL: Do not install pyls from the python package manager (i.e., Pypi), since that

package performs different tasks.

Installation

Timing: 1 min

After the creation of the dedicated environment and installing all the dependencies that can’t be

installed automatically, here we will install the core toolbox with its python dependencies. This

will make available two scripts, one for the correlation analysis between neuroimaging data and

gene expression and one for to perform gene set enrichment analysis (GSEA).

> conda create –name transcriptomics python=3.7 pip

> conda activate transcriptomics

> git clone https://github.com/MICA-MNI/ENIGMA.git

> cd ENIGMA

> python setup.py install

> pip install -e git+https://github.com/netneurolab/pypyls.git/#egg=pyls
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6. To install the Imaging Transcriptomic toolbox, comprising of the python library and command

line script, run the following command from your terminal:

After the process is complete, you can check if the installation was successful by typing the following

command in the terminal:

Or by typing:

With both the previous commands, if successful, the help for each of the scripts will be displayed.

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

In the following sections, we describe step-by-step how to perform an imaging transcriptomics anal-

ysis of a neuroimaging map from start to finish. This includes identifying genes whose expression

correlate spatially with the neuroimaging map and performing gene set enrichment analysis to

inform the biological interpretation of the results. Such analyses require detailed information on

gene expression across multiple regions of the post-mortem human brain, which right now can

only be accessed through the Allen Human Brain Atlas (AHBA).

The toolbox allows implementing two types of analyses to quantify the association between neuro-

imaging and gene expression data: i) a simple mass-univariate Spearman correlation analysis; ii) a

multi-variate PLS regression analysis. The method to be used is defined as an input by the user.

> imt_gsea –help

> imagingtranscriptomics –help

> pip install imaging-transcriptomics

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Gene expression data from
human brain tissues

Allen Human Brain Atlas (AHBA) http://human.brain-map.org/

Single cell RNA-seq data (Lake et al., 2018) NA

Software and algorithms

MATLAB (MATLAB, 2020) https://uk.mathworks.com/

FMRIB Software Library (FSL) (Jenkinson et al., 2012;
Smith et al., 2004;
Woolrich et al., 2009)

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Anaconda Anaconda Inc. https://www.anaconda.com/products/individual

Abagen toolbox (Arnatkevi�ci�ut _e et al., 2019;
Hawrylycz et al., 2012;
Markello et al., 2021)

https://github.com/netneurolab/abagen (https://doi.org/1
0.5281/zenodo.5129257)

Alleninf (Gorgolewski et al., 2014) https://github.com/chrisfilo/alleninf

ENIGMA Toolbox (Larivière et al., 2021) https://enigma-toolbox.readthedocs.io/en/
latest/index.html

Netneurotools python library Network Neuroscience Lab, Brain
Imaging Centre, McGill University

https://github.com/netneurolab/netneurotools

Gseapy python library (Fang, 2020) https://github.com/zqfang/GSEApy

The Imaging Transcriptomics Toolbox (Giacomel et al., 2022) https://github.com/molecular-neuroimaging/
Imaging_Transcriptomics

Other

PET template (Beliveau et al., 2017) https://xtra.nru.dk/FS5ht-atlas/
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Both methods have been used in previous works applying imaging transcriptomics (Fulcher et al.,

2021; Morgan et al., 2019) and have their own strengths and weaknesses that should be considered

on a case-by-case basis. Ultimately, the toolbox provides a list of genes ranked by how well they

associate with the distribution of a neuroimagingmarker input by the user and identifies which genes

are significantly associated with the marker using state-of-the-art methods that account for bias

induced by the spatial autocorrelation of the data.

In order to perform imaging transcriptomics analyses, both neuroimaging and gene expression

should be mapped into the same space. Currently, the analyses implemented in the toolbox are

based on the Desikan-Killiany (DK) parcellation (Desikan et al., 2006). For the neuroimaging data,

the toolbox implements a simple averaging of the signal across all voxels of each parcel in the atlas.

For the gene expression data, the process of mapping the AHBA data to DK parcels was imple-

mented a priori using the abagen toolbox (https://www.github.com/netneurolab/abagen). Briefly,

genetic probes were reannotated and only probes that could reliable be matched to genes were

kept and filtered based on their value relative to the background noise by using a threshold of

50%, yielding a total of 15,633 probes (Arnatkevi�ci�ut _e et al., 2019). Next, tissue samples were as-

signed to brain regions using their corrected MNI coordinates (https://github.com/chrisfilo/

alleninf), samples were matched to regions constraining this to hemisphere and cortical/subcortical

subdivisions. Samples were assigned to brain regions in the atlas if their coordinates in MNI space

were within 2 mm of a given parcel. To reduce the potential for misassignment, sample-to-region

matching was constrained by hemisphere and gross structural divisions (i.e., cortex, subcortex/

brainstem, and cerebellum). All tissue samples not assigned to a brain region in the provided atlas

were discarded (Markello et al., 2021). Samples were then averaged across donors and normalized,

resulting in a final single matrix with rows corresponding to brain regions and columns correspond-

ing to the 15,633 genes.

Irrespectively of the statistical method selected by the user (PLS or Spearman correlation), the infer-

ential statistics is calculated using gold-standard methods that are robust to the intrinsic autocorre-

lation of the imaging data. All significance testing is based on permutation testing, where 1,000 null

spatial maps are derived using a combination of spin rotations of the cortical regions and resampling

of the subcortical regions. The spin rotations are implemented using the Vasamethod as in previous

studies (Alexander-Bloch et al., 2013a, 2013b; Markello andMisic, 2021; Vá�sa et al., 2018). The same

nulls are then used in the ensemble gene set enrichment analyses to control for false positives

related to the spatial autocorrelation of the data, as recently recommended (Fulcher et al., 2021).

To illustrate the various steps of the analysis with the toolbox, we will use as an example a publicly

available positron emission tomography (PET) average template of the serotonin receptor 5-HT2A

([11C]Cimbi-36) from (Beliveau et al., 2017).

Note: The scan downloadable from the online repository (https://xtra.nru.dk/FS5ht-atlas/)

must be reshaped since it has a data matrix of 182 3 218 3 182 3 1 (for more see trouble-

shooting 2). In addition, to avoid problems with the file system the scan should be renamed

by replacing the dots ( . ) in the name with underscores ( _ ). For the scope of the following

example the scan has been renamed to 5-HT2A_mean_bmax.nii.gz.

1. Select the path of your input file.

Note: For the input, either common neuroimaging scan formats (NIfTI - .nii, .nii.gz) or text files

(i.e., .tsv, .csv, .txt) can be used. The path should be provided as an absolute path (e.g.,

‘‘/home/username/data_folder/myfile’’ instead of ‘‘./data_folder/myfile’’).

CRITICAL: If the input is a neuroimaging scan, this must be already in standard MNI152

space and have a voxel size of 1 mm isotropic (imaging matrix size of 182 3 218 3 182).
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On the other hand, if the input is a text file, thismust have only one column, with no header

and a regional value in each row, following the order of the DK atlas (the full list of regions

is available in the supplement file Table S1).

Partial least square regression analysis

Timing: < 5 min

This step is the first of two alternative ways to run the analysis, and it employs PLS regression to iden-

tify latent components that maximize the correlation between neuroimaging and gene expression

data.

2. Run the script imagingtranscriptomics using the pls option:

The arguments to be provided are:

a. –input <input_path>: the path to the input file (the path from step 1).

b. –output <output_path> (optional): the path where the results should be saved.

Note: If this is not provided the results will be saved in the path of the input file.

c. –regions <all|cort+sub|cort>(optional): Allows the user to select which regions to use in the

analysis. This is particularly useful with certain types of data (e.g., EEG) where subcortical re-

gions might not be available. The available options are all (or equivalently cort+sub), which

specifies that all regions should be used, or cort where only cortical regions are used.

d. –no-gsea (optional): this flag allows running the script without performing GSEA.

Note: If this is not provided, the script will also run the GSEA step (described below).

e. –geneset (optional): Name of the gene set to be used in the GSEA analysis.

Note: If the –no-gsea flag is provided, this option will be ignored. If you also want to perform

GSEA (i.e., excluding the –no-gsea flag), a gene set should be selected - for more information

on the available gene sets refer to the GSEA step.

f. pls <pls_options>: uses PLS regression to analyze the data. After the pls keyword, only one of

the following inputs is required:

i. –ncomp <n>: number of components to use in the PLS regression (this must be an integer

between 1 and 15).

ii. –var <n>: percentage of the variance to explain. With this option, the optimal number of

components will be automatically calculated by the script (this must be a float between

0 and 1).

For instance, with the example data, we can run the command:

Which will run the analysis with one PLS component on the example scan, without running

GSEA, and save the results the same directory as the input scan (the results will be in a folder

named Imt_5-HT2A_mean_bmax_pls).

> imagingtranscriptomics –input <input_path> [–output <output-path>][–regions <all|cort+-

sub|cort>] [–no-gsea] [–genest] pls <pls_options>

> imagingtranscriptomics –input 5-HT2A_mean_bmax.nii.gz –regions all –no-gsea pls –ncomp 1
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Mass-univariate correlation analysis

Timing: > 30 min

As an alternative to PLS regression, the toolbox also offers the option to run the analysis using mass-

univariate Spearman correlations. This option will simply calculate Spearman correlations between

the neuroimaging vector and the expression of each gene.

Note: if you want to analyze the data with PLS regression, you can skip this step.

3. Run the script imagingtranscriptomics using the correlation option:

The first optional input is described in the PLS analysis section (points 2a-2e); the additional optional

input for the script in this case is:

a. –cpu <n_cpu>: number of cpu to be used for the calculation of the correlations (the default

number is 4).

Note: This step takes a considerably longer time compared to the PLS analysis, since the num-

ber of correlations to estimate is much greater.

With the example data we can run the command:

This command will run the analysis on all brain regions, without running GSEA, with mass univar-

iate correlation and save the results in the same directory as the input scan (the results will be

saved in a folder named Imt_5-HT2A_mean_bmax_corr).

Note: Irrespective of the method selected (PLS regression or mass-univariate correlation), the

toolbox produces lists of genes ranked according to the strength of the spatial alignment be-

tween the neuroimaging phenotypes (e.g., regional distribution of a PET tracer, statistical

map reflecting effects of a drug or case-control differences for a certain neuroimaging metric)

and their expression. Please, note that when the user does not have a priori hypotheses about

specific genes or pathways, interpreting the output in biological terms can be challenging. For

instance, one might be interested in understanding if the top genes positively associated with

a certain neuroimaging phenotype belong to specific biological pathways or brain cell-types.

Answers to this type of questions can be provided by gene set enrichment analyses, which we

will describe in the next section.

Ensemble gene set enrichment analysis (GSEA)

Timing: > 1 h

GSEA uses a statistical hypothesis-testing framework to assess which categories of genes (i.e., set of

genes sharing a certain biological function, such as neuronal genes or astrocytic genes) are most

strongly related to a given phenotype, leveraging annotations of genes to categories from open on-

tologies, like the GeneOntology (GO). Performing GSEA in the context of imaging transcriptomics is

associated with methodological challenges that the application of the same algorithms in other

> imagingtranscritomics –input <input_path> [–output <output-path>][–regions <all|cort+-

sub|cort>] [–no-gsea] [–genest] corr [–cpu <n_cpu>]

> imagingtranscriptomics –input 5-HT2A_mean_bmax.nii.gz –regions all –no-gsea corr
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circumstances do not necessarily raise, mainly, within-category gene–gene co-expression and

spatial autocorrelation are now known to drive false-positive bias, which requires particular attention

in the way it is dealt with (for further information on this topic, please see Fulcher et al., 2021). In this

toolbox, we implement the recently introduced ensemble GSEA framework, which overcomes false-

positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas

data, using a pre-ranked approach. These analyses are implemented through the imt_gsea script,

which requires the .pkl file generated as a result of the previous step.

Note: This step can be run as part of a single command as explained above; this is equivalent

to omitting the –no-gsea flag and specifying the input –geneset in the previous script.

4. Define which gene set you want to use for the analysis; as an example, we will use the ‘‘Lake’’ brain

cell-type gene set included with the toolbox (this set includes genes expressed in 30 brain cell-

types as identified in a previous single-cell transcriptomic study (Lake et al., 2018)). Other avail-

able gene sets are provided and can be searched by running the command:

Note: The toolbox offers the users the possibility to select their own gene set file; this should

nevertheless be in a compatible format, i.e., gmt (see here the instructions on how to create

your own gene set file https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.

html). If the users decide to use their own genes, the file must be provided as an absolute

path as the argument of the –geneset flag.

5. Run the ensemble GSEA using the command:

The imt_gsea script accepts the following arguments:

a. –input: path to the .pkl file generated by the previous step.

b. –output (optional): path where the results will be saved; if none is provided, the parent direc-

tory of the input file will be used instead.

c. –geneset: name of the gene set to be used in the analysis.

Note: Depending on the gene set and analysis used, the GSEA will take longer to run, i.e.,

running the ensemble GSEA on an analysis with 2 PLS components will take twice the amount

of time as running GSEA on an analysis with 1 PLS component.

With the results from either step 2 we can run the GSEA analysis by running the command (similar

for the results from step 3):

To run the GSEA analysis using the lake gene set.

6. Check the results in the folder where the .pkl file was stored if no output path was specified.

The interpretation of the ensemble GSEA output does not differ much from the standard GSEA anal-

ysis. The primary result of the gene set enrichment analysis is the enrichment score (ES), which re-

flects the degree to which a gene set is overrepresented at the top (positive score) or bottom (nega-

tive score) of a ranked list of genes. Significant enrichment is identified by p-values, corrected for

> imt_gsea –geneset avail

> imt_gsea –input /path_to_yourfile/file.pkl –geneset lake

> imt_gsea –input Imt_5-HT2A_mean_bmax_pls/pls_analysis.pkl –geneset lake
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multiple comparisons, less than 0.05 (i.e., pFDR<0.05). In ensemble GSEA, this means that the enrich-

ment observed is higher than one would expect for a null neuroimaging phenotype with the same

embedded spatial autocorrelation.

EXPECTED OUTCOMES

Once the analysis is completed, the toolbox creates a folder where the output files are stored (a

typical example can be seen in Figure 1). The output files can be summarized as 1) a tabular file

(i.e., pls_component_1.tsv Figure 1) with the results from the correlation analysis containing a list

of ranked genes, the coefficient of correlation (z-score in the case of PLS analysis) and the uncorrec-

ted and FDR-corrected p values (Figure 3). Note that in the case of a PLS regression analysis, a

different file is created for each of the PLS components. 2) A pkl file which contains null ranked list

of genes to be used for a different enrichment analysis without having to re-run the entire analysis

(i.e., pls_analysis.pkl, Figure 1); 3) A PDF file with a report of the analysis performed. In the case

of the PLS analysis, the PDF will include plots of the individual and cumulative variance explained

by the first 15 components, alongside with the R2 and p value for each of the components used in

the analysis (plots are also available in the output folder as graphics, i.e., cumulative_variance.png

and individual_variance.png, Figure 2). 4) A tabular file with the GSEA results (gsea_pls1_results

containing the term of the gene set, enrichment score (ES) and normalized enrichment score

(NES) scores, uncorrected and FDR-corrected p-values, the size of the gene set term, the number

of matched genes, the list of all matched genes and the list of edge genes (i.e., genes contributing

themost to the enrichment signal) (Figure 4). 5) Enrichment plots for each individual term of the gene

set used (all the files terminating in _prerank.pdf, Figure 5).

Figure 1. Example of the structure of an output folder

The folder includes tabular files with the results of both the correlation analysis and the GSEA analysis, plots for the variance explained by each

component in case of a PLS analysis and enrichment plots for the results from the GSEA analysis.
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LIMITATIONS

One of the main limitations of the current implementation of the toolbox is the lack of flexibility

regarding the parcellation used to map the neuroimaging and gene expression data. We setup

the pipeline to use a standard and widely used parcellation (DK atlas), which provides a fairly coarse

coverage of cortical and subcortical regions. However, we acknowledge that specific research ques-

tions might require other parcellations, which for now are not readily available to the user. In that

case, the user can modify the original code to use other parcellations, but the gene expression ma-

trix will have to be recalculated (e.g., by using abagen to remap gene expression to the parcellation

chosen by the user). Moreover, all the analyses are based on data from the left hemisphere because

the AHBA includes gene expression data of the right hemisphere for two donors only. While a gen-

eral limitation of the field and not of this specific work, this aspect might raise issues when a certain

neuroimaging phenotype is strongly lateralized to the right hemisphere.

TROUBLESHOOTING

Problem 1

The toolbox is installed but the scripts fail to launch from the command line (before you begin

step 3).

Potential solution

Make sure that the virtual environment where you have installed the toolbox is activated. This can be

seen in the terminal or by typing the command:

From the command line.

Problem 2

When running the command on an existing image I get an InvalidSizeError, e.g., imaging_transcrip-

tomics.errors.InvalidSizeError: The provided file has a wrong shape. The file has shape: (182, 218,

182, 1). (step-by-step method details steps 2 or 3).

Figure 2. Example of variance plots produced in case of a PLS analysis

(A) Cumulative variance explained by different PLS models with increasing number of components; (B) Individual variance explained by each of the first

15 components.

> which python
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Figure 3. Example of tabular file containing the results of gene ranking according to alignment with neuroimaging

phenotype

The toolbox outputs a tabular file containing: i) gene ID, ranked according to strength of correlation; ii) z-score of

gene weight in PLS component (or Spearman’s coefficient in case of mass-univariate correlation analysis); and iii)

uncorrected and FDR corrected p values for each gene.
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Potential solution

Reshape the image to match the correct input shape. In the case of 4D scans, select the image you

want to analyze (i.e., a single volume or their average).

Problem 3

After the installation, the program fails to run because of a ModuleNotFoundError: No module

named ‘sklearn.datasets.base’. (step-by-step method details step 2).

Potential solution

Re-install the sklearn python dependency by running the command:

Followed by the command:

> pip uninstall sklearn

Figure 4. Example of tabular file with the results from the GSEA analysis

The tabular file contains data about the enrichment score (ES), normalized enrichment score (NES), uncorrected p value (p_val), FDR corrected p value

(fdr), number of genes in the gene set term (geneset_size), number of matched genes from the correlation results (matched_size), label of the matched

genes (matched_genes) and ledge genes (ledge_genes) for each of the terms included in a certain gene set.

> pip install sklearn
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Problem 4

The installation of the ENIGMA Toolbox fails, raising some errors (before you begin step 4).

Potential solution

To overcome the errors in the ENIGMA Toolbox installation you need to manually install some py-

thon libraries which the toolbox depends on (e.g., Cython and NumPy). In addition you can look at

specific versions of the packages listed on the environment file (i.e., https://github.com/molecular-

neuroimaging/Imaging_Transcriptomics.git).

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Dr. Daniel Martins (daniel.martins@kcl.ac.uk).

Materials availability

This study did not generate new unique reagents.

Figure 5. Example of an enrichment plot from the GSEA analysis

The analysis produces a plot for each term of the gene set used. The top portion of the plot shows the running

enrichment score (ES) for the gene set as the analysis walks down the ranked list. The score at the peak of the plot (the

score furthest from 0.0) is the ES for the gene set. The middle portion of the plot shows where the members of the gene

set appear in the ranked list of genes. The bottom portion of the plot shows the value of the ranking metric as you

move down the list of ranked genes. The ranking metric measures a gene’s correlation with a phenotype. The value of

the ranking metric goes from positive to negative as you move down the ranked list.
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Data and code availability

The Imaging Transcriptomics toolbox is available on GitHub at https://github.com/molecular-

neuroimaging/Imaging_Transcriptomics (Giacomel et al., 2022). The data used as example in the

protocol are available in the Neurobiology Research Unit’s website https://xtra.nru.dk/

FS5ht-atlas/.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2022.101315.
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