
RESEARCH ARTICLE

Predicting proteome allocation, overflow

metabolism, and metal requirements in a

model acetogen

Joanne K. LiuID
1, Colton Lloyd2, Mahmoud M. Al-Bassam3, Ali Ebrahim2, Ji-Nu Kim3,

Connor OlsonID
2, Alexander Aksenov4, Pieter Dorrestein4, Karsten ZenglerID

3,5*

1 Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, California, United States

of America, 2 Department of Bioengineering, University of California, San Diego, La Jolla, California, United

States of America, 3 Department of Pediatrics, University of California, San Diego, La Jolla, California, United

States of America, 4 Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and

Pharmaceutical Sciences, University of California San Diego, San Diego, California, United States of

America, 5 Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, United

States of America

* kzengler@ucsd.edu

Abstract

The unique capability of acetogens to ferment a broad range of substrates renders them

ideal candidates for the biotechnological production of commodity chemicals. In particular

the ability to grow with H2:CO2 or syngas (a mixture of H2/CO/CO2) makes these microor-

ganisms ideal chassis for sustainable bioproduction. However, advanced design strategies

for acetogens are currently hampered by incomplete knowledge about their physiology and

our inability to accurately predict phenotypes. Here we describe the reconstruction of a

novel genome-scale model of metabolism and macromolecular synthesis (ME-model) to

gain new insights into the biology of the model acetogen Clostridium ljungdahlii. The model

represents the first ME-model of a Gram-positive bacterium and captures all major central

metabolic, amino acid, nucleotide, lipid, major cofactors, and vitamin synthesis pathways as

well as pathways to synthesis RNA and protein molecules necessary to catalyze these reac-

tions, thus significantly broadens the scope and predictability. Use of the model revealed

how protein allocation and media composition influence metabolic pathways and energy

conservation in acetogens and accurately predicted secretion of multiple fermentation prod-

ucts. Predicting overflow metabolism is of particular interest since it enables new design

strategies, e.g. the formation of glycerol, a novel product for C. ljungdahlii, thus broadening

the metabolic capability for this model microbe. Furthermore, prediction and experimental

validation of changing secretion rates based on different metal availability opens the window

into fermentation optimization and provides new knowledge about the proteome utilization

and carbon flux in acetogens.
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Author summary

Acetogens are renowned for their potential biotechnological applications. The model

acetogen Clostridium ljungdahlii has been studied intensively for its ability to produce bio-

fuels from sustainable resources, like syngas. We describe a novel genome-scale model of

metabolism and gene expression (ME-model) to gain insights into this model acetogen.

This first ME-model for a Gram-positive bacterium contains all major metabolic and bio-

synthetic pathways and calculates accurate proteome allocations under diverse growth

conditions, thereby significantly broadening the scope of predictability of metabolic mod-

els. Furthermore, the ME-model enables rational medium design for improved produc-

tion. Our experimental validation implies wide applicability to others strains for rapid

improvement of yield and titer in biotechnology-relevant applications.

Introduction

Acetogens have been investigated as promising alternative to convert waste gases containing

CO2, H2, and CO (i.e., syngas) into multi-carbon commodities [1,2]. The Wood-Ljungdahl

pathway (WLP) enables acetogens to use either H2 or CO as an electron donor with accompa-

nied reduction of CO2, thereby making WLP the only known CO2-fixing pathway coupled to

energy conservation [3]. Energetics of autotrophic growth was poorly understood for a long

time as no ATP was gained at the substrate level, and not all acetogens contain cytochrome-

encoding genes to maintain the proton motive force. It was recently discovered that proton

exportation could be coupled to ferredoxin oxidation and NAD+ reduction by the Rnf complex

[4]. Models like constraint-based genome-scale models of metabolism (i.e., M-models) have

been useful for gaining insight to possible routes of energy flux [5–8]. While M-models have

enabled much progress in elucidating cofactor fluxes, other critical components of the cell

(e.g., production of macromolecules and mechanistic utilization of metals, vitamins, and cofac-

tors) are usually absent in these models, thereby limiting in-depth understanding of cellular

life.

So-called metabolic and gene expression models (ME-models) contain not only metabolic

reactions, but represent all major cellular processes like macromolecular synthesis and basic

transcriptional regulation, significantly broadening the scope and predictability of microbial

systems biology [9,10]. In ME-models, both RNA and protein abundances are explicitly pre-

dicted, which means that cofactor requirements can now be explored. ME-models can com-

pute the optimal molecular constitution of a cell as a function of genetic and environmental

parameters, providing new inroads for advanced engineering designs.

Trace metals, fundamental for all living organisms, are required for catalytic processes

essential to energy conservation, metabolism, replication, and maintenance. Yet metals pose a

unique challenge for standard computational models as they are neither produced nor con-

sumed biochemically in the model and are generally treated as a lumped sum in the biomass

objective function [11], which prevents their proper integration into reactions [12]. ME-mod-

els change this paradigm because protein modifications are incorporated into these models.

Protein modifications account for the presence of metals in biochemical reactions, thereby

enabling predictions of optimal distribution of resources in response to limited metal availabil-

ity. Thus, ME-models provide a robust, genome-wide approach to define how transition met-

als affect an organism’s functional network, which addresses the need to bridge chemistry and

biology in a systematic way [12,13]. For acetogens, understanding the role of trace metals is

particularly important, as metals are crucial for the WLP [14]. Insights into such requirements
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provide an opportunity to rationally manipulate the WLP and other pathways for improved

biotechnological outcomes [15–17].

Here, we reconstructed and deployed the first ME-model of a Gram-positive bacterium.

The completed Clostridium ljungdahlii ME-model, named iJL965-ME, captures all major cen-

tral metabolic, amino acid, nucleotide, lipid, major cofactors, and vitamin synthesis pathways

as well as pathways to synthesis RNA and protein molecules necessary to catalyze these reac-

tions. Furthermore, the reconstruction includes WLP, with updated cofactors, and its associ-

ated mechanisms for energy conservation. The model accurately predicted secretion of acetate,

ethanol, and glycerol during changing carbon and metal availability and revealed how protein

allocation and media composition influence metabolic pathways and energy conservation in

this model acetogen.

Results

Reconstructing an acetogen ME-model

We first updated and created an existing genome-scale M-model of C. ljungdahlii (iHN637)

[5]. By using recent literature and genome annotations as reference [18–22], 28 reactions were

added and four reactions removed from iHN637. The updated M-model (iJL680) consisted of

43 additional genes (Supplemental file–iJL680.xml) and contained updated cofactor stoichi-

ometry and directionality of redox reactions based on experimental data (Fig 1 in S1 File) and

exhibits comparable predictability.

Next, a gene expression network (i.e., E-matrix) was reconstructed [23–26]. This reconstruc-

tion included an additional 196 protein-coding open reading frames (ORFs), 89 RNA genes,

576 transcription units (415 of which were rho-dependent and 29 were RNA-stable), 19 types of

rRNA modifications, 17 types of tRNA modifications, 735 protein complexes with updated stoi-

chiometry, 219 modified protein complexes, and 134 translocated proteins (Tables 1–15 in S2

File). Because accurate turnover rates for metabolic enzymes in C. ljungdahlii do not exist, this

rate (approximated by keff, a required parameter for ME-models) was set to 25 s-1, the average

turnover rate of all enzymes in acetogens listed in Schiel-Bengelsdor and Dürre [1] and available

on Brenda (accessed on Oct. 25, 2018) [27]. Coupling constraints, which link macromolecular

synthesis costs with reactions, were calculated using the formulation in COBRAme [10,26,27].

Using the COBRAme framework, the acetogen E-matrix was integrated with iJL680 to cre-

ate the ME-model (iJL965-ME; Supplemental file–iJL965_ME.pickle). iJL965-ME accounts for

all of the major central metabolic pathways and biomass synthesis pathways as well as tran-

scription, translation, macromolecule modifications, and translocation reactions (Fig 1).

Because iJL965-ME covers an extensive scope of cellular processes, it enables prediction of fer-

mentation profiles, including overflow metabolism products, gene expression, and usage of

co-factors and metals, which are described in detail below.

Accuracy of predicted growth and yield phenotypes improve with

iJL965-ME

Unlike the M-model, iJL965-ME predicted both batch (i.e., maximum nutrient uptake) and

nutrient-limited growth conditions. Due to internal constraints on protein production and

catalysis, referred to as proteomic limitations [28], iJL965-ME growth rate was a non-linear

function of the substrate uptake rate. Thus, optimal carbon uptake rate and maximum growth

rate could be simultaneously predicted, whereas M-models require information of one rate to

predict the other [10]. As a result, we identified unique growth rate and yield functions for

growth with CO, CO2+H2, or fructose (Fig 2).
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Overflow metabolism is the seemingly wasteful process in which a substrate is not fully oxi-

dized, resulting in lower energy yields, inefficient metabolism, and additional fermentation

products. Hypotheses for why this phenomenon occurs are varied, making characterization

and modeling of mixed fermentation products challenging. Generally, M-models do not pre-

dict alternative fermentation products without additional constraints on redox fluxes, oxygen

uptake, or the objective function [5–7,29]. However, iJL965-ME was able to predict intrinsi-

cally changes in the primary fermentation product as a function of substrate availability for

CO and fructose growth. When protein production approached proteome limitations

Fig 1. Representation of the ME-model. The E-matrix reconstruction accounted for transcription, translation, and

translocation as well as associated reactions to produce functional enzymes. Integration of the E-matrix (colored

arrows) with the M-model (grey arrows) resulted in the ME-model.

https://doi.org/10.1371/journal.pcbi.1006848.g001

Fig 2. Predicted growth rate and yield. Maximum growth rate (solid line), acetate secretion rate (dashed line), and

ethanol secretion rate (dotted line) changed as functions of (A) CO, (B) CO2, and (C) fructose uptake rate.

https://doi.org/10.1371/journal.pcbi.1006848.g002
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(exemplified by in silico maximum growth rate and in vivo mid-log phase), iJL965-ME cor-

rectly predicted the start of ethanol secretion after acetate secretion due to trade-offs in protein

production (Fig 2A and 2C; Fig 2 in S1 File). Thus, iJL965-ME was able to recapitulate over-

flow metabolism by accounting for redox balancing and concurrent proteome limitations.

Although 2,3-butanediol has been described previously as potential secretion product, the

model did not predict production of 2,3-butanediol because it promotes production of the

most energy efficient metabolites (i.e., ethanol and acetate). Furthermore, 2,3-butanediol is

produced towards the stationary phase after acetate and ethanol [11], but the model assumes

steady state growth for metabolic flux prediction. Therefore, we chose the exponential phase to

measure the metabolites, since this is the best approximation to steady state and did not detect

2,3-butanediol.

The ME-model also predicted substrate-specific growth rates with high accuracy. Specifi-

cally, growth rate predictions by iJL965-ME were more accurate than by M-model, iJL680

(Pearson’s r: 0.68 > 0.29; Spearman ρ: 0.60 > 0.091; Fig 3A). Due to distinct resource require-

ments (the main factor being proteome composition) when metabolizing different substrates,

unique in silico maximum growth rates for individual substrates can be obtained through

iJL965-ME. Unlike the M-model (iJL680), which predicted that glucose and fructose would

have identical growth rates, iJL965-ME correctly predicted slower growth on glucose than for

fructose. Furthermore, iJL965-ME highly improved predictions of the ratio of maximum ace-

tate secretion rate to substrate uptake rate compared to the M-models iHN637 and iJL680 (Fig

3B; Table 16 in S2 File).

Fig 3. Predictions of growth rate and product production. (A) Two sets of predicted growth rates, from iJL680 and

iJL965-ME, were plotted against in vivo measured growth rates for arginine, xylose, pyruvate, glucose, CO, and fructose

growth conditions (±std, n = 3). Linear regressions and 95% confidence intervals were represented by dashed lines and

shaded areas, respectively. In iJL680, carbon atom uptake was constrained to 30 mmol�gDW-1�h-1, while in iJL965-ME,

the optimal carbon uptake was constrained by inherent proteome limitations. r and p represent Pearson’s correlation

and p-value. (B) Predicted maximum acetate secretion rate (Ac; mmol�gDW-1�h-1) to substrate uptake rate (SUR;

mmol�gDW-1�h-1) was plotted against measured averaged values. (C) Predicted pathway mechanism for observed glycerol

production in spent media. Glycerol was a byproduct of cell membrane formation during cardiolipin production. While

the cell was carbon-limited, glycerol was recycled into biomass using the pathway highlighted in green. When cells were

proteome-limited, C. ljungdahlii secreted glycerol (purple arrow). Abbreviations: 1 = phosphatidylglycerol (n-C14:0),

2 = cardiolipin (n-C14:0), 3 = glycerol, 4 = dihydroxyacetone, 5 = dihydroxyacetone phosphate, CLPNS140 = cardiolipin

synthase (n-C14:0), GLYCt = glycerol transport, GLYCDx = glycerol dehydrogenase, DHAK = dihydroxyacetone kinase.

https://doi.org/10.1371/journal.pcbi.1006848.g003
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Interestingly, iJL965-ME predicted previously unknown secretion of glycerol (<2.5e-3

mmol�gDW-1�h-1) following acetate and ethanol production during growth on xylose or glu-

cose but not on arginine, pyruvate, or CO, which may be due to where the substrate enters the

metabolic network so that glycerol is produced through byproducts of glycolysis (xylose and

glucose) or by reverse glycolysis (arginine, pyruvate, and CO). Like ethanol, glycerol secretion

occurred due to trade-offs in proteome limitations resulting in overflow metabolism, as the

cell no longer invested resources to recycle glycerol, a byproduct of cardiolipin production

(Fig 3C). Glycerol production from cultures grown on either xylose or glucose was experimen-

tally verified by high performance liquid chromatography (HPLC) analysis (0.024±0.012 mM

and 0.083±0.018 mM glycerol for xylose or glucose, respectively; Fig 3 in S1 File), and was con-

firmed in glucose by gas chromatography/mass spectrometry (GC-MS) (Fig 4 in S1 File). Per-

haps the levels of glycerol were too low to be detected in the xylose samples.

Predicting gene expression

RNA and protein abundance requirements are coupled to reaction fluxes in ME-models,

enabling in silico predictions of transcription and translation (mmol�gDW-1�h-1) [10,26]. To

test the accuracy of our model, genes were categorized by RAST subsystems and summed as

per predicted transcription flux reactions (Table 17 in S2 File). The in silico results strongly

correlated to RNA-seq data for C. ljungdahlii grown on CO, CO2+H2, or fructose (r > = 0.77,

p< = 0.003; Fig 5 in S1 File) and to Ribo-seq data for C. ljungdahlii grown on CO or fructose

(r> = 0.75, p< = 0.006; Fig 6 in S1 File) [30]. At the highest correlation, all categories fell

within the prediction interval of the linear regression (Fig 4A–4C, Fig 7 in S1 File), enabling to

forecast substrate-specific expression of pathways.

At the gene level, 396 genes could be strongly linked to growth rate (r>0.9, p value<0.05�

Bonferonni, Fig 7 in S1 File). However, correlation of these genes was dependent on the

growth substrate (68 genes for CO, 275 for CO2+H2, and 224 for fructose). Growth-correlated

genes that were shared between conditions involved genes related to translation (e.g. rRNA

and specific tRNAs; Fig 7 callout in S1 File).

Under autotrophic conditions, expression of WLP genes were correlated more with sub-

strate availability than growth rate (rCO: 0.983>0.955, rCO2+H2: 0.996>0.884; Fig 4D and 4E).

In addition, reaction fluxes of essential WLP reactions carbon monoxide dehydrogenase

(CODH4) and 5,10-methylenetetrahydrofolate reductase (MTHFR5) were linearly related to

CO uptake during growth on CO, while other non-WLP redox reactive reactions (e.g. RNF)

were correlated with growth rate (Fig 8 in S1 File). Similarly, WLP reactions were linearly

linked to CO2 uptake in CO2+H2 conditions, in addition to the linear response of ferredoxin:

NADPH hydrogenase (HYDFDN2r) to H2, while non-WLP redox reactions were correlated

with growth rate (Fig 9 in S1 File).

In heterotrophic conditions, the WLP was more active under nutrient limitations than pro-

teome limitations, as its activity level was related to acetate secretion (r = 0.993, p<0.01, Fig

4F). The WLP was recapturing CO2 for biomass production using the reducing power gained

by metabolizing fructose. At greater than 57% of the optimal fructose uptake (Fig 4F), the pri-

mary provider of oxidized ferredoxin switched from WLP to ferredoxin:NADP reductase, also

known as the Nfn complex (FRNDPR2r) and acetaldehyde:ferredoxin oxidoreductase

(AOR_CL) (Fig 10 in S1 File). Extraneous reducing power captured by NAD+ from glyceralde-

hyde-3-phosphate dehydrogenase (GAPD) was removed by producing ethanol (alcohol dehy-

drogenase; ALCD2x) (Fig 10 in S1 File). These findings are corroborated by a previous report

that C. ljungdahlii grows mixotrophically, instead of heterotrophically, when presented with

sugar as a carbon source [31].
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Nickel controls phenotype through Wood-Ljungdahl activity

Metal availability and growth rate are linearly correlated in M-models, even though there is

contrary experimental evidence [32]. For example, seven of ten metals (Ca2+, Cu2+, Mg2+,

Mn2+, Mo2+, Ni2+, Zn2+ + Co2+, Fe2+, Na+) could only be imported or exported, and only Co

was predicted to participate in flux-carrying reactions that were not a transport reaction or

biomass production [5]. Thus, most metal ions are not associated to the reactions they help

catalyze.

Cofactor integration in iJL965-ME, however, allows systematic interrogation of the effects

of metal availability. Particularly, iJL965-ME’s nickel-containing proteins, CODH4 and carbon

monoxide dehydrogenase:Acetyl-CoA synthase (CODH_ACS), are part of the WLP, while a

third nickel-containing protein (a hydrogenase, HYD2) does not carry flux on CO. This net-

work configuration afforded the possibility of controlling this pathway through changes in

media composition both in silico and in vivo. Due to C. ljungdahlii’s reliance on WLP for auto-

trophic growth, nickel was predicted to be essential for CO-growth, which was experimentally

confirmed in the related acetogen C. ragsdalei [32]. Although true essentiality could not be

tested due to trace nickel contamination in the media, the amount of additional nickel (added

Fig 4. Predicted and experimental gene expression. Categorized by RAST subsystem and summed, predicted gene expression

(transcription flux reactions � gDW of RNA molecule; mmol� h-1) was compared to RNA-seq data for C. ljungdahlii grown on (A)

CO, (B) CO2+H2, and (C) fructose. Linear regressions, 95% confidence intervals of the regression, and 95% prediction intervals are

represented by lines, dark shaded areas, and light shaded areas respectively. Scatter plots shown are for the highest Pearson r between

predicted and experimental data. Normalized total transcription flux (mmol�gDW-1�h-1) of the Wood-Ljungdahl pathway was

plotted against carbon substrate uptake rate for (D) CO, (E) CO2+H2, and (F) fructose. Pearson r reflects correlation with growth

rate.

https://doi.org/10.1371/journal.pcbi.1006848.g004
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as multiples of 0.10 mM) significantly influenced in vivo growth rate in a quadratic fashion as

predicted (Fig 5A) and previously demonstrated in C. ragsdalei [32]. Experiments with C. rags-
dalei also showed that nickel availability affected the specific activity of carbon hydroxide

dehydrogenase (CODH) [32]. According to iJL965-ME, the non-linear effects of nickel limita-

tions were caused by an uneven distribution of metal resources between CODH_ACS and

CODH4, resulting in different rates of decreasing protein activity (Fig 5B). In turn, the other

reactions in WLP were correlated to either CODH_ACS, like MTHFR5 and methyltetrahydro-

folate corrinoid/iron-sulfur protein methyltransferase (METR), or CODH4 (Fig 11 in S1 File).

Finally, iJL965-ME predicted that while nickel availability affected growth rate, protein activ-

ity, and acetate and ethanol yield, the acetate:ethanol production rate would not change,

instead it remained constant at 1.4 for different nickel concentrations (Fig 12A in S1 File).

Indeed, acetate:ethanol production rate, as determined by HPLC, was unchanged with a ratio

of 1.48±0.34 (Fig 12E in S1 File), regardless of the nickel concentrations used (0x, 1x, and 5x

[10x excluded due to carbon depletion], Fig 12D in S1 File).

iJL965-ME predicted that nickel limitations would have different effects on fructose-grown

cells. Removal of nickel was not predicted to affect growth rate or fructose uptake significantly

(Δgr = 98%, Δfructose = 99%, Fig 6A). However, there was no CODH_ACS or METR activity

under nickel depletion, which reduced the WLP activity (Table 18 in S2 File) and eliminated

acetate secretion. Instead, the model predicted that only ethanol secretion would occur (Fig 6B

and 6C). To test this prediction, C. ljungdahlii was grown either without added nickel (0x) or

with high nickel concentrations (10x). Both cultures consumed the same amount of fructose

(p = 0.26) and produced identical amounts of ethanol (p = 0.95), but exhibited different

growth rates (p = 0.062) and final concentrations of acetate (p = 2.2e-4) (Fig 6D–6G). Increased

acetate secretion rate (p = 0.016, Fig 13 in S1 File) and final acetate concentrations in 10x

nickel were due to the nickel-stimulated WLP consuming more CO2.

Discussion

We showed that the incorporation of the E-matrix into constraint-based genome-scale models

significantly widens the scope of their application, including prediction of overflow metabo-

lism and optimal expression levels, as well as media optimization strategies. Such capabilities

Fig 5. Effects of nickel availability on C. ljungdahlii grown on CO. (A) Maximum predicted growth rate was plotted

against relative nickel uptake (line), and in vivo maximum growth rate verses the concentration of added nickel was

plotted on the opposite axes (dot, ±std, n = 3). (B) Predicted protein activity of the nickel-containing enzymes, carbon

monoxide dehydrogenase (CODH4) and carbon monoxide dehydrogenase:acetyl-CoA synthase (CODH_ACS), was

plotted against relative nickel uptake.

https://doi.org/10.1371/journal.pcbi.1006848.g005
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proved useful for exploring and understanding system responses of C. ljungdahlii. The recon-

structed C. ljungdahlii ME-model (iJL965-ME) was not only more accurate than the M-model

at predicting growth rates and acetate secretion rates, but was also capable of predicting secre-

tion of ethanol and until now unknown secretion of glycerol (Figs 2 and 3). Furthermore, in
silico predictions of gene/subsystem expression were highly comparable to in vivo transcrip-

tomics for three separate conditions, bolstering confidence in predicting macromolecular

responses to environmental changes (Fig 4A–4C). C1 metabolism under both autotrophic and

mixotrophic conditions was examined in more depth, and the potential of controlling WLP

activity through media composition was explored (Figs 4–6). Although the lack of COD-

H_ACS activity (achieved by removing nickel from the media) may not cease WLP activity

entirely, it may stop acetate production (as in vivo nickel depletion results suggest), leading to

ethanol production as the main fermentation end product (Fig 6). However, the discrepancy

between in silico and in vivo growth rates of nickel-depleted cells grown on fructose implied

that WLP was more important than predicted for maximizing growth in mixotrophic condi-

tions (Fig 6) and could be due to regulatory effects. In contrast, nickel was essential for CO-

growth, but had no effect on the acetate:ethanol ratio (Fig 5).

ME-models provide a comprehensive, genome-scale, systems biology approach to link the

environment with macronutrient metabolism. In particular, the combination of C1 metabo-

lism, multi-omics predictions, and cofactor integration into iJL965-ME is an important mile-

stone for a holistic understanding of metals in metabolism. Although nickel was the only trace

metal to be investigated here, iJL965-ME invites further studies elucidating specific effects of

concurrent metal limitations and genetic perturbations. The ME-model represents an inclusive

method that unites analysis and integration of multiple data types.

Materials and methods

Bacterial growth conditions

Clostridium ljungdahlii (ATCC 55383) was grown under anaerobic conditions containing

PETC medium (ATCC medium 1754 without fructose) at 37˚C. Fructose cultures were grown

in 125 mL serum bottles containing 100 mL of medium plus 28 mM fructose, CO in 125 mL

serum bottles containing 25 mL of media and bottles were pressurized once with CO to 1.25

bar. Pyruvate, xylose, glucose, and arginine experiments were performed in test tubes contain-

ing 10 mL of medium and equimolar concentrations of carbon atoms (30) per carbon source,

such as 5mM fructose and 10mM pyruvate. Medium contained 0.10 mM of NiCl2
�6 H2O

(defined as 1x). For testing the effect of nickel, final concentrations of 0 mM (0x), 0.50 mM

(5x) and 1.0 mM (10x) of nickel were added to the media before autoclaving. Growth was rou-

tinely determined by measurement of OD600. Concentrations of fructose, acetate, ethanol, and

glycerol were determined by high-performance liquid chromatography (Waters) as previously

described [33]. Detection was performed by UV absorption at 410 nm.

GC-MS for glycerol detection

The presence of glycerol in the cell cultures samples was investigated with GC-MS. An Agilent

7890B GC with a 7200 Accurate Mass QTOF MS (Agilent, Santa Clara, CA) with an Electron

Ionization source (EI) instrument was used. GC separation was carried out on a HP-5ms (5%-

Phenyl)-methylpolysiloxane GC column (Agilent, Santa Clara, CA) with ID of 0.25 mm, 30 m

length and 0.25 μm film thickness. Prior to analysis, the 0.2 ml sample aliquot was lyophilized

at room temperature and reconstituted in 50 μL of HPLC-grade methanol with 5 sonication. A

20 μL aliquot of supernatant was then carefully transferred into a 2 mL vial with a spring insert

and capped with a septum cap.
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For analysis, a 1 μL aliquot of sample was injected by the auto-sampling robot. The GC inlet

was maintained at 250˚C and set for 10:1 split. The GC separation was as follows: start at 40˚C

and hold for 1 min; 20˚C/min oven ramp to 45˚C, hold of 0.1 min; 20˚C/min oven ramp to

300˚C, hold for 0.1 min; 50˚C/min oven ramp to 320˚C for a complete run time of 14.6 min.

The helium carrier gas was set to constant 1.2 mL/min flow. The scanned m/z range of TOF

MS analyzer was set to 35–400 amu with acquisition rate of 20 spectra/second. For the first

1.65 min of the analysis the detector was turned off (solvent delay). The methanol solvent

blanks and empty vial blanks were interspersed with the samples; a solvent blank was run prior

Fig 6. Effects of nickel availability on C. ljungdahlii grown on fructose. (A) Predicted growth rate and protein

activity of carbon monoxide dehydrogenase:acetyl-CoA synthase (CODH_ACS) were plotted against relative nickel

uptake (mmol�gDW-1�h-1). (B) Predicted ethanol (EtOH) secretion at optimal nickel uptake (WT) and no available

nickel (-Ni2+) were plotted against relative fructose uptake (mmol�gDW-1�h-1). (C) Predicted acetate (Ac) secretion at

optimal nickel uptake and no available nickel were plotted against relative fructose uptake (mmol�gDW-1�h-1).

Measured (D) growth rate, (E) fructose consumption, (F) final ethanol concentration, and (G) final acetate

concentration of fructose-grown C. ljungdahlii without added nickel and with ten times the concentration of nickel

were plotted (±std, n = 3). Gray asterisk indicates difference significance is p = 0.06, and three black asterisk indicates

significance of p<0.001.

https://doi.org/10.1371/journal.pcbi.1006848.g006
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to each sample to ensure absence of carryover. In order to eliminate potential systematic bias,

the samples were randomized.

The chromatograms were analyzed using Agilent’s MassHunter software v. B.08.00. Prior

to analysis, an authentic standard of glycerol at ~1 mM concentration processed in the same

fashion as the samples, was injected to determine the retention time of the compound for the

analysis conditions and establish that the EI fragmentation pattern obtained on the instrument

is identical to that in the search library (Wiley Registry of Mass Spectral Data, 11th Edition).

The library matching was performed using the NISM MS Search software v. 2.3.

RNA isolation, removal of rRNA and library preparation of CO-grown

cells

All experiments were performed using two biological replicates. Cell pellets were collected by

centrifugation at room temperature for 5 mins at 5000 g. Growth medium was removed and

cell pellets were snap frozen immediately in liquid nitrogen, then kept at -80˚C. Cell lysates

were prepared by grinding the pellets in liquid nitrogen. The lysates were cleared by centrifu-

gation (13000 g) at 4˚C. To stabilize RNA, 500 μl of Trizole reagent (Thermo Fisher Scientific)

was added to 50–100 μl of cleared cell lysates, vortex mixed and stored at -80˚C. The samples

were brought to room temperature and 140 μl of chloroform was added to each tube, vortex

mixed and centrifuged at maximum speed at 4˚C for 10 mins. The aqueous fraction was iso-

lated and total RNA was extracted using the RNeasy mini kit (Qiagen), the volume was

brought to 900 μl using RLT buffer, 600 μl of 95% ethanol was added and mixed in order to

bind the RNA. The RNeasy protocol was then followed as recommended by the manufacturer

to isolate pure RNA. The ribosomal RNA (rRNA) was depleted using the Ribo-Zero rRNA

Removal kit (Illumina). Strand-specific RNA-seq libraries were prepared using the Stranded

RNA-seq Kit (Kapa Biosystems). The libraries were paired-end sequenced with Illumina

HiSeq 4000. The sequencing reads were mapped to the C. ljungdahlii genome NC_014328

with Bowtie2. FeatureCounts was used to estimate reads per gene. DESeq2 was used to deter-

mine differentially expressed genes. RNA-seq values were FPKM-normalized. Reads were

deposited to BioSample as SAMN07391098.

Revision of M-model

A previously published M-model, iHN637, was updated to remove obsolete metabolic reac-

tions and add new reactions to reflect current literature [18,19,24]. The C. ljungdahlii genome

was reannotated using RAST and PROKKA to account for the most recent information and

methods in functional annotations [20,22]. If both start and end sites of ORFs matched that of

the original annotation but the functions did not, the new function was also considered during

reconstruction of both M- and ME-models. Flux Balance Analysis simulations [34] were car-

ried out as described previously using COBRApy [35]. All M-model simulations maximized

growth through the biomass objective function [36].

Reconstructing the ME-model

Bidirectional hits and functional overlaps (using RAST annotations) between Escherichia coli,
Bacilllus subtilis, and C. ljungdahlii, as well as manual curation of the published annotation,

and genome annotations obtained by RAST and PROKKA were used to identify potential E-

matrix proteins [20–22]. Using E. coli [9,10,25] and B. subtilis [22] as reference and the method

established by Thiele et al. to fill in missing knowledge, template reactions [25] for the follow-

ing functions were reconstructed: essential rRNA and tRNA modifications, transcription,

translation, translocation, a single bilayer membrane constraint, and Fe-S cluster formation.
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Transcription units were downloaded from MetaCyc on March 23, 2015 [37] and rho inde-

pendent TUs were predicted using ARNold [38]. The gene-protein-reactions in iHN673 were

converted into protein complexes and updated using Uniprot and PDB annotations as well as

functional similarity to E. coli and B. subtilis proteins. The modeled protein complexes con-

tained updated stoichiometry and modifications. COBRAme was used to comprise this infor-

mation into a cohesive model [26].

All parameters from COBRAme were carried over except for the following: The (non)

growth associated maintenance (instead set to iHN637’s); the unmodeled protein proportion

of proteome (set to 0.35 based on relative protein weight of unmodeled proteins using RNA-

seq data as a 1-to-1 proxy for protein levels); and median enzyme efficiency (set to 25/s, based

on the average turnover rate of all acetogen enzymes listed in Schiel-Bengelsdorf and Dürre

[1] and downloaded from Brenda [27] on 10/25/15). CLJU_c00670 was used as the “unmo-

deled protein”, as it was the highest expressed unmodeled protein in CO2+H2 and fructose

RNA-seq data [5]. COBRAme also requires a “dummy protein” to solve for max growth rate

[26]. In iJL965-ME, this was a 26 amino acid protein used to catalyze reactions that required

an enzyme catalyst but did not have an identified homologue in C. ljungdahlii. For example, a

membrane version of the protein was used to transport metabolites without an assigned trans-

porter. Demands for glycerol, DNA, murein, ATP maintenance were added based on the

iHN637 biomass objective function [5]. Metabolic coupling constraints were added to ferre-

doxin and thioredoxin when they get reduced; otherwise, they would not be expressed despite

their importance.

tRNA modifying proteins were identified from the genome annotation. Secondary struc-

ture of tRNAs were predicted using tRNAscan-SE [39]. Each tRNA was manually checked to

see if they met the requirements for modification. If yes, then their modifying reactions were

added to the model (Tables 7–9 in S2 File). Selenocysteine was not included.

Similarly, ribosome-modifying proteins were identified from the genome annotation.

These proteins were then checked in literature to see if they were essential for E. coli or B. sub-
tilis. Then, target sequences for modification were identified to see if they existed in C. ljung-
dahlii. If both requirements existed, their modifying reactions were added to the model

(Tables 4–6 in S2 File).

NifU was used as the carrier protein for iron-sulfur formation, while sulfur was added

using IscS as the sulfur carrier and SufBC as the catalyst [40]. ErpA was used for final step of

iron-sulfur transfer. Hyp was used for nickel transfer [40].

Analyzing the ME-model

Using SoPlex and cobrapy, growth rate was optimized using binary_search(), as described in

COBRAme [26,35,41]. All analysis was carried out using python scripts and python in Jupyter

Notebooks, and visualization was provided by matplotlib [42,43]. An example Jupyter Note-

book containing code that can recreate Fig 5 is included in the supplements. Scipy and stats-

models were used for statistical analysis [44,45]. All error bars were 1 standard deviation. In

comparing in vivo data to in silico data, RNA-seq and Ribo-seq reads from C. ljungdahlii
grown on fructose, CO2+H2, and CO that correspond to the 965 modeled ORFs were summed

and logged [5,30]. To calculate the p-values, the expression values of the 965 ORFs were ran-

domly shuffled and the Pearson r values recalculated 1000 times.

The model used in this paper is provided as a pickle file (iJL965_ME.pickle). COBRAme-

compatible versions are available as json files. A version containing all of the reactions and

metabolites in iJL695-ME is available as iJL965_ME_reduced.json, and a fully functioning json

version can be created by loading iJL965_ME_full.json and running load_iJL965_me.
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3. Küsel K, Drake HL. Acetogens. Springer Netherlands; 2011. pp. 1–5. https://doi.org/10.1007/978-1-

4020-9212-1_2

4. Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation

in acetogenic bacteria. Nat Rev Microbiol. 2014; 12: 809–821. https://doi.org/10.1038/nrmicro3365

PMID: 25383604

5. Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, et al. Characterizing acetogenic

metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact.

2013; 12: 118. https://doi.org/10.1186/1475-2859-12-118 PMID: 24274140

6. Valgepea K, de Souza Pinto Lemgruber R, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, et al.

Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens. Cell Syst.

2017; 4: 505–515.e5. https://doi.org/10.1016/j.cels.2017.04.008 PMID: 28527885

7. Valgepea K, Loi KQ, Behrendorff JB, Lemgruber R de SP, Plan M, Hodson MP, et al. Arginine deimi-

nase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoetha-

nogenum. Metab Eng. 2017; 41: 202–211. https://doi.org/10.1016/j.ymben.2017.04.007 PMID:

28442386

8. Islam MA, Zengler K, Edwards EA, Mahadevan R, Stephanopoulos G, Horsman D, et al. Investigating

Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr

Biol. The Royal Society of Chemistry; 2015; 7: 869–882. https://doi.org/10.1039/C5IB00095E PMID:

25994252

9. Liu JK, O’Brien EJ, Lerman JA, Zengler K, Palsson BO, Feist AM. Reconstruction and modeling protein

translocation and compartmentalization in Escherichia coli at the genome-scale. BMC Syst Biol. 2014;

8: 110. https://doi.org/10.1186/s12918-014-0110-6 PMID: 25227965

10. O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. Genome-scale models of metabolism and

gene expression extend and refine growth phenotype prediction. Mol Syst Biol. 2014; 9: 693–693.

https://doi.org/10.1038/msb.2013.52 PMID: 24084808

11. Kopke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, et al. 2,3-Butanediol production by aceto-

genic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ

Microbiol. 2011; 77: 5467–5475. https://doi.org/10.1128/AEM.00355-11 PMID: 21685168

12. Thiele DJ, Gitlin JD. Assembling the pieces. Nat Chem Biol. NIH Public Access; 2008; 4: 145–7. https://

doi.org/10.1038/nchembio0308-145 PMID: 18277968

13. Oprea TI, Tropsha A, Faulon J-L, Rintoul MD. Systems chemical biology. Nat Chem Biol. NIH Public

Access; 2007; 3: 447–50. https://doi.org/10.1038/nchembio0807-447 PMID: 17637771

14. Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Bio-

phys Acta. NIH Public Access; 2008; 1784: 1873–98. https://doi.org/10.1016/j.bbapap.2008.08.012

PMID: 18801467

15. Martin WF. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biologi-

cal energy conservation. FEBS Lett. 2012; 586: 485–493. https://doi.org/10.1016/j.febslet.2011.09.031

PMID: 21978488

16. Phillips JR, Klasson KT, Clausen EC, Gaddy JL. Biological production of ethanol from coal synthesis

gas. Appl Biochem Biotechnol. 1993; 38: 559–571.

17. Bender G, Pierce E, Hill JA, Dartya JE, Ragsdale SW. Metal centers in the anaerobic microbial metabo-

lism of CO and CO2. Metallomics. 2011; 797–815. https://doi.org/10.1039/c1mt00042j PMID:

21647480

18. Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, et al. Energy conservation associated with etha-

nol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. Metcalf

WW, editor. J Bacteriol. 2015; 197: 2965–2980. https://doi.org/10.1128/JB.00399-15 PMID: 26148714

19. Tan Y, Liu Z-Y, Liu Z, Li F-L. Characterization of an acetoin reductase/2,3-butanediol dehydrogenase

from Clostridium ljungdahlii DSM 13528. Enzyme Microb Technol. 2015; 79–80: 1–7. https://doi.org/10.

1016/j.enzmictec.2015.06.011 PMID: 26320708

Predicting proteome allocation, overflow metabolism, and metal requirements in an acetogen

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006848 March 7, 2019 14 / 16

https://doi.org/10.1016/j.febslet.2012.04.043
http://www.ncbi.nlm.nih.gov/pubmed/22710156
https://doi.org/10.1016/j.copbio.2013.12.001
https://doi.org/10.1016/j.copbio.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24863900
https://doi.org/10.1007/978-1-4020-9212-1_2
https://doi.org/10.1007/978-1-4020-9212-1_2
https://doi.org/10.1038/nrmicro3365
http://www.ncbi.nlm.nih.gov/pubmed/25383604
https://doi.org/10.1186/1475-2859-12-118
http://www.ncbi.nlm.nih.gov/pubmed/24274140
https://doi.org/10.1016/j.cels.2017.04.008
http://www.ncbi.nlm.nih.gov/pubmed/28527885
https://doi.org/10.1016/j.ymben.2017.04.007
http://www.ncbi.nlm.nih.gov/pubmed/28442386
https://doi.org/10.1039/C5IB00095E
http://www.ncbi.nlm.nih.gov/pubmed/25994252
https://doi.org/10.1186/s12918-014-0110-6
http://www.ncbi.nlm.nih.gov/pubmed/25227965
https://doi.org/10.1038/msb.2013.52
http://www.ncbi.nlm.nih.gov/pubmed/24084808
https://doi.org/10.1128/AEM.00355-11
http://www.ncbi.nlm.nih.gov/pubmed/21685168
https://doi.org/10.1038/nchembio0308-145
https://doi.org/10.1038/nchembio0308-145
http://www.ncbi.nlm.nih.gov/pubmed/18277968
https://doi.org/10.1038/nchembio0807-447
http://www.ncbi.nlm.nih.gov/pubmed/17637771
https://doi.org/10.1016/j.bbapap.2008.08.012
http://www.ncbi.nlm.nih.gov/pubmed/18801467
https://doi.org/10.1016/j.febslet.2011.09.031
http://www.ncbi.nlm.nih.gov/pubmed/21978488
https://doi.org/10.1039/c1mt00042j
http://www.ncbi.nlm.nih.gov/pubmed/21647480
https://doi.org/10.1128/JB.00399-15
http://www.ncbi.nlm.nih.gov/pubmed/26148714
https://doi.org/10.1016/j.enzmictec.2015.06.011
https://doi.org/10.1016/j.enzmictec.2015.06.011
http://www.ncbi.nlm.nih.gov/pubmed/26320708
https://doi.org/10.1371/journal.pcbi.1006848


20. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30: 2068–2069.

https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063
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