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Abstract: Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian
cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated
ascites, which also can or not contain malignant cells. The goal of this study was to analyze the
functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their
expression of activating receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and
presence of EOC cells. NK cell function was evaluated by the expression of the degranulation
marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood.
Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all
the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local
stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells.
The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to
EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α,
suggesting inflammation related to the malignancy. In conclusion, the functional performance of
NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment
of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive
tumor microenvironment.

Keywords: tumor microenvironment; regulatory T-lymphocytes; natural killer activating
receptors; CD107a

1. Introduction

Epithelial ovarian cancer (EOC) has the highest mortality rate of all gynecological cancers.
Its lethality is often due to the advanced stage of the disease at diagnosis. In cases of borderline
ovarian tumor or early stage EOC, when the tumor is limited to its location, surgery can benefit 92%
of cases. However, 61% of patients present at an advanced stage, and despite therapeutic advances,
only 27% survive for 5 years after diagnosis [1]. One of the reasons for late diagnosis is that ovarian
cancer is asymptomatic until the occurrence of abdominal bloating or swelling, symptoms commonly
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associated with ascites and metastases beyond the ovary [2]. Peritoneal ascites are a distinguishable
feature of patients with advanced ovarian cancer, and is a result of the inflammatory response triggered
by the malignancy. Further, malignant cells are known for their ability to seed the peritoneal cavity and
spread through lymphatic vessels that drain the ovaries to the para-aortic and pelvic lymph nodes [3].
Ascites thus contain soluble factors and cells consistent with the tumor microenvironment [4–6].

The presence of lymphocytes, either tumor-infiltrating lymphocytes (TILs) or tumor-associated
lymphocytes (TALs), in ovarian tumors, has been correlated with disease progression and patient
outcome [7]. Specifically, patients treated with surgical resection and chemotherapy, whose tumors
contained CD3+ T cells, had a significantly higher 5-year survival rate compared to patients whose
tumors lacked infiltrating T cells [8,9]. Furthermore, when the subtype CD8+ TILs were analysed,
they showed a stronger association with prolonged survival than the whole CD3+ TIL population [10].
In contrast, high numbers of T regulatory (T-reg) lymphocytes in tumors were associated with
shortened survival and impairment of immune functions [11–13].

Interestingly, the presence of different T lymphocyte subsets, such as CD4+, CD8+, and T-regs,
has been reported in ascites associated with ovarian cancer, begging the question of whether
the immune suppressive tumor microenvironment can and should be extended to the ascites
fluid present in these patients. This question is especially important in response to recent
reports by Landskron et al. [14], who demonstrated that activated regulatory and memory T cells
accumulate in malignant ascites. Thus, the lymphocytes profile in ascites assembles elements from
an ongoing immunological response against the tumor, together with the generation of a suppressive
microenvironment, but is currently poorly understood. In addition to T-regs, the immune suppressive
cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β have also been found responsible
for immune suppressive tumor microenvironments [15–18].

Natural killer (NK) cells are lymphocytes known by their capacity to eliminate neoplastic cells or
cells infected by viruses, without previous stimulation [19–22]. Their cytotoxic activity is determined
by a balance of inhibitory and activating stimuli that result from interactions of NK cell-expressed cell
surface receptors with their respective ligands on the target cell [23]. Specifically, NK cell-expressed
inhibitory receptors recognize HLA class I molecules, and include killer Ig-like receptors (KIRs),
CD94/NKG2A, and leukocyte Ig-like receptor B1 (LILR-B1) [24,25]. Activating ligands are recognized
by a variety of NK cell-expressed activating receptors, such as DNAX accessory molecule-1 (DNAM-1),
natural cytotoxicity receptors (NKp30, NKp44, NKp46), and NKG2D [26–29]. NK cells also have
the capacity to recognize target cells coated with antibodies through antibody-dependent cellular
cytotoxicity (ADCC), a mechanism that involves activation of NK cells by Fc-based ligation of the
activating receptor CD16 (FcγRIIIa-b) [30].

Although it has been reported that TILs and TALs contain NK cells, little is known about their
antitumor functions and their modulation by the tumor microenvironment in ovarian carcinoma,
as most of the existing information is derived from NK cells isolated from patient peripheral blood.
Initial studies showed that NK cells from patients with ovarian cancer have poor cytotoxic functions
against tumors [31–34], and one study reported that high numbers of infiltrating NK cells in tumors was
associated with a worse prognosis [35], which is in conflict with other reports on NK cell infiltration and
outcome that focus on different types of cancers [36]. Studies have shown that the antitumor function
of NK cells from peripheral blood of patients with ovarian cancer can be significantly augmented
by in vitro stimulation with recombinant IL-2 [31,32], and that primary malignant ovarian cells are
susceptible to killing by allogeneic NK lymphocytes. However, autologous NK cells do not display
significant cytotoxicity in vitro [37,38]. These observations suggest a functional impairment of NK
cells in patients who suffer from ovarian cancer, possibly due to the exposure of NK cells to ovarian
cancer cells and/or elements present in the tumor microenvironment.

Two studies have recently analyzed NK cells in peritoneal effusions from patients with ovarian
carcinoma. In this regard, functional failure of NK cells, was implicated by their defective expression
of activating receptors DNAM-1 [39] and NKp30 [40], as a consequence of the overexposure to
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their ligands, CD155 and B7-H6 respectively. Another mechanism that has recently been implicated
in the suppression of NK cells at the tumor site involves their immunomodulation by adenosine.
In physiological conditions, adenosine is produced by regulatory T-lymphocytes to modulate immune
response [41]. However, the expression of ectonucleotidase CD39 and CD73, and the production of
adenosine by breakdown of ATP have been detected in EOC cells [42]. The goal of this study was to
characterize NK cells from EOC-associated ascites in relation to their degranulation and response to
IL-2. These functional parameters of NK cells were analyzed in terms of their expression of activating
receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and presence of EOC cells.
For comparison, the same parameters were evaluated in NK cells derived from the blood.

2. Results

2.1. Degranulation of NK Cells and Their Response to IL-2

The functional characteristics of NK cells from EOC cell-free ascites (ASC), ascites with EOC
cells (ASC-CA), blood of control donors (BC) and blood of patients (BP) were evaluated on resting
NK cells and after overnight IL-2 stimulation (Figure 1). The percentage of NK cell degranulation,
assessed by the expression of CD107a marker, was significantly higher (p < 0.05) after stimulation
with IL-2 compared to resting NK cells in the ASC, BC and BP groups. In contrast, IL-2 treatment had
no significant effect on degranulation of NK cells in the ASC-CA group (Figure 1a), highlighting the
inability of ASC-CA-derived NK cells to respond to activating cytokines. Interestingly, degranulation of
resting NK cells from the ASC group was significantly higher than resting NK cells of all the other
groups, and became even higher after IL-2 stimulation, as indicated by the high percentage of NK
cells expressing CD107a (Figure 1a). Additionally, the variation of the mean fluorescence intensity
(vMFI) in the ASC group (vMFI = 582.12 ± 682.04) was significantly higher than the BC group
(vMFI = 25.98 ± 24.83), but did not differ in relation to the BP group (vMFI = 25.33 ± 82.14) or the
ASC-CA group (vMFI = 89.95 ± 167.85) (Figure 1d, vMFI was calculated by subtracting CD107a MFI
of resting NK cells from CD107a MFI of IL-2 stimulated NK cells).

2.2. Expression of Activating Receptors on NK Cells

The frequency of NK cells was evaluated in the BC, ASC, and ASC-CA groups (Figure 2a),
as was their expression of the activating receptors DNAM-1, NKp30, and CD16 under the same
sampling conditions (Figure 2b). Importantly, the frequency of NK cells expressing activating receptors
DNAM-1 and CD16 was significantly reduced in ASC and ASC-CA groups compared to the BC group
(Figure 2b). This observation, together with the low fluorescence intensity of DNAM-1, NKp30 and
CD16 molecules on NK cells from ASC and ASC-CA groups in relation to the BC group (Figure 2c),
indicate down-regulation of important activating receptors, which are known to mediate NK cell
antitumor immunity.

2.3. Cytokines Profile in Blood Plasma and Ascites Supernatant

The concentrations of cytokines IL-2, IL-4, IL-5, IL-10, TNF-α, IFN-γ, and TGF-β were determined
in the plasma of the BC group, and the ascites supernatants of the ASC and ASC-CA groups.
IL-2 concentration was significantly higher in the ASC group compared to the BC group, and the
concentration of IL-4 was significantly lower in the ASC-CA group compared to the BC group.
Furthermore, when we investigated TNF-α levels in the ASC-CA group, we found them to be
significantly higher in the ASC-CA group compared to all other groups (p < 0.05) (Figure 3), possibly as
a result of an aberrant inflammatory response to the malignancy.



Int. J. Mol. Sci. 2017, 18, 856 4 of 15Int. J. Mol. Sci. 2017, 18, 856 4 of 15 

 

Figure 1. (a) Comparison of degranulation between resting and IL-2 stimulated natural killer (NK) 
cells from blood control (BC), blood of patients with advanced ovarian cancer (BP), epithelial ovarian 
cancer (EOC) cell-free ascites (ASC) and ascites with EOC cells (ASC-CA). Degranulation was 
evaluated by the expression of the CD107a molecule on NK cells, resting and after IL-2 stimulation 
overnight, while coincubated (2 h, ratio 1:1) with K562 target cells. Overnight stimulation with rhIL-
2 (1000 UI/mL) was conducted in RPMI-1640 medium supplemented with FBS (10%) and L-glutamine 
(2 mM). Values are presented in whisker plots as medians; (b) Histograms are representative of the 
CD107a fluorescence intensity profiles of NK cells from ASC and ASC-CA and, the fluorescence 
intensity levels of the samples were the closest to the mean of the group represented. Basal curve 
indicates the “background” expression of CD107a of resting NK cells in the absence of target cells 
K562; (c) Flow cytometry-based analysis of NK cell degranulation. To determine CD107a expression, 
NK cells were gated from the whole lymphocyte population, based on their expression of CD56 
molecule and absence of CD3; (d) Variation of the mean fluorescence intensity (MFI) was calculated 
by subtracting CD107a MFI of resting NK cells from CD107a MFI of IL-2 stimulated NK cells. 
Statistical analyses within groups were performed by Student’s t-test for dependent samples; among 
groups by ANOVA followed by Tukey’s multiple comparisons test, and p-values (* p < 0.05 on the 
brackets) indicate significant statistical differences. 

Figure 1. (a) Comparison of degranulation between resting and IL-2 stimulated natural killer (NK)
cells from blood control (BC), blood of patients with advanced ovarian cancer (BP), epithelial ovarian
cancer (EOC) cell-free ascites (ASC) and ascites with EOC cells (ASC-CA). Degranulation was evaluated
by the expression of the CD107a molecule on NK cells, resting and after IL-2 stimulation overnight,
while coincubated (2 h, ratio 1:1) with K562 target cells. Overnight stimulation with rhIL-2 (1000 UI/mL)
was conducted in RPMI-1640 medium supplemented with FBS (10%) and L-glutamine (2 mM).
Values are presented in whisker plots as medians; (b) Histograms are representative of the CD107a
fluorescence intensity profiles of NK cells from ASC and ASC-CA and, the fluorescence intensity
levels of the samples were the closest to the mean of the group represented. Basal curve indicates the
“background” expression of CD107a of resting NK cells in the absence of target cells K562; (c) Flow
cytometry-based analysis of NK cell degranulation. To determine CD107a expression, NK cells were
gated from the whole lymphocyte population, based on their expression of CD56 molecule and absence
of CD3; (d) Variation of the mean fluorescence intensity (MFI) was calculated by subtracting CD107a
MFI of resting NK cells from CD107a MFI of IL-2 stimulated NK cells. Statistical analyses within
groups were performed by Student’s t-test for dependent samples; among groups by ANOVA followed
by Tukey’s multiple comparisons test, and p-values (* p < 0.05 on the brackets) indicate significant
statistical differences.
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Figure 2. (a) Comparison of NK cell frequencies within lymphocytes from blood control (BC), blood 
from patients with advanced ovarian cancer (BP), EOC cell-free ascites (ASC) and ascites with EOC 
cells (ASC-CA); (b) Comparison of the activating receptors’ expression (DNAM-1, NKp30 and CD16) 
on NK cells, between ascites (ASC and ASC-CA) and blood from control women (BC). Values are 
presented in whisker plots as medians; (c) Histograms are representative of the activating receptors’ 
fluorescence intensity on NK cells; the fluorescence intensity levels of the samples were the closest to 
the mean of the group in each receptor. To determine the activating receptors’ expression, NK cells 
were gated from the whole lymphocyte population, based on their expression of CD56 molecule and 
absence of CD3 (see analysis strategy shown in Figure 1c). Statistical analyses for each activating 
receptor were performed by ANOVA followed by Dunnett´s multiple comparisons test against the 
control group (BC), and p-values (* p < 0.05 on the brackets) indicate significant statistical differences. 

 
Figure 3. Concentration of cytokines (IL-2, IL-4, IL-5, IL-10, TNF, IFN-γ and TGF-β) in the peripheral 
blood plasma of controls (BC = 8), ascites supernatant of EOC cell-free ascites (ASC = 5) and ascites 
with EOC cells (ASC-CA = 5). Values are presented in whisker plots as medians. Statistical analyses 
were performed by ANOVA followed by Tukey’s multiple comparisons test, and p-values (* p < 0.05 
on the brackets) indicate significant statistical differences. 

Figure 2. (a) Comparison of NK cell frequencies within lymphocytes from blood control (BC),
blood from patients with advanced ovarian cancer (BP), EOC cell-free ascites (ASC) and ascites with
EOC cells (ASC-CA); (b) Comparison of the activating receptors’ expression (DNAM-1, NKp30 and
CD16) on NK cells, between ascites (ASC and ASC-CA) and blood from control women (BC). Values are
presented in whisker plots as medians; (c) Histograms are representative of the activating receptors’
fluorescence intensity on NK cells; the fluorescence intensity levels of the samples were the closest to
the mean of the group in each receptor. To determine the activating receptors’ expression, NK cells
were gated from the whole lymphocyte population, based on their expression of CD56 molecule and
absence of CD3 (see analysis strategy shown in Figure 1c). Statistical analyses for each activating
receptor were performed by ANOVA followed by Dunnett´s multiple comparisons test against the
control group (BC), and p-values (* p < 0.05 on the brackets) indicate significant statistical differences.
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Figure 3. Concentration of cytokines (IL-2, IL-4, IL-5, IL-10, TNF, IFN-γ and TGF-β) in the peripheral
blood plasma of controls (BC = 8), ascites supernatant of EOC cell-free ascites (ASC = 5) and ascites
with EOC cells (ASC-CA = 5). Values are presented in whisker plots as medians. Statistical analyses
were performed by ANOVA followed by Tukey’s multiple comparisons test, and p-values (* p < 0.05 on
the brackets) indicate significant statistical differences.
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2.4. Phenotype of T Lymphocyte Subpopulations and T-Reg Correlation with NK Cell Function

The frequency of CD3+ T-lymphocytes (Figure 4a), their subpopulation of T CD8+ and CD4+

(Figure 4b), and T-reg cells (CD3+CD4+CD25+CD127−) (Figure 4c) were determined in the BC, ASC,
and ASC-CA groups. A significantly lower percentage (p < 0.05) of T cells was observed in the ASC-CA
group compared to the ASC group. In parallel, the proportion of T-regs was significantly higher in
the ASC-CA group compared to the ASC group. The frequency of T-regs was correlated with the
expression of CD107a on resting and IL-2-stimulated NK cells in ascites (Figure 5). A mild inverse
correlation was observed in ascites between resting CD107a+ NK cells and T-regs (R2 = 0.1378), and also
between IL-2 stimulated CD107a+ NK cells and T-regs (R2 = 0.2992).
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Figure 4. (a) Comparison of CD3+ T-lymphocyte frequencies among lymphocytes from blood control
(BC), EOC cell-free ascites (ASC) and ascites with EOC cells (ASC-CA); (b) Comparison of T lymphocyte
subsets (CD8+ and CD4+) within CD3+-T lymphocytes; (c) Comparison of T-reg lymphocytes subset
(CD3+CD4+CD25+CD127−) within CD4+ T-lymphocytes. Values are presented in whisker plots as
medians. Statistical analyses were performed by ANOVA followed by Tukey’s multiple comparisons
test, and p-values (* p < 0.05 on the brackets) indicate significant statistical differences.
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Figure 5. Correlation between T-reg lymphocytes in ascites (ASC, ascites of patients without EOC cells
and ASC-CA, ascites of patients with EOC cells) and activated resting or IL-2 stimulated NK cells,
represented by the expression of CD107a molecule after co-incubation with K562 malignant cells.

3. Discussion

The tumor microenvironment in EOC is frequently mentioned as having immunosuppressive
properties [18,43]. Cellular and soluble components of the immune system constitute this
microenvironment, and their recruitment or production are related to an inflammatory response
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to the tumor malignancy. In this study, we successfully used ascites from patients with EOC to evaluate
the functional characteristics of NK cells and their modulation by the tumor microenvironment.
Based on previous studies reporting that NK cells from peripheral blood of patients with ovarian
malignancies display poor cytotoxicity [44,45], we hypothesized that NK cells from EOC-associated
ascites should also be functionally impaired. However, we observed that ascites can affect NK cells by
either promoting or impairing NK function, depending on their contents.

Our results showed that ascites with EOC cells present, as confirmed by cytology results,
had a suppressive effect on NK cell function, as measured by the degranulation assay. In contrast,
EOC cell-free ascites exhibited the highest level of NK degranulation, either in their resting state or
after IL-2 stimulation, suggesting a previous local stimulation. Specifically, this previous stimulation
was not only absent in NK cells from ascites with EOC cells, but in addition, these NK cells were
hyporesponsive to IL-2 stimulation (Figure 1a, groups ASC and ASC-CA). Additionally, ascites with
EOC cells were also characterized by the presence of an elevated percentage of T-reg lymphocytes
and inflammatory cytokines, both of which have been associated with the generation of a favorable
environment for tumor development in ovarian cancer patients [43,46,47].

The importance of the activating receptors for NK antitumor functions has been demonstrated in
patients with ovarian cancer [38–40]. As mentioned before, NK cell cytolytic activity is dependent on
inhibitory and activating signals resulting from the interaction of their receptors with their respective
ligands on target cells. Consistent with Carlsten’s findings [39], our results demonstrated a reduction in
NK expression of DNAM-1 and CD16, in EOC-associated ascites. Additionally, and similar to Pesce’s
findings [40], our data also indicated a reduction of NKp30 expression in NK cells, although this result
has not been statistically significant, possibly due to our limited number of samples. Down-regulation
of the NK activating receptors has been explained in terms of their overexposure to their own
ligand molecules. Interestingly, the presence of ligands for the activating receptors of NK cells
has been demonstrated not only on EOC cells, but also as soluble molecules in ascites and blood
of patients [39,40,48]. Studies by Carlsten et al. [36,39] showed that the DNAM-1 ligand, the CD155
molecule, is highly expressed on ovarian carcinoma cells, and overexposure of NK cells to these
cells can induce a down-regulation of DNAM-1 by cell-to-cell contact. Similarly, Pesce et al. [40]
implicated the B6-H7 ligand molecule with down-modulation of the activating receptor NKp30 in
NK cells from ovarian cancer-associated ascites. Thus, both mechanisms have been associated with
functional impairment of NK cells in patients with ovarian cancer. Additionally, MUC16 which were
found to be elevated in plasma from patients with advanced EOC has been reported to down-regulate
the activating receptor CD16 [49]. However, our data showed that NK cells from EOC cell-free
ascites (ASC group) had the highest levels of degranulation, either for resting or IL-2 stimulated
NK cells, whilst NK cells from ascites with EOC cells (ASC-CA group) were hyporesponsive to IL-2
stimulation. Thus, these findings indicated that in our settings, down-regulation of the activating
receptors DNAM-1, NKp30 or CD16, was not, by itself, able to impair NK cell degranulation and their
response to IL-2.

With respect to the cytokines, our results showed that cytokine profiles were significantly different
between ascites with and without EOC cells, even though concentrations of the cytokines analyzed do
not seem to be directly relevant for NK cell function. Although, our cytokine results have been obtained
from an accurate evaluation, the levels of cytokines could have been underestimated, due to the ascites
generating process. Interestingly, the peritoneum encloses a virtual space, in which its volume can
be quickly and dramatically altered during ascites development, mainly in women with advanced
ovarian cancer. Such a process might dilute soluble molecules present in the abdominal cavity, and be
accounted for the low levels of cytokines observed and their high variability. Our results showed
elevated levels of IL-2 in the ASC group compared to the BC group. This is consistent with the high
level of degranulation of NK cells from ASC group, and suggests a previous stimulation of NK cells
in the tumor site. This observation is also in agreement with our previous study which showed that
continuous in vitro stimulation with IL-2 continuously increases NK activation [38]. Elevated TNF-α
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levels observed in ascites with EOC cells suggests an inflammatory process that possibly benefits
tumor development. The contribution of inflammatory cytokines to tumor development has been
investigated by other studies [43,47,50]. In particular, in ovarian cancer, Kulbe et al. [46] showed that in
mice, TNF-α secretion by EOC cells stimulates a constitutive network consisting of cytokines (including
IL-6 showed in Figure S1), chemokines, and angiogenic factors, which promotes colonization of the
peritoneum and neovascularization for the development of tumor implants. In our advanced-stage
EOC patients, a similar process might be occurring in the tumor microenvironment.

Moreover, the presence of high numbers of T-regs in ascites with EOC cells corroborates the
idea that there was an ongoing inflammatory process. T-regs are known to counteract inflammation
by controlling immune cells and enabling maintenance of tissue homeostasis [41]. Similar to our
results, Landskron et al. [14] showed the accumulation of T-regs in ascites from EOC patients,
which positively correlated with the contents of EpCAM+ cells in ascites. They also confirmed
proliferation and recruitment of T-regs towards ascites by the expression of CCR4 and Ki-67,
and activation by the expression of CD147 and CTLA4 [14]. The T-regs observed in our ascites samples
were CD4+CD25+CD127− cells, which is a phenotype consistent with activated T-regs, since in T-regs
the CD127 molecule inversely correlates with FoxP3, a well-known marker for activation of immune
cells [51–54].

T-regs have the ability to secrete IL-10 and TGF-β to modulate helper and cytotoxic T-lymphocytes,
dendritic cells, monocytes, and B lymphocytes [55–57], as well as through cell-to-cell contact by the
interaction of CTLA on T-regs with CD80 and CD86 on dendritic cells [58]. Ghiringhelli et al. [12]
showed in an in vitro system that the cytolytic activity of NK cells was impaired by soluble TGF-β
or T-reg lymphocytes, and by using anti-TGF-β as a blocker, NK cell cytolytic activity was restored.
Similarly, Smyth et al. [13] also showed that anti-TGF-β could restore NK cell cytolytic activity in the
presence of T-regs. However, they indicated that cell-to-cell contact, i.e., mediated by TGF-β on the
T-reg surface, was necessary, since co-cultivation of T-reg and NK cells in a transwell system, or the
supernatant of activated T-regs, had no inhibitory effect on NK cell activity. However, a recent study
by Viel et al. [59] provided evidence that TGF-β inhibits the activation of NK cells by repressing the
mTOR pathway. Interestingly, they showed that suppression of TGF-β signaling in NK cells enhanced
the ability of NK cells to control metastases in murine models.

In our study, ascites with EOC cells were the only group with impaired NK cell response to
IL-2, as demonstrated by the degranulation assay. Considering that the levels of TGF-β and IL-10
were similar between EOC cell-free ascites and ascites with EOC cells, and the amount of T-regs
was significantly higher in ascites with EOC cells, the presence of T-regs is most likely implicated
in the impairment of NK cell response to IL-2 than the presence of soluble forms of TGF-β and
IL-10. Moreover, our data on the correlation between the amounts of T-regs in ascites and NK cell
degranulation (Figure 5) indicated that, in our system, T-regs might exert a mild modulatory effect on
NK cell degranulation, around 30% of the whole effect (or R2 = 02992), in NK cells that were stimulated
with IL-2. Instead, when EOC cells were present in ascites, stimulation with IL-2 was ineffective to
increase NK cell degranulation.

Our data provide insights into the paracentesis procedure to remove ascites fluid, often conducted
in patients with advanced ovarian cancer. EOC cell-free ascites with functional NK cells could be
beneficial to the patient, however, ascites containing EOC cells with impaired NK cell function,
and correlated with an increase in T-regs, most likely negatively affect the local immune response
to the tumor. Therefore, the removal of ascites should be carefully considered, since it could affect
an ongoing beneficial immunological response in the peritoneal cavity of EOC patients. In conclusion,
the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC
cells. In contrast to EOC cell-free ascites, ascites with EOC cells displayed an immunosuppressive tumor
microenvironment, with high contents of T-reg lymphocytes, down-regulation of NK cell-activating
receptors and NK hyporesponsiveness to IL-2 stimulation, as demonstrated by the degranulation assay.
Among the suppressive mediators in ovarian cancer-associated ascites, the presence of EOC cells seems
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to play a role in the impairment of NK cells’ response to IL-2 stimulation. However, whether EOC
cells in ascites are the cause or consequence of NK cells’ hyporesponsiveness remains to be clarified in
future studies.

4. Materials and Methods

4.1. Patients and Samples

For this study, we included 14 EOC patients with ascites, treated in the Pelvic Oncology Clinic and
scheduled for surgical intervention, and 12 healthy women (controls) matched in age (57.8 ± 11.6 years
and 60.2 ± 12.9 years, respectively), treated in the Menopause Clinic of the Women’s Hospital of the
University of Campinas (Campinas, Brazil). Among the 14 ascites samples, six ascites displayed
malignant ovarian cells through cytology evaluation. Additionally, serum biomarkers such as MUC16
are an important component in the workup of women with adnexal masses. In the Women’s Hospital
of the University of Campinas, MUC16 is routinely evaluated in blood of women assisted in Pelvic
Oncology Clinic. As expected, the levels of MUC16 were elevated in serum from patients with EOC
associate ascites which were included in the study (CA125 = 1535.5 ± 1250.6 U/mL, ranging from
126 to 3963 U/mL). However, MUC16 was not assessed in ascites. The study was approved by
the Research Ethics Committee of University of Campinas (27 September 2011, #897/2011) and was
registered on the Brazilian National Health Council (CAAE: 0807.0.146.000-11). Signed informed
consent was obtained from all patients. Specific patient characteristics at the time of sample collection
are provided in Table 1.

Table 1. Characteristics of epithelial ovarian cancer patients included in the study at the time of ascites
sampling. Staging classification followed FIGO Committee on Gynecologic Oncology guidelines.

Patient’s
Code

Age
(Years)

Stage
(FIGO) Histological Classification Ascites Cytology

Results for EOC Cells

21 57 IIB High-grade serous adenocarcinoma Negative
24 64 IIIC Low-grade serous adenocarcinoma Positive
30 63 IIIC High-grade serous adenocarcinoma Negative
40 51 IIIC High-grade serous adenocarcinoma Positive
55 56 IIIC High-grade serous adenocarcinoma Positive
61 58 IIIC High-grade serous adenocarcinoma Negative
70 50 IIIC Adenocarcinoma NOS Negative
73 71 IV High-grade serous adenocarcinoma Negative
74 43 IIIC Adenocarcinoma NOS Positive
75 64 IIIC High-grade serous adenocarcinoma Negative
82 45 IIIC High-grade serous adenocarcinoma Positive
86 70 IIIC Adenocarcinoma NOS Negative
89 79 IV High-grade serous adenocarcinoma Positive
93 38 IIIC Mucinous adenocarcinoma Negative

NOS = not otherwise specified.

Blood samples were collected using 10 mL vacuum blood-sampling tubes containing sodium
heparin (Vacuette, Campinas, Brazil). Ascites samples from patients with ovarian cancer were collected
by ultrasonography-guided paracentesis, quickly transferred to 50 mL conical tubes, and sodium
heparin added (5 µL/mL of heparin; liquemine 5000 UI/mL, Roche, Rio de Janeiro, Brazil) under
sterile conditions. Ascites samples were classified as ascites without EOC cells, or ascites with
EOC cells. Initially, 1 mL of every sample of blood and 5 mL of every sample of ascites were
transferred to new conical tubes and centrifuged at 600× g for 5 min to obtain cell-free plasma
and ascites fluid, respectively. Then, the resulting supernatants were kept frozen (−20 ◦C) until used
for cytokine quantification.
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Subsequently, peripheral blood mononuclear cells (PBMC) and the cellular fraction of the ascites
were isolated by gradient centrifugation, using Ficoll-Paque Plus (GE Healthcare, Uppsala, Sweden),
followed by a washing procedure performed twice (centrifuged at 600× g for 5 min) using a balanced
salt solution (DMPBS-FLUSH; Nutricell Nutrientes Celulares Ltda, Campinas, Brazil). Cell numbers
were assessed in a Neubauer chamber using acetic acid solution (2% v/v in PBS) and the trypan blue
(1% w/v in PBS) exclusion method to assess viability. Replicates of the resulting cell pellets were
cryopreserved in fetal bovine serum (FBS; Nutricell Nutrientes Celulares Ltda) containing 10% DMSO
(Sigma, St. Louis, MO, USA), for subsequent phenotyping of the lymphocytes and evaluation of NK
cell function.

Thus, four experimental groups were defined based on the characteristics of the samples: Ascites
of EOC patients without malignant cells also mentioned as EOC cell-free ascites (ASC, n = 8); ascites of
EOC patients with malignant cells (ASC-CA, n = 6); blood of control donors (BC, n = 12); and blood of
patients (BP, n = 8). Given to the management strategy for blood sampling, the BP group had blood
from eight out of the 14 patients from whom ascites were obtained (four patients of the group ASC
and four patients of the group ASC-CA).

4.2. Resting and Overnight rhIL-2 Stimulated Effector Cells

Cryovials with ascites cells (ASC and ASC-CA groups) or PBMC (BC or BP groups) were removed
from the liquid nitrogen, thawed at room temperature and washed twice with PBS. After washing,
cell number and viability were assessed and the cell suspension was adjusted to a density of
1 × 106 cells/mL with RPMI-1640 (Nutricell Nutrientes Celulares Ltda) supplemented with 10% FBS
and 2 mM L-Glutamine. Each of the cell suspensions obtained by this procedure was split into
two equal parts, and 1000 U/mL of recombinant human IL-2 (rhIL-2) was added to one of them.
Both samples were then incubated overnight at 37 ◦C in 5% CO2.

4.3. K562 Cell Line Target Cells

The K562 (human erythromyeloblastoid) cell line, originally obtained from the American Type
Culture Collection (ATCC, Rockville, MD, USA), is routinely maintained in the laboratory and
phenotyped for its usual surface markers, particularly CD45+ and HLA−. The K562 cells are cultured
in vitro in RPMI-1640 medium supplemented with 10% FBS, 2 mM L-glutamine, and replenished with
fresh medium every 2–3 days.

4.4. NK Cell Degranulation Assay and Activating Receptor Phenotyping

The functional characteristics of NK cells were evaluated by a standard flow cytometric
degranulation assay, which is based on the quantification of cell surface-expressed CD107a (LAMP-1)
for the visualization and quantification of activated NK effector cells present in blood and ascites.
This method has been described previously by Bryceson et al. [60], for the evaluation of NK cell
functionality during target cell lysis. Effector cells (resting and IL-2-stimulated cells) and target cell
suspensions (K562 cell line) were prepared at a concentration of 2 × 106 cells/mL. The effector cell
suspensions were coincubated with target cells in a 1:1 ratio and in a final volume of 200 µL, in U
bottom microtubes (Jetbiofil, Guangzhou, China), in duplicate. Cells were spun down quickly (30× g
for 3 min) and incubated for 2 h at 37 ◦C. Tubes containing effector cells without target cells were
also prepared for quantification of basal expression of CD107a. After incubation, microtubes were
centrifuged (600× g for 5 min), supernatants discarded and cell pellets suspended in 50 µL of staining
solution (PBS supplemented with 2% FBS and 2 mM EDTA) containing the fluorochrome-conjugated
monoclonal antibodies (mAb) anti-CD3 APC-Cy7 (clone SK7), anti-CD56 PE-Cy7 (clone B159),
anti-CD107a PE-Cy5 (clone H4A3), anti-DNAM-1 FITC (clone DX11), anti-NKG2D APC (clone 1D11)
(BD Pharmingen™, San Jose, CA, USA), and anti-NKp30 PE (clone AF29-4D12) (Miltenyi Biotec,
Bergisch Gladbach, Germany). Cells were incubated for 30 min on ice and protected from light.
Cells were then washed twice (centrifuged at 600× g for 5 min), re-suspended in 400 µL PBS and
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subjected to flow cytometry analysis. Data acquisition was performed using a FACSVerse cytometer
with FACSuite software (Becton Dickinson, San Jose, CA, USA). Between 10,000 and 20,000 cells
were acquired. Data analysis was conducted using FlowJo software (Version 10), Tree Star, Ashland,
OR, USA). The lymphocyte population was identified by the forward scatter (FSC) and side scatter (SSC)
parameters, then FSC-Area vs. FSC-Height was used to eliminate doublets. Within the lymphocyte
population, NK cells were identified by anti-CD3 APC-Cy7 vs. anti-CD56 PE-Cy7 and gated on
CD3-negative CD56-positive cells. Within the NK cell population, the parameter anti-CD107a PE-Cy5
was analyzed to quantify degranulation levels (Figure 1c). A similar gating strategy was used for the
quantification of activating receptors within the NK cell population.

4.5. Lymphocyte Phenotyping

Lymphocytes present in PBMC (BC group) and ascites (ASC and ASC-CA groups) were
phenotyped for the identification of their subsets. A flow cytometric-based assay was used according to
standard procedures [37]. Briefly, the cells were mixed with 50 µL of staining solution containing a mix
of fluorochrome-conjugated monoclonal antibodies at a 1:50 dilution; anti-CD3 APC-Cy7 (clone SK7),
anti-CD4 PerCP-Cy5.5 (clone RPA-T4), anti-CD25 PE (clone M-A251), anti-CD56 PE-Cy7 (clone B159),
anti-CD127 Alexa Fluor647 (clone HIL-7R-M21) (BD Pharmingen™), and anti-CD8 FITC (clone OKT8)
(Miltenyi Biotec). Cells were incubated for 30 min on ice and protected from light. After the incubation,
cells were washed twice with PBS and the final pellets suspended for acquisition in a FACSVerse
cytometer using the FACSuite software (Becton Dickinson, San Jose, CA, USA). FlowJo software was
used for the data analysis. The lymphocyte population was identified by the FSC and SSC parameters,
and then FSC-Area vs. FSC-Height was used to eliminate doublets. Within the lymphocyte populations,
the CD3+ lymphocyte population was identified by anti-CD3 APC-Cy7. Within the CD3+ lymphocytes,
CD4+ and CD8+ populations were distinguished. Within the CD4+ population, the T-reg population
was quantified by the parameters anti-CD25 PE vs. anti-CD127 Alexa Fluor647.

4.6. Cytokines Profile

The presence of cytokines in blood plasma (BC group) and ascites supernatant (ASC and ASC-CA
groups) was determined by the CBA assay (Cytometric Bead Array, BD Biosciences, San Jose, CA, USA).
The kits used for the analysis of cytokines were the Th1/Th2 CBA kit, specific for human IL-2,
IL-4, IL-5, IL-10, TNF-α, and IFN-γ; and the Single Plex Flex Set CBA kit, specific for human
TGF-β1. Both experiments were conducted according to BD Biosciences manufacturer’s protocol.
Briefly, appropriate volumes of unknown samples (plasma or ascites fluid) were simultaneously
incubated with capture bead conjugated with a cytokine-specific antibody and the detection reagent
(phycoerythrin(PE)-conjugated antibody). As a result, sandwich complexes (capture bead + cytokine
+ detection reagent) are formed, which can be measured using flow cytometry. The intensity of PE
fluorescence of each sandwich complex reveals the concentration of that cytokine by comparison with
a standard curve.

4.7. Statistical Analysis

Comparison of variables within groups was performed using the Student’s t-test for dependent
samples. Multi-comparison analysis of variables was performed by ANOVA followed by a post hoc
multiple comparison test. The level of significance was set at p-value < 0.05.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/5/856/s1.
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Abbreviations

ADCC Antibody-dependent cellular cytotoxicity
APC-Cy7 Allophycocyanin-cyanine dye
ASC EOC cell-free ascites
ASC-CA Ascites of EOC patients with malignant cells
BC Blood of control women
BP Blood of patients with EOC
DNAM-1 DNAX accessory molecule-1
EOC Epithelial ovarian cancer
EpCAM Epithelial cell adhesion molecule
KIR Killer Ig-like receptor
LILR-B1 Leukocyte Ig-like receptor B1
vMFI Variation of mean fluorescence intensity
PE Phycoerythrin dye
PE-Cy7 Phycoerythrin-cyanine dye
TAL Tumor-associated lymphocyte
T-reg Regulatory T-lymphocyte
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