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Introduction
The history of the interleukin-1 (IL-1) family of 
11 cytokines began with the discovery of the first 
two members, IL-1α and IL-1β. IL-1 is a central 
mediator of innate immunity and is considered a 
master cytokine of local and systemic inflamma-
tion. IL-1α and IL-1β are encoded by distinct 
genes, bind to the same receptor (IL-1R1), and 
have similar biological properties. IL-1β is tran-
scribed as an inactive precursor that requires the 
assembly of the NLRP3 inflammasome to acti-
vate caspase 1, the enzyme that releases the bio-
logically active form of the cytokine. It mediates 
inflammation and enhances antigen-driven 
CD8+ T-cell differentiation, proliferation, mem-
ory, and migration into tissues. In contrast, IL-1α 

is functional and, following release from necrotic 
cells at the site of injury, can directly bind to the 
IL-1R1 of neighboring cells, activating a cascade 
of inflammatory cytokines and chemokines.1

Since its first observation in 1999 by McDermott 
et  al., IL-1β has assumed a pivotal role in the 
pathogenesis of autoinflammatory diseases 
(AIDs).2 This observation catapulted the IL-1 
family into clinical rheumatology research, and 
IL-1-pathway blocking became a crucial target 
for therapy.3

Indeed, the positive effects of anti-IL-1 treatment 
have been demonstrated in several AIDs. Three 
anti-IL-1 therapies are currently available: 
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canakinumab (an anti-IL-1β immunoglobulin), 
rilonacept (a dimeric fusion protein that binds 
the extracellular domains of IL-1α and IL-1β), 
and anakinra (ANA) [a recombinant IL-1-
receptor antagonist (IL-1RA)]. Canakinumab is 
approved for the treatment of cryopyrin-associ-
ated autoinflammatory syndrome (CAPS), 
tumor-necrosis-factor-receptor-associated peri-
odic syndrome (TRAPS), hyperimmunoglobu-
linemia D syndrome/mevalonate kinase deficiency 
(HIDS/MKD), colchicine-resistant familial med-
iterranean fever (FMF), systemic juvenile idio-
pathic arthritis (sJIA), and adult-onset Still’s 
disease (AOSD). Rilonacept is approved for the 
therapy of CAPS. ANA, the first licensed anti-
IL-1 agent, is currently approved for the treat-
ment of CAPS, rheumatoid arthritis, sJIA, and 
AOSD. However, it has also been successfully 
used off-label for the treatment of various mono-
genic, polygenic, or undefined etiology systemic 
AIDs. This review reports currently available evi-
dence on the off-label use of ANA in pediatric 
rheumatology, including its off-label use in 
Kawasaki disease (KD), idiopathic recurrent per-
icarditis (IRP), Behçet disease (BD), monogenic 
AIDs, undifferentiated AIDs (uAIDS), chronic 
non-bacterial osteomyelitis (CNO), macrophage 
activation syndrome (MAS), and febrile infec-
tion-related epilepsy (FIRES), in terms of its 
safety and efficacy.

Kawasaki disease
KD is an acute inflammatory vasculitis of the 
medium and small-sized arteries, generally 
occurring in children under 5 years of age. It is 
associated with the development of coronary 
artery aneurysms (CAAs) or ecstasies (i.e. dilata-
tion of an arterial vessel whose dimensions do not 
exceed 50% of the caliber of the vessel itself) in 
15–25% of untreated children. Cardiac involve-
ment is the main determinant of the long-term 
prognosis of KD patients, as coronary lesions 
may lead to ischemic heart disease and sudden 
death.4 The etiopathology remains unknown, 
though it is widely accepted that KD results in an 
important inflammation cascade triggered by 
unknown infectious or other stress triggers in a 
genetically predisposed individual. A single infu-
sion of 2 g/kg of intravenous immunoglobulin 
(IVIG) along with aspirin has reduced CAA fre-
quency from 25% to 5%.5 However, 10–20% of 
patients do not respond to standard treatment 
and have an increased risk of cardiac complica-
tions and death.6

As in monogenic AIDs, IL-1 seems to play a key 
role in the physiopathology of KD and, more 
importantly, in cardiac involvement and the devel-
opment of CAA leading to the potential use of 
IL-1 blockade in patients with refractory KD.7–9

Alphonse et  al. showed a significantly increased 
level of IL-1β, IL-18, and of their antagonists 
(IL-1RA and IL-18BP) in acute KD patients 
compared with age-matched control patients with 
viral or bacterial infections.10 In a microarray 
study of acute and convalescent whole-blood 
samples from 146 KD subjects, KD transcript 
profiles showed an abundance of transcripts 
related to the NLRP3 inflammasome, IL-1α and 
β, and caspase-1 compared with pediatric sub-
jects with different acute infectious diseases, and 
with healthy controls.11 Early studies determined 
that IVIG treatment was associated with a reduc-
tion in IL-1β secretion from KD patients without 
CAA versus persistently elevated levels in IVIG-
treated patients with CAA.12 It is well known that 
IVIG resistance is associated with coronary vas-
culitis, and IVIG-resistant KD patients have 
decreased expression of IL-1RA.13 Genetic stud-
ies have also identified that polymorphisms of 
inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) 
represent a susceptibility factor for KD and CAA. 
The ITPKC gene induces increased Ca2+ flux 
into the cell, NLRP3 inflammasome activation, 
and increased secretion of IL-1ß and IL-1a.14

Moreover, in a Lactobacillus casei cell-wall-extract-
induced mouse vasculitis model, ANA administra-
tion was able to prevent aortic aneurysms and to 
improve cardiac ejection fraction by controlling 
myocarditis, suggesting that early use of ANA might 
better prevent or treat early coronary lesions.15

Similar successful results were confirmed in the 
clinical setting of refractory KD as well as in MAS 
caused by KD responsive to ANA treatment 
(Table 1).9,16–19

Kone-Paut et al. recently published a case series 
of 11 children with refractory KD and cardiac 
complications who received ANA. All patients 
became afebrile and achieved significant decreases 
of inflammatory markers within a few days after 
administration of ANA, although the reported 
results on its effect on coronary dilations are 
heterogeneous.20

Considering the upregulation of the IL-1 pathway 
in KD, ANA may represent a valuable 
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therapeutic tool to control systemic inflammation 
in KD patients. The convergence of genetic data 
and results from animal models provide a strong 
rationale for the hypothesis that IL-1 signaling 
plays a key role in KD vasculitis and coronary 
arteritis; in this perspective, ANA may also have a 
role in preventing the onset of CAA, especially if 
used at diagnosis.21,22 In this regard, two clinical 
trials of ANA involving KD pediatric patients are 
currently underway in western Europe and the 
United States: the Kawakinra trial [Eudract no: 
2014-002715-41]; and the ANAKID trial 
[ClinicalTrials.gov identifier: NCT02179853], 
respectively. The outcomes of these studies may 
better define the place of IL-1 blockade in KD 
treatment in association with or in replacement of 
IVIG and steroids.

Idiopathic recurrent pericarditis
Recurrent pericarditis is a relatively common com-
plication (15–30%) of acute pericarditis. In the 
majority of patients with recurrent pericarditis (70–
80%) no specific cause is identified and the disease 
is referred to as IRP.23 Established therapeutic regi-
mens, such as non-steroidal anti-inflammatory 

drugs (NSAIDs), colchicine, and steroids, induce 
remission in most cases. Nevertheless, a subset of 
patients either do not respond, relapse, or cannot 
tolerate the standard therapeutic interventions.24 
In this perspective, IRP shares many features con-
sistent with AIDs. Indeed, recurrent episodes of 
apparently unprovoked inflammation and serosal 
involvement are characteristic of AIDs and it is 
well known that FMF and TRAPS can some-
times present with isolated serosal involvement, 
especially when the onset is in adulthood.25,26 In 
line with this hypothesis, Cantarini et  al. found 
that 6% of IRP patients carry a mutation in the 
tumor necrosis factor (TNF) receptor superfam-
ily member 1A (TNFRSF1A) gene.27 Hence, 
biological agents are emerging as potential thera-
peutic options for the treatment of IRP, with the 
majority of experiences having been acquired 
with ANA. Considering the adverse impact of 
steroids in pediatric patients, treatment with 
ANA in this patient population was primarily 
taken into account (Table 2).28

In 2009, Picco et al. described the first small series 
of three pediatric subjects suffering from steroid-
dependent IRP treated with ANA with an 

Table 1.  Main studies reporting anakinra administration in Kawasaki disease.

Type of study Patients 
(n)

Dose Response Adverse 
events

Follow 
up (days)

Cohen et al. 
20128

Case report 1 1 mg/kg/day Remission NA 180

Shafferman 
et al.16

Case report 1 6 mg/kg/day for 2 days,
9 mg/kg/day for 3 days

Failure in preventing 
CAA

NA 240

Guillaume 
et al.19

Case report 1 6 mg/kg/day for 10 weeks, 
6 mg/kg/day every 2 days 
for 4 weeks, 6 mg/kg/day 
every 3 days for 4 weeks

Remission of fever 
and decrease of 
APPs, partial CCA 
regression

None 126

Sanchez-
Manubens 
et al.9

Case report 1 2 mg/kg/day Complete remission None 112

Blonz et al.18 Letter to the 
editor

1 100 mg/day Complete remission NA 330

Kone-Paut 
et al.20

Retrospective 11 2–7.5 mg/kg/day Remission of fever 
and decrease of 
APPs, not determined 
effect on CAA

NA 6–81

Lind-Holst 
et al.17

Case report 1 5 mg/kg/day and then
10 mg/kg/day

Remission after dose 
increment

NA 480

APPs, acute-phase proteins; CAA, coronary artery aneurysm; NA, not available.
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immediate clinical and laboratory response.25 
Pericarditis recurred when treatment was discon-
tinued, and no relapses occurred after ANA was 
resumed. Subsequently, two further case reports 
have described the success of ANA therapy in 
IRP adolescents.29,30

A retrospective, multicentric evaluation of ANA 
efficacy both in children (n = 12) and adults 
(n = 3) with IRP showed a clinical and laboratory 
response in all patients with the concurrent with-
drawal of steroid treatments.31 During an attempt 
to taper treatment, approximately half of the 
patients experienced a flare, promptly controlled 
by ANA reintroduction. Moreover, during the 
follow-up period (median 39 months), a reduc-
tion of around 95% of relapses was observed 
compared with the pre-treatment period. In a 
large multicenter cohort study of 110 consecutive 
cases of IRP pediatric patients, ANA therapy was 
prescribed to 12 children.33 In this subgroup, the 
number of recurrences dropped from 4.29 per 
year before ANA to 0.14 per year after (p < 0.05).

In the ANA Treatment of Recurrent Idiopathic 
Pericarditis (AIRTRIP) randomized controlled 
trial that enrolled 20 adult patients and 1 pediat-
ric patient, ANA reduced the risk of recurrence 
over a median of 14 months compared with 
placebo.32

The management of ANA discontinuation after 
remission remains controversial. Despite a lack of 
solid evidence, most experts recommend a grad-
ual dose tapering. In a systematic review, Lazaros 
et  al. recorded a 26% relapse rate during dose 
tapering or after drug discontinuation in 34 pedi-
atric and adult patients with IRP successfully 
treated with ANA.28

Behçet disease
BD is a multisystem inflammatory disorder char-
acterized by variable involvement of the oral and 
genital mucosa, skin and eyes, and by a relaps-
ing–remitting clinical course. The clinical spec-
trum includes mucocutaneous lesions (aphthous 
ulcers on the oral and/or genital mucosa, ery-
thema nodosum, and other heterogeneous skin 
lesions), arthritis, eye involvement, vascular 
manifestations, gastrointestinal, and central 
nervous system involvement. The epidemiology 
of BD is strictly linked to the historical route of 
the Silk Road, with the highest incidence in 
Turkey and other Middle East countries, where 
an overall prevalence of 1 in 250 persons has 
been reported.34 Most patients are diagnosed in 
young adulthood, although onset before the age 
of 16 is seen in 4–26% of cases.35 The etiology 
remains unknown, but dysregulation of both 
innate and adaptive immunity is supposed. 

Table 2.  Main studies reporting anakinra administration in pediatric idiopathic recurrent pericarditis.

Type of study Patients 
(n)

Dose Response Adverse 
events

Median 
follow up 
(months)

Picco et al.25 Case series 3 1 mg/kg/day Remission Relapse 
after discontinuation

NA 4.2
(range 4–6)

Scardapane 
et al.29

Case report 1 100 mg/day,
Month 10 at alternate 
days

Remission None 12

Camacho-
Lovillo et al.30

Case report 1 2 mg/kg/day Remission, relapse 
after discontinuation

NA 36

Finetti et al.31 Retrospective 12 Starting dose of 1.3 mg/
kg/day (range 1–2 mg/
kg/day)

Remission, 5 patients 
off therapy

Local 
injection-
site reaction

34.5
(range 
14–57)

Imazio et al.23 Retrospective 12 1 mg/kg/day Remission NA NA

Brucato 
et al.32

Randomized 
controlled trial

1 2 mg/kg/day Remission NA 12

NA, not available.
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Recently, growing evidence supports the hypoth-
esis of an autoinflammatory component in the 
pathogenesis of BD. Even if BD is typically con-
sidered a polygenic disorder with a predominant 
role for the sub-allele HLA-B51, a connection 
between the AIDs and BD is supported by the 
discovery of a hereditary ‘Behçet-like’ inflamma-
tory syndrome. This rare condition, due to a 
mutation in the A20/TNFAIP3 gene, results in 
A20 protein haploinsufficiency causing a reduced 
suppression of nuclear-factor kappa B (NF-κB) 
activation and an abnormally increased inflam-
matory response.36 Another similarity with AIDs 
is given by successful IL-1 inhibition in BD 
patients. Evidence from adult patients suggests 
that anti-IL-1 agents might be useful in the treat-
ment of the most severe manifestation, unrespon-
sive to conventional treatment with colchicine, 
steroids, or immunosuppressant drugs.37 IL-1 
antagonists, in particular ANA, are used off-label 
in both pediatric and adult patients; a survey 
among Italian physicians reported that ANA 
accounted for almost 10% of all off-label pre-
scriptions during the period 2008–2016.38

A recent systematic review suggested that IL-1 
inhibitors may represent an effective therapeutic 
option, even if most of the data come from a lim-
ited number of observed patients. Bettiol et  al. 
reported that ANA could be used effectively to 
control mucocutaneous symptoms and osteoar-
ticular manifestations in BD patients and may 
represent an effective and safe therapeutic option 
for BD-related uveitis.39

As for the use of anti-IL-1 treatments in the pedi-
atric population, discrepant evidence was found, 
and the data are extremely limited (Table 3).38,40–

42 In a case series of patients with BD resistant to 
standard therapy, Cantarini et  al. described the 
case of a 7-year-old boy treated with ANA at a 
dosage of 2 mg/kg for BD non-responsive to 
prednisolone, colchicine, thalidomide, and 
mycophenolate mofetil.40 The patient improved 
with the disappearance of systemic and mucocu-
taneous manifestations and steroid tapering. 
After 4 months, he experienced a disease relapse 
with abdominal pain, bipolar aphthosis, skin 
ulcers, and arthralgias. ANA dosage was subse-
quently increased to 2.5 mg/kg/day; clinical mani-
festations improved in frequency and intensity, 
although he still complained of severe oral aph-
thosis, abdominal distress, headache, and skin 
ulcers after 7 months.

The efficacy of ANA treatment has also been 
reported in a girl suffering from BD associated 
with FMF and will be described in detail in the 
next section.41

Unsuccessful ANA treatment was reported in a 
letter by Ugurlu et al., who described persistent 
ocular inflammation despite treatment in a 
16-year-old girl.42 In another retrospective obser-
vational study, use of ANA in a child was associ-
ated with a partial response.38

A higher dose of ANA may be efficacious in sub-
jects initially unresponsive to the standard dos-
age, and may lead to complete remission.38 
However, an overall excellent safety profile has 
been reported in the literature and recently con-
firmed in two multicenter observational cohort 
studies including both pediatric and adult 
patients, which specifically evaluated side effects 
in BD patients treated with biologic agents.43,44

Familial Mediterranean fever
FMF is an autosomal-recessive AID character-
ized by recurrent attacks of fever and serositis.45,46 
AA amyloidosis represents the main cause of 
mortality, which may complicate the disease due 
to persistent unremitting inflammation. 
Colchicine represents the milestone of FMF 
treatment, despite 10–15% of patients being 
either colchicine resistant or intolerant.47–50 
Therefore, in such cases, additional or alternative 
treatment is required. The proof that FMF patho-
genesis is driven by the overexpression of IL-1β 
justified the blockade of IL-1 as a potential target 
therapy.51–53 In this regard, canakinumab has 
recently been approved in resistant FMF, 
whereas ANA remains an off-label indication in 
pediatric patients. Most of the available literature 
refers to retrospective studies and short case series 
(Table 4). However, the efficacy of ANA is widely 
described in adult patients, in both systematic lit-
erature reviews and in randomized controlled tri-
als.50,54 Hence, considering its efficacy and safety, 
ANA represents a valuable treatment option in 
resistant/intolerant FMF patients, including pedi-
atric patients.55–59

Two case reports by Kuijk et al. and Calligaris et al. 
described a complete remission in adolescents with 
FMF, unresponsive to colchicine therapy.56,57 The 
first reported case described a 14-year-old patient 
that, after ANA administration, became free from 
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disease attacks with normalization of C-reactive 
protein values. The patient also reported a marked 
improvement in quality of life and depressive 
symptoms.56 Subsequently, in a larger pediatric 
series which demonstrated the efficacy and safety 
of ANA in achieving disease control, Ozen et al. 
reported a 60% rate of remission without adverse 
events in five pediatric patients with recurrent 
attacks despite optimal compliance to colchi-
cine.60 As observed in adult patients, ANA proved 
effective in restoring serum amyloid A levels to 
normal ranges as well as in reversing proteinuria 
and controlling disease progression in patients 
with secondary amyloidosis. Bilginer et al. reported 
the case of an 8-year-old girl with FMF and BD, 
complicated by secondary amyloidosis, who 
achieved clinical and biochemical remission after 
6 months of therapy with ANA.41 She remained 
asymptomatic, despite a gradual increase in pro-
teinuria at the 18-month follow up.

In a cohort of seven pediatric FMF patients, four 
of whom had secondary amyloidosis, disease 
remission was achieved in all children with nor-
malization of acute-phase reactants and regression 
of amyloidosis-related gastrointestinal findings.61 
One child with nephrotic syndrome achieved par-
tial remission after 12 months. In two patients 
with chronic kidney disease and one with renal 
transplantation, the decline in renal function was 
interrupted.

Stronger evidence is derived from a larger series 
including 49 FMF patients, both pediatric and 
adult, 20 of whom received ANA.75 Fourteen 
patients received ANA as a first biologic regimen, 
with a reported complete response rate of 50% 
(7/14), whereas biochemical control was achieved 
in 43% (6/14) of patients.

Tumor-necrosis-factor-receptor-associated 
periodic syndrome
TRAPS is the most common autosomal-dominant 
AID, characterized by recurrent attacks of pro-
longed fever, typically lasting several weeks, asso-
ciated with different clinical manifestations 
including serositis, migratory rash, and ocular 
inflammation.76 Many aspects of its pathogenesis 
remain unclear. However, there is evidence sug-
gesting that an altered three-dimensional shape of 
TNFRSF1A leads to an increased production of 
pro-inflammatory cytokines and systemic inflam-
mation through not completely clarified patho-
mechanisms. Among these, impaired TNFα 
binding, altered NF-κB pathway, abnormal neu-
trophilic TNFα-induced apoptosis, as well as 
defective TNFRSF1A trafficking have been 
described.77,78 NSAIDs could partially relieve 
symptoms and on-demand steroids usually block 
the attacks, but their efficacy decreases over time 
and a longstanding administration may cause the 
well-known side effects.79 Moreover, these 
patients have an increased risk of AA amyloidosis. 
Based on a supposed TNFα-driven pathogenic 
mechanism, etanercept was administered in these 
patients without significant and longlasting effi-
cacy.80 Conversely, IL-1 blockade can control 
systemic inflammation in TRAPS. Canakinumab 
has been recently validated through two open-
label studies demonstrating IL-β blockade superi-
ority in achieving disease remission, compared 
with placebo.81,82 ANA remains off-label due to 
the lack of available randomized controlled trials, 
despite its widespread use in both adult and pedi-
atric patients. Indeed, ANA has been demon-
strated to induce rapid disease remission and 
prevent relapse. In the pediatric field (Table 4), 
the first study reporting data on ANA efficacy 
included four children affected by TRAPS with a 

Table 3.  Main studies reporting anakinra administration in pediatric Behçet disease.

Type of 
study

Patients (n) Dose Response Adverse 
events

Follow up 
(months)

Bilgner et al.41 Case report 1 (also 
affected by 
FMF)

1 mg/kg/day Remission NA 18

Urgulu et al.42 Letter to the 
editor

1 2 mg/kg/day Persistent 
uveitis

NA 1

Cantarini et al.40 Case series 1 2 mg/kg/day and after 4 months 
2.5 mg/kg/day for a relapse

Partial 
response

NA 9

FMF, familial Mediterranean fever; NA, not available.
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Table 4.  Main studies reporting anakinra administration in pediatric FMF, TRAPS, HIDS and uAIDs.

Type of study Patients 
(n)

Dose OD (n) CR* PR** Adverse events Median follow 
up (months)

FMF

Kuijk et al.56 Case report 1 100 mg/day 100% – Mild urticarial rash NA

Calligaris et al.57 Case report 1 1 mg/kg/day 100% – Local injection site 
reaction

18

Roldan et al.55 Case report 1 1 mg/kg/day 100% – None 6

Ozen et al.60 Retrospective 5 1–2 mg/kg/day 60%
(3/5)

40%
(2/5)

NA 9
(range 2–30)

Meinzer et al.58 Retrospective 4 1–2 mg/kg/day
(1 OD)

100% – Local injection site 
reaction

6.5
(range 4–16)

Cetin et al.59 Retrospective 2 1–1.5 mg/kg/day 100% – None 9.5
(range 7–12)

Özçakar et al.61 Retrospective 7 1 mg/kg/day 71%
(5/7)

19%
(2/7)

None 15
(range 9–40)

TRAPS

Gattorno et al.62 Retrospective 4 1.5 mg/kg/day 100% – Local injection site 
reaction

11.4
(range 4–20)

Grimwood 
et al.63

Case series 2 2 mg/kg/day
(2 OD)

100% – Local injection site 
reaction

NA

MKD/HIDS

Rigante et al.64 Case report 1 1 mg/kg/day – 100% Local injection site 
reaction

18

Nevyjel et al.65 Case report 1 30 mg/day – 100% NA 12

Korppi et al.66 Case report 1 2 mg/kg/day 100% – None 6

Bodar et al.67 Prospective 2 1–2 mg/kg/day
(1 OD)

50%
(1/2)

50%
(1/2)

Local injection site 
reaction

NA

Galeotti et al.68 Retrospective 5 1–5 mg/kg/day
(1 OD)

20%***
(1/5)

80%***
(4/5)

Local injection site 
reaction, bacterial 
pneumonia

13***
(range 2–39)

Shendi et al.69 Case report 1 100 mg/day 0% 0% Prolonged fever 5 days

Levy et al.70 Case series 2 2–3 mg/kg/day 50%
(1/2)

50%
(1/2)

NA 6.5
(range 6–7)

Campanilho-
Marques71

Case series 2 2–6 mg/kg/day – 100% Herpes zoster infection 12
(range 7–17)

Santos et al.72 Case report 1 2–5 mg/kg/day – 100% None 36

Kostjukovits 
et al.73

Case series 3 2 mg/kg/day
(1 OD)

33%
(1/3)

67%
(2/3)

None 36
(range 24–48)

uAIDs

Garg et al.74 Retrospective 22 2 mg/kg/day
(range 2–6 mg/
kg/day)

36%
(8/22)

36%
(8/22)

Infection (8), neutropenia 
(7), local injection site 
reaction (5)

35
(range 11–153)

*CR, no attacks and APRs, i.e. C-reactive protein, erythrocyte sedimentation rate and serum amyloid A within normal range.
**PR, decreasing the attack rate/duration ⩾50% and/or APPs reducing ⩾50%.
***Data from Kostjukovits et al.73

APPs, acute-phase proteins; APRs, acute-phase reactants; CR, complete response; FMF, familial Mediterranean fever; HIDS, 
hyperimmunoglobulinemia D syndrome; MKD, mevalonate kinase deficiency; NA, not available; OD, on demand; PR, partial response; TRAPS, 
tumor-necrosis-factor-receptor-associated periodic syndrome; uAIDs, undifferentiated autoinflammatory diseases.
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recurrent or chronic course.62 After 2 days of ther-
apy, all patients showed resolution of symptoms 
with subsequent normalization of acute-phase 
reactants, including serum amyloid A, after 
15 days. All patients relapsed a few days after 
treatment discontinuation at day 15, but they 
rapidly improved when ANA was resumed, main-
taining a longlasting remission on therapy.

Since ANA induces a prompt response, adminis-
tration of on-demand therapy appears a reason-
able alternative approach, especially in cases of 
sporadic relapse and/or in patients intolerant to 
steroids. Grimwood et  al. reported a favorable 
outcome of an on-demand treatment regimen 
with ANA in two pediatric patients with 
TRAPS.63 ANA was administered within 24 h 
after the first clinical manifestations and treat-
ment was continued for 5–7 days, depending on 
the usual duration of their attacks. After 24–48 h, 
both patients achieved a complete clinical 
response, and inflammatory markers normalized 
within a few days. No relapses were reported 
after treatment discontinuation.

ANA was administered in 33 subjects enrolled in 
the EUROFEVER registry: a complete response 
was reported in 79% (26/33) and a partial 
response in 15% (5/33) of cases.79 In another 
cohort of 47 TRAPS patients (26 adults and 21 
children), ANA was superior in inducing com-
plete remission versus an anti-TNF regimen.75

Mevalonate kinase deficiency
MKD is an extremely rare, autosomal-recessive 
AID, caused by mutations in the gene encoding 
mevalonate kinase (MVK) that lead to a partial 
enzyme deficiency.83 MKD, also known as 
HIDS, shows a less severe phenotype compared 
with mevalonic aciduria (MVA), a disease with a 
critical MVK deficiency causing neurological 
involvement.84 The enzyme defect interferes with 
the mevalonate pathway and cholesterol synthe-
sis, and is responsible for IL-1β overproduction 
and systemic inflammation.83 The typical clinic 
phenotype is characterized by recurrent attacks 
of fever lasting 3–7 days, associated with inflam-
matory symptoms such as lymphadenopathy, 
arthro-myalgia, mucocutaneous, and gastrointes-
tinal manifestations.83 NSAIDs and high-dose 
steroids are usually administered to relieve symp-
toms and reduce the duration of attacks.79 
Among biologic agents, those targeting IL-1 are 
the most effective.64,67,69,71,72 In a cohort of 38 

MKD pediatric and adult patients treated with 
biologic therapies, ANA was administrated in 
68% of cases as first-line therapy.75 Further case 
reports have confirmed ANA efficacy in chil-
dren.65,70 Moreover, a series of five pediatric 
patients was retrospectively described by 
Galeotti et al. (Table 4). In this study, ANA was 
administered daily in four patients and on 
demand in one patient, achieving complete and 
partial remission in 40% (2/5) and 60% (3/5) of 
patients, respectively.68 In addition, a review of 
21 pediatric patients treated with ANA observed 
a complete remission rate of 19% (4/21) and a 
partial remission rate of 71% (15/21).73 Limited 
side effects were described, namely local injec-
tion-site reactions, bacterial pneumonia, and 
herpes zoster infection. Similar results were 
derived from a series including 27 adult and 
pediatric MKD patients treated with ANA: effi-
cacy was reported in 89% of patients, with com-
plete remission in 22%.75

The co-existence with another disease, specifi-
cally early-onset ulcerative colitis and membrano-
proliferative glomerulonephritis, has been 
reported in two cases.65,70 Both patients were suc-
cessfully treated with ANA and experienced a 
favorable control of MKD manifestations, as well 
as of the associated disease symptoms. Among 
pediatric studies, the case of a 10-year-old patient 
who experienced more prolonged and severe 
attacks under ANA, with rapid clinical improve-
ment after discontinuation, is of note.66

Undifferentiated autoinflammatory diseases
Patients who fulfill the clinical features of AIDs 
but have negative genetic screening for FMF, 
CAPS, TRAPS, or MKD, are defined as affected 
by uAIDs. Harrison et al. reported the efficacy 
of ANA administration in 9 of 11 uAID adult 
patients who were unresponsive to standard 
steroid/disease-modifying antirheumatic drug 
(DMARD) treatments.85 Moreover, in a series of 
22 pediatric patients retrospectively described by 
Garg et al., 72% of uAID children showed clinical 
improvement after ANA administration, with 
36% achieving full remission within 3 months.74 
The efficacy of ANA has emphasized the implica-
tion of IL-1 dysregulation in the pathogenesis of 
uAID. Empirical trials of IL-1 blockade in uAID 
patients may be warranted, as long as advances in 
next-generation sequencing technologies can 
determine appropriate target therapies. In this 
study, ANA was well tolerated overall, and, unlike 
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previous studies, the most common adverse event 
was infection, not local injection-site reaction 
(Table 4).

Chronic non-bacterial osteomyelitis
CNO is a group of autoinflammatory bone disor-
ders typically affecting pediatric patients and char-
acterized by accelerated bone remodeling and 
inflammatory bone loss.86 The pathogenesis of 
CNO seems to be driven by IL-1 pathway over-
activation and under-expression of the IL-10 fam-
ily of cytokines.87 The clinical spectrum ranges 
from asymptomatic localized bone inflammation 
to severe and disseminated forms. The most 
severe phenotype is represented by chronic, recur-
rent multifocal osteomyelitis (CRMO), character-
ized by bone pain and joint swelling potentially 
involving any skeletal site.86 There are no vali-
dated treatments due to the rarity of the disorder. 
NSAIDs or high-dose steroids are prescribed as 
first-line therapies, depending on disease severity. 
When a response cannot be obtained, anti-TNFα 
agents and bisphosphonates are considered alter-
native regimens.86 In patients refractory to such 
treatments, ANA appears to be a promising and 
safe option (Table 5).

The first report on the efficacy of ANA in CNO 
described the case of a 6-year-old girl with a recal-
citrant disease unresponsive to NSAIDs, steroids, 
and bisphosphonates.89 ANA was started, follow-
ing the detection of high levels of circulating 
IL-1RA. After 6 weeks the symptoms resolved, 
and the inflammatory markers normalized. 
Unfortunately, remission was not sustained at the 
1-year follow up, and, after a recalcitrant course, 
ANA was discontinued 3 years later.

In a retrospective analysis of 486 patients, includ-
ing 455 pediatric CNO, ANA was administrated 

in four children, showing a complete remission in 
two patients, and a partial response or no response 
in one patient each.86 The largest pediatric CNO 
series by Pardeo et al. described nine patients with 
refractory disease treated with ANA.88 The 
response was evaluated through the Physician 
Global Assessment (PGA) scoring system, which 
included fever, functional impairment, inflamma-
tory markers, and bone scintigraphy lesions. At 
baseline, all patients presented a mild-to-severe 
PGA and eight of nine patients had elevated 
inflammatory markers. After 6 months of therapy, 
five patients improved to a minimal or no PGA, 
and, in eight of nine patients, a reduction of 
acute-phase reactants was described, with nor-
malization in five of them. Overall, 42 of 77 bone 
lesions resolved, and the remainder were stable. 
However, 20 new lesions appeared in 7 patients.

IL-1 targeting also demonstrated effectiveness in 
Majeed syndrome and deficiency of IL-1 receptor 
antagonist (DIRA) syndrome. Majeed syndrome 
is an autosomal-recessive disorder, caused by 
mutations in the LPIN2 gene and characterized 
by recurrent fever and the typical triad of CRMO, 
congenital dyserythropoietic anemia, and neutro-
philic dermatosis.90,91 CRMO starts during 
infancy causing, if not recognized and treated, 
retarded growth, permanent joint contractures, 
and bone deformities. Steroids partially improve 
the bone and skin disease, whereas ANA can rap-
idly control systemic inflammation. Herlin et al. 
reported the case of a 2-year-old child with 
Majeed syndrome who was successfully treated 
with ANA for 6 weeks with prompt clinical and 
laboratory improvement, despite a rapid relapse 
after therapy discontinuation.90

DIRA is an autosomal-recessive disease caused 
by the absence of the IL-1 receptor, character-
ized by neonatal onset and life-threatening 

Table 5.  Main studies reporting anakinra administration in pediatric CNO.

Type of study Patients 
(n)

Dose CR* PR** Adverse 
events

Median follow up 
(months)

Pardeo et al.89 Retrospective 9 2–2.3 mg/kg/day 0% 89%
(8/9)

None 20.4
(range 9.6–33.6)

Eleftheriou 
et al.88

Case report 1 2 mg/kg/day / 100% None 12

*CR defined as no symptoms and radiological resolution of all bone lesions and no appearance of new bone lesions.
**PR defined as symptoms improvement and/or decrease of radiological bone lesions.
CNO, chronic non-bacterial osteomyelitis; CR, complete response; NA, not available; PR, partial response.
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manifestations.92 The disease occurs within 
3 weeks after birth with neutrophilic pustular 
rash, joint swelling, and oral mucosal lesions. The 
multifocal bone involvement leads to balloon-like 
widening of the ribs, periosteal elevation of long 
bones, and multiple osteolytic lesions.92 Therapy 
with DMARDs and high-dose steroids can only 
partially control the clinical manifestations, 
whereas ANA has been demonstrated as highly 
effective in determining a complete resolution of 
symptoms and normalization of inflammatory 
markers.92

Macrophage activation syndrome
MAS is a potentially fatal complication of several 
rheumatic disorders. The definition of MAS is 
applied to secondary hemophagocytic lymphohis-
tiocytosis (sHLH) in the context of rheumatic 
diseases. In the pediatric age, sJIA is by far the 
disease most frequently complicated by MAS.93–

95 However, in several reports the occurrence of 
MAS has been described during the course, or as 
revealing manifestation of AIDs (i.e. in CAPS, 
MKD, FMF and TRAPS), resulting in a severe 
complication with high morbidity and mortality 
rates.96–100

MAS is a unique clinical syndrome characterized 
by fever, organomegaly, cytopenia, and organ 
involvement up to multiple organ failure. 
Laboratory abnormalities include a decrease in 
white blood cells, platelet and hemoglobin, hyper-
transaminasemia, marked increase in ferritin, and 
evidence for intravascular coagulation activation. 
Uncontrolled activation and proliferation of T 
lymphocytes and macrophages are the typical 
immunological features.

Since 2008, several studies showed favorable 
results following ANA administration in patients 
affected by MAS unresponsive to conventional 
treatments (i.e. steroids, cyclosporin, IVIG) (Table 
6).101–105 In this regard, Miettunen et al. described 
the achievement of clinical and biochemical remis-
sion with ANA in 12 patients with MAS (including 
five patients who required intensive care support) 
after the failure of treatment with steroids and 
other immunosuppressants.106 Moreover, all 
patients experienced a good control of the underly-
ing rheumatic diseases at follow up (Table 6).

In most of the available studies, ANA was admin-
istered at the standard dosage (1–2 mg/kg/
day).105,107–109 The response to treatment appears 

rapid and without significant side effects; only 
one case reported pain at the injection site.108 
However, a higher dose of ANA (ranging from 
4 mg/kg/day to 15 mg/kg/day) was required to 
achieve remission in other studies, especially in 
the case of MAS associated with KD.16,17

While most of the patients received ANA in asso-
ciation with steroids, IVIG, or immunosuppres-
sive drugs, monotherapy seems to be promising in 
patients affected by sJIA developing MAS. A 
recent retrospective study demonstrated that an 
earlier introduction of ANA treatment, within 
5 days of MAS onset, was associated with reduced 
mortality, especially when sJIA represents the 
underlying diagnosis.111

ANA treatment is not only limited to rheumato-
logic patients but is also adopted in children and 
adults affected by infection-associated sHLH and 
in critically ill patients with various underlying 
diseases. 110,112,113 The efficacy of IL-1 blockade 
in a cytokine storm was also confirmed by clinical 
experience in septic shock. 110,112,113

On the other hand, some studies reported that 
children with sJIA treated with ANA developed 
MAS.114,115 Nigrovic et al. described MAS in four 
patients receiving ANA, but none showed a clear 
causal association, and all patients could ulti-
mately continue the therapy.114 The underlying 
active disease rather than drug administration 
could be the real trigger of MAS. According to 
the authors, ANA at 1–2 mg/kg/day was not suf-
ficient to prevent MAS in sJIA; but once it 
occurred, clinical features improved after dose 
increase.114

A double-blind, randomized controlled trial 
[ClinicalTrials.gov identifier: NCT02780583] is 
currently underway to assess the efficacy, safety, 
and tolerability of ANA in combination with 
standard prescribed treatment for children and 
adults with MAS.

Febrile-infection-related epilepsy syndrome
FIRES is a subtype of new-onset refractory status 
epilepticus. According to the consensus defini-
tions, it is a rare catastrophic epileptic encepha-
lopathy characterized by a preceding febrile 
infection between 24 h and 2 weeks before the 
onset of seizures.116 FIRES diagnosis is essentially 
clinical, and the syndrome should be suspected in 
patients of all ages. In pediatric patients, the 
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estimated annual incidence is 1:1,000,000, while 
its prevalence is 1:100,000 in previously healthy 
children and adolescents.117 FIRES is character-
ized by relentless cognitive and motor function 
decline and severe neurological sequelae with a 
high mortality rate.118 The FIRES seizure pattern 
is usually resistant to multiple antiepileptic drugs. 

Alternative treatment options such as anesthetic 
drugs, immunotherapy, ketogenic diet, therapeu-
tic hypothermia, and cannabidiol have shown 
only partial efficacy.119–121

Recent studies have evoked the role of IL-1β in 
seizure onset.122 Experimental animal models 

Table 6.  Main studies reporting anakinra administration in pediatric MAS.

Type of study Patients
(underlying 
disease), n

Dose Response Adverse 
events

Median 
follow up 
(months)

Kelly et al.107 Case report 1 (sJIA) 1 mg/kg/day Remission None 24

Miettunen 
et al.106

Case series 12
(8 sJIA, 2 VASC,
1 ARF, 1 KD)

2 mg/kg/day Remission None 22
(range 2–40)

Bruck 
et al.108

Case series 2
(sJIA)

2 mg/kg/day Remission Pain at 
injection site

8 and 17

Kahn et al.101 Case report 1
(sJIa)

1.75 mg/kg/day
and then 6.7 mg/kg/day  
every 6 h

Remission NA 30

Butin et al.102 Case report 1
(PB19)

2 mg/kg/day and then 
4 mg/kg/day

Remission NA 2

Lilleby 
et al.109

Case report 1
(JDM)

2 mg/kg/day MAS parameters 
improvement

NA 3

Rajasekaran 
et al.110

Retrospective 
study

8
(critically ill 
children)

1–2 mg/kg/day 
increased according to 
clinical response

Lower mortality rate 
(12.5%)

None NA

Shafferman 
et al.16

Case report 1 (KD) 9 mg/kg/day MAS parameters 
improvement

NA 8

Aytaç et al.103 Retrospective 
study

15
(13 sJIA, 2 SLE)

NA Remission NA NA

Sönmez105 Retrospective 
study

19 MAS 
episodes
in 15 patients
(13 sJIA, 2 
AIDs)

2 mg/kg/day Remission Recurrent 
MAS episodes after 
anakinra dose 
reduction (2/3)

Vitiligo (1/3) 13
(range 6–24)

Barsalou 
et al.104

Case report 1
(NLRC4 GOF 
mut)

15 mg/kg/day 
(combination therapy 
with rapamycin)

Remission NA 12

Lind-Holst 
et al.17

Case report 1
(KD)

5 mg/kg/day and then
10 mg/kg/day

Remission after dose 
increment

NA 16

Eloseily 
et al.110

Retrospective 
study

44
(13 sJIA)

NA Reduced mortality 
with earlier start of 
anakinra (⩽5 days)

NA NA

AIDs, autoinflammatory diseases; ARF, acute rheumatic fever; JDM, juvenile dermatomyositis; KD, Kawasaki disease; MAS, macrophage activation 
syndrome; NA, not available; NLRC4 GOF mut, gain of function mutations affecting the inflammasome component NLRC4; PB19, parvovirus B19 
infection; sJIA, systemic juvenile idiopathic arthritis; SLE, systemic lupus erythematosus; VASC, vasculitides.
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support this hypothesis: IL-1β receptor-defi-
ciency in mice seems to have a protective role 
against febrile seizures since high IL-1β doses 
induce epilepsy in IL-1β-receptor-expressing 
mice.123 Another study proposed that FIRES is 
probably associated with reduced expression or 
functional deficiency of the intracellular IL-1 
receptor.124 This evidence justifies targeted ther-
apy with IL-1 antagonists, especially ANA 
(Table 7). In the first reported case by Kenney-
Jung et al. a 32-month-old girl with super-refrac-
tory status epilepticus despite multiple drugs and a 
3-day course of high-dose methylprednisolone, 
was treated with ANA (5 mg/kg twice daily, sub-
cutaneously) resulting in a progressive decrease in 
the frequency of recurrent seizures.125 However, 
relapse was experienced after ANA withdrawal. A 
similar clinical response was described in four of 
five children suffering from FIRES treated with 
ANA at a dose ranging from 3 mg/kg/day to 7 mg/
kg/day.126 Further case reports confirmed ANA 
efficacy.127,128 Moreover, ANA was associated 
with deep brain stimulation of the centromedian 
thalamic nuclei in two boys, reporting a positive 
effect in one patient.129

Finally, Kenney-Jung et al. reported elevated lev-
els of pro-inflammatory cytokines in cerebral 

spinal fluid before treatment that normalized after 
ANA administration, emphasizing a pathogenic 
role of autoinflammation in FIRES.125

Conclusion
AIDs represent a heterogeneous group of disor-
ders related to multiple genetic defects, including 
inflammasomes, proteasome, cytokine receptors 
or inhibitors, and different enzymes.130 In pediat-
ric AIDs, off-label use of ANA has been widely 
demonstrated as effective and safe. ANA should 
be considered in selected children suffering from 
systemic inflammatory diseases who do not toler-
ate other therapies or who require unacceptably 
high doses of steroids to control a severe and/or 
relapsing disease course.

Clinicians should direct the choice to switch to 
ANA based on the AID-related damage assess-
ment, to capture potentially irreversible disorders 
of structure and function. Reproducible scores to 
evaluate the subsequent response to therapy in an 
objective way and to compare patients belonging 
to the same clinical setting or from different 
cohorts are needed. In the damage assessment, 
therapeutic toxicity must also be considered, for 
example, growth retardation, weight gain, and 

Table 7.  Main studies reporting anakinra administration in pediatric FIRES.

Type of 
study

Patients 
(n)

Dose Response Adverse 
events

Follow up 
(months)

Kenney-
Jung et al.125

Case report 1 5 mg/kg twice daily Clinical and EEG improvement None 12

Shukla 
et al.126

Case series 5 3–7 mg/kg/day Clinical improvement in 4/5 
patients

DRESS (2/5)
mild 
infections 
(5/5)

NA

De Sena 
et al.128

Case report 1 100 mg daily
and then twice daily

Clinical and EEG improvement NA 36

Sa et al.129 Case series 2 5 or 10 mg/kg Patient 1: refractory epilepsy 
with infrequent short focal 
seizures
Patient 2: reduction in the 
total number of seizures, 
vegetative state

NA 15 and 18

Dilena 
et al.127

Case report 1 2.5 mg/kg twice 
daily;
after 2 months 
2.5 mg/kg/day

Clinical and EEG improvement None 36

EEG, electroencephalogram; FIRES, febrile infection-related epilepsy; NA, not available.
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hypertension derived from chronic glucocorticoid 
consumption. In this regard, the autoinflamma-
tory disease damage index has recently been 
developed for the evaluation of FMF, TRAPS, 
MKD, and CAPS patients.131

ANA has a remarkable safety profile with over 
150,000 patients treated daily for over 
10 years.132 Since blood levels drop significantly 
within a few hours after discontinuation of treat-
ment, ANA represents a manageable drug.3 In 
suspicion of AIDs, ANA could be considered as 
an empiric treatment in case of temporary con-
traindication to glucocorticoids for diagnostic 
workup, while waiting to exclude infection or 
malignancy.133

However, some points need to be clarified in the 
near future: what kind of patients need treatment 
with ANA, which subgroup of patients could 
receive ANA as first-line therapy, how long should 
therapy be prolonged, and how and when it 
should be tapered or discontinued after the 
achievement of remission. In this regard, rand-
omized controlled trials and large series with 
long-term follow up are still an unmet need.
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