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Abstract

Protein synthesis is highly regulated throughout nervous system development, plasticity, and
regeneration. However, tracking the distributions of specific new protein species has not been
possible in living neurons or at the ultrastructural level. Previously we created TimeSTAMP
epitope tags, drug-controlled tags for immunohistochemical detection of specific new proteins
synthesized at defined times. Here we extend TimeSTAMP to label new protein copies by
fluorescence or photo-oxidation. Live microscopy of a fluorescent TimeSTAMP tag reveals that
copies of the synaptic protein PSD95 are synthesized in response to local activation of growth
factor and neurotransmitter receptors, and preferentially localize to stimulated synapses in rat
neurons. Electron microscopy of a photo-oxidizing TimeSTAMP tag reveals new PSD95 at
developing dendritic structures of immature neurons and at synapses in differentiated neurons.
These results demonstrate the versatility of the TimeSTAMP approach for visualizing newly
synthesized proteins in neurons.
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INTRODUCTION

Spatiotemporal control of protein synthesis is essential for proper development, normal
functioning, and adaptation of nervous systems. In embryonic neurons, proteins are
synthesized in axonal growth cones during migration, and local inhibition of protein
synthesis blocks growth cone responses to axon guidance cuesl2. Later in development,
high levels of protein synthesis in dendrites and axons promote synapse formation34. In the
mature nervous system, protein synthesis is induced by neuronal activity and required for
memory consolidation in animals®®. Persistence of long term potentiation (LTP) and long-
term depression (LTD), activity-dependent changes in synaptic function believed to underlie
learning, also requires new protein synthesis to persist beyond 1 hour”-. The production and
targeting of new proteins also appears critical, as inhibition of protein synthesis locally at
stimulated synapses blocks late-phase LTP at those synapses®.

The intricate regulation of protein synthesis during differentiation and plasticity of
subcellular structures such as axons and synapses suggests that those synthesized proteins
are utilized in these structures. An attractive hypothesis for the function of activity-induced
protein synthesis in memory formation is that new proteins incorporate into activated
synapses, causing long-lasting changes in synaptic functionl®. However, which specific new
protein species are locally incorporated during differentiation or plasticity and where they
localize relative to subcellular structures undergoing change remains poorly understood?.
An impediment to addressing these questions has been the lack of generalizable methods to
visualize new copies of specific proteins in living cells and with subsynaptic spatial
resolution.

We previously developed TimeSTAMP, a method for drug-controlled epitope tagging of
newly synthesized proteins!?. In this method, a cassette comprising the nonstructural protein
3 (NS3) protease domain of hepatitis C virus (HCV) flanked by cognate protease sites is
fused between a protein and an epitope tag. The protease excises itself and the tag from
proteins by default, but this can be blocked for proteins synthesized after a defined time by
applying a cell-permeable HCV NS3 protease inhibitor. These epitope-based TimeSTAMP
tags have been used to visualize distributions of new proteins of interest in cultured
mammalian neurons and in fly brains using immunostaining of fixed samples®Z.

We now report an extension of the TimeSTAMP method to visualize new proteins in living
cells by fluorescence microscopy and in fixed sections by high-resolution electron
microscopy (EM). Using a new fluorescent tag to track new copies PSD95, we find that
local dendritic stimulation of growth factor and neurotransmitter receptors induces local
accumulation of new PSD95 in stimulated synapses and dendritic shafts. Using new
fluorescent photo-oxidizing tags, we show by correlated light and electron microscopy that
newly synthesized PSD95 molecules rapidly incorporate beneath the postsynaptic membrane
at synapses. The ability of these new TimeSTAMP tags to visualize new proteins in living
neurons and at an ultrastructural level will enable researchers to study the role of new
protein synthesis and delivery in vitro and in vivo.
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Development of fluorescent TimeSTAMPs

To track newly synthesized proteins of interest in living neurons, we first extended the
TimeSTAMP technique to control maturation of fluorescent protein domains with drug. We
reasoned that the NS3 protease placed within a fluorescent protein domain and allowed to
remove itself in the absence of drug would generate fluorescent protein fragments that fail to
associate and produce fluorescence, while protease inhibition by drug application would
preserve linkage, allowing for fluorophore maturation (Fig. 1a). We first generated a single
TimeSTAMP cassette to improve signal inducibility and to induce degradation of the
protease following self-excision (Supplementary Fig. 1a). Cleavage efficiency and inhibitor
binding were improved by fusing the 8-amino acid NS4A beta strand cofactor N-terminally
to the NS3 domain. Breakthrough cleavage in the presence of drug was reduced by
introducing the slow-cleaving T54A mutation into NS31. Inducible protease excision and
elimination was achieved by introducing a new N-terminal cis-linked cleavage site with the
P6-P1 sequence EDVVCC derived from the naturally preferred NS5A/5B substrate and with
the N-end rule-inducing His at the P1’ position. The resulting cassette, TimeSTAMP2,
showed improved control by NS3 protease inhibitors (complete inhibition at 1 yM
BILN-2061 or ITMN-191 compared to 10 uM for original TimeSTAMP, Supplementary
Fig. 1b,c). As desired, protease did not accumulate in the absence of drug (Supplementary
Fig. 1d f). Similar to the original TimeSTAMP tags, TimeSTAMP2 allows drug-dependent
epitope tagging in neurons and has no effect on synaptogenesis when targeted to synapses
via PSD95 (Supplementary Fig. 1g,h).

We next used TimeSTAMP2 to create autofluorescent drug-controlled labels of new protein
copies. We screened insertions of the TimeSTAMP and TimeSTAMP2 modules into loops
of fluorescent protein domains for drug-dependent fluorophore development. Among the
constructs tested (Supplementary Fig. 2a), Venus yellow fluorescent protein (YFP) with the
TimeSTAMP2 module inserted between amino acids 158 and 159 exhibited robust drug-
dependent fluorescence (Fig. 1b). Immunoblotting confirmed that protease excision occurs
efficiently in the absence of drug but is fully inhibited in 1 pM BILN-2061 (Fig. 1c). The
fusion of this construct to PSD95 localized to synapses similarly to the previously
characterized PSD95-CFP12 (Supplementary Fig. 2b), and it did not exert observable effects
on synaptogenesis (Supplementary Fig. 2c). Therefore, this construct, TimeSTAMP:YFP
(TS:YFP), can function as a drug-inducible continuous fluorescent label of newly
synthesized proteins.

TS:YFP fluorescence arising during drug treatment persisted after drug washout
(Supplementary Fig. 2d), consistent with previous findings that fluorescent protein fragment
assembly is irreversible!3. Thus, TS:YFP should function for pulse labeling by irreversibly
labeling proteins synthesized in a drug-defined pulse period followed by production of
unlabeled protein after washout. This would be conceptually analogous to pulse-chase
labeling with radioactive metabolic precursors, without requiring a “chase” with excess
nonradioactive precursors to dilute out radioactive precursors. To test optical pulse labeling,
we expressed in primary rat embryonic hippocampal neurons the transmembrane synaptic
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adhesion molecule Neuroligin3 (NLGN3) tagged with TS:YFP. At 14 days in vitro (DIV),
we induced fluorescence on new proteins by drug incubation for 18 h followed by washout.
Time-lapse microscopy showed fluorescence appearing during the pulse period, initially in
perinuclear structures consistent with endoplasmic reticulum and Golgi and then at the
cellular membrane and in synapses (Supplementary Fig. 2e). After washout, fluorescence
decreased from all locations with an approximate half-life of 24 h, consistent with half-life
measurements performed by isotopic labeling!4. These results confirm that TS:YFP can be
used for optical pulse labeling.

To test the ability of TS:YFP to report on activity-dependent protein synthesis, we tracked
the production of Arc, which is translationally induced by synaptic activity®, in basal and
stimulated conditions. In this reporter, we fused TS:YFP C-terminally to Arc coding
sequence and included the complete pre-mRNA sequence with the 3’ untranslated region
(UTR) and introns, which are involved in Arc mRNA localization and translational
induction by neuronal activity!®. In 21-DIV hippocampal neurons expressing this Arc-
TS:YFP reporter, no fluorescence was detectable from the transfected neurons prior to
BILN-2061 treatment, while fluorescence increased over time in 1 uM BILN-2061 (Fig. 1d).
Bicuculline, which promotes action potential generation in excitatory glutamatergic neurons
by antagonizing GABA receptors, increased the rate of fluorescence development (Fig. 1e),
consistent with previous observations!®, thereby confirming that TS:YFP can report activity-
dependent protein translation.

To simultaneously visualize newly synthesized proteins from two species, we also created
an orange fluorescent TimeSTAMP (TS:OFP) using an alternative design based on
cleavage-induced N-end rule degradation of a fully intact mKO2 orange fluorescent protein
(Supplementary Fig. 3a). In the absence of drug, the released protease-mKO?2 fusion was
degraded, as assessed by direct fluorescence (Supplementary Fig. 3b) and immunoblotting
(Supplementary Fig. 3c), whereas EGFP, mCherry, or Venus in place of mKO2 were
resistant to degradation (Supplementary Fig. 3d). This TS:OFP tag may be useful together
with TS:YFP for tracking new copies of two proteins simultaneously. However, one clear
advantage of TS:YFP is that the fluorescent protein remains intact after drug washout for
monitoring protein turnover by fluorescence.

Stimulus-dependent PSD95 translation revealed by TimeSTAMP

We next used fluorescent TimeSTAMP to tested whether synaptic proteins synthesized after
plasticity induction incorporate into stimulated synapses. It has been suggested that activity-
induced proteins are delivered to stimulated synapses to promote plasticity persistence.
PSD95 functions to build a postsynaptic density (PSD) by cross-linking receptors and
cytoskeletal elementsl’, and its synthesis is induced in synaptoneurosomes by mGIuR
stimulation!®, However, whether local stimulation induces local synaptic accumulation of
new PSD95 has not been investigated.

To visualize new PSD95 in living neurons, we fused PSD95 coding sequence to TS:YFP
and encoded the complete native 3’ UTR, required for mRNA stabilization and translational
control18-20, Neurons expressing this PSD95-TS:YFP reporter exhibited no fluorescence in
the absence of BILN-2061, but fluorescence accumulated over time in its presence (Fig. 2a).
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Transfected neurons undergoing synaptogenesis at 7 DIV showed drug-dependent
fluorescence in dendritic puncta that appeared simultaneously with dendrite arborization
(Fig. 2a), suggesting incorporation of new PSD95-TS:YFP into nascent synapses as
previously observed with TimeSTAMP tagsl. At 24 DIV, drug-dependent fluorescence
arose gradually over 24 h in puncta throughout the dendritic tree, consistent with
accumulation at pre-existing synapses (Fig. 2b). Similarly, ratios of new/total PSD95 in
neurons at 14 DIV revealed slower synaptic accumulation of newly synthesized PSD95-
TS:YFP further from the cell body, as indicated by ratios of PSD95-TS:YFP/PSD95-CFP
fluorescence (Fig. 2¢,d), similar to earlier observations 11. These results confirm that
TS:YFP can track new copies of PSD95 and that under basal conditions new PSD95
expression does not occur preferentially in dendrites.

We next investigated the regulation of PSD95 translation in experimental models of synaptic
plasticity. The TrkB receptor tyrosine kinase and type 1 metabotropic glutamate receptors
(mGIluRs) regulate protein synthesis in synaptic plasticity, and TrkB activation by brain-
derived neurotrophic factor (BDNF) is both necessary for the late phase of electrically
induced LTP2! and sufficient to induce long-lasting increases in synaptic currents that
resemble electrically induced LTP22, Activation of type 1 mGIluRs by pharmacological
agonists CHPG and DHPG can either induce LTD or decrease stimulation thresholds for
LTP, depending on context?3, Both receptor classes activate the PI3K-mTOR pathway?24:2°,
which can promote PSD95 translation26. To determine if TrkB or type 1 mGIuR pathways
regulate PSD95 translation, we performed immunoblotting experiments with PSD95-GFP-
TimeSTAMPa, composed of PSD95 fused to GFP and the TimeSTAMPa cassette and
encoding the complete PSD95 3’ UTR!L. Bath stimulation of 14-DIV neurons with BDNF
or the type | mGIuR agonist DHPG increased the amount of new PSD95-GFP, detected as a
slower migrating species in the presence of BILN-2061 (Fig. 2e). This induction was
blocked by cycloheximide but insensitive to actinomycin D, indicating dependence on
protein synthesis but not transcription. Bicuculline also enhanced new PSD95-GFP protein
production. These results indicate that PSD95 synthesis is regulated by neurotrophin and
neurotransmitter receptors and by synaptic activity.

We next hypothesized that TrkB or type 1 mGIuR activation can induce local accumulation
of new PSD95 at stimulated dendritic regions and synapses. To perform local stimulations,
we microfabricated polydimethylsiloxane devices in which two culture compartments are
separated by a 50-um thick barrier traversed by 7-um wide microchannels connecting the
compartments (Supplementary Fig. 4a). This device is based on earlier devices for axonal
isolation2’, but the barrier is thinner to permit dendrites to traverse. Compounds applied to
one compartment diffuse down the microchannels, but compartment concentrations do not
detectably change over 12 h even without active microfluidic control due to the small
volumes of the microchannels compared to the compartment (Supplementary Fig. 4b d).
When neurons are transfected and plated in both compartments, some extend their dendrites
through the microchannels to the opposite compartment, allowing their distal dendrites to be
selectively stimulated (Supplementary Fig. 4e).
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Specificity of new PSD95 for stimulated synapses

To determine whether distributions of new PSD95 copies can be spatially regulated in
developing neurons, we stimulated distal dendrites of 8-DIV neurons expressing PSD95-
TS:YFP with BDNF and added BILN-2061 to both chambers to monitor new PSD95
anywhere. New PSD95 copies were enriched at tips of neurites extending toward the BDNF-
stimulated compartment in the microchannels (Fig. 3a). These structures are likely
developing dendrites rather than axons due to their multiple number, thickness, and presence
of PSD95. Fluorescence intensity per dendritic length was higher in BDNF-stimulated distal
segments than in proximal segments of the same dendrite and higher in stimulated dendritic
segments than in segments from matched unstimulated dendrites equally far from the cell
body (Fig. 3a). To determine if new PSD95 protein can preferentially accumulate in
stimulated synapses in response to BDNF, performed this experiment in 14-DIV neurons.
Local BDNF stimulation induced intense accumulations of new PSD95 in shafts and
synapses of dendrites entering the microchannels beginning at 9 h and persisting to 24 h
(Fig. 3b). At 9, 12, and 21 h, synaptic intensities of new PSD95 (adjusted for synapse size)
in stimulated distal regions were 26-62% higher than in unstimulated proximal regions of
the same dendrite and 121-153% higher than in unstimulated distal regions of dendrites
from the same cell that were similarly distant from the cell body (Fig. 3c). These results
reveal that new PSD95 copies can be preferentially expressed at BDNF-stimulated dendritic
regions and synapses.

The reporter constructs used in the above experiments included the complete PSD95 3’
UTR, which mediates localization of the mMRNA to dendrites and translational regulation by
FMRP1820, Removal of the 3’ UTR would thus be expected to prevent dendritic localization
of the mRNA and FMRP-dependent translational induction, and this truncation would test
whether local BDNF-induced signals recruit PSD95 proteins synthesized in an FMRP-
independent manner in the cell body. In neurons expressing PSD95-TS:YFP lacking the 3’
UTR and dendritically stimulated with BDNF, new PSD95 was primarily expressed in the
cell body with no specific enrichment in stimulated regions at any time (Fig. 3d). These
results indicate that dendritic translation of PSD95 and/or FMRP involvement is required for
localized dendritic accumulation of new PSD95 at stimulated synapses, and they
demonstrate that TS:YFP can be used to further study 3’ UTR function in mediating activity-
dependent local accumulation of new synaptic proteins.

To determine if new PSD95 protein are also recruited to synapses after mGIuR stimulation,
we stimulated distal dendrites of 14-DIV neurons expressing PSD95-TS:YFP with DHPG.
We again observed synaptic accumulation of new PSD95 in stimulated regions (Fig. 4a and
Supplementary Videos 1,2). New PSD95 levels were enriched 2.4-fold in stimulated
segments compared to unstimulated segments equidistant from the cell body at 22.5 h (Fig.
4c¢), the magnitude of which is similar to increased levels of translationally regulated protein
that were previously observed with neurotransmitter receptor modulation8:2% and cannot be
accounted for solely by the 20% increase in PSD size previously observed in response to
BDNF30. By contrast, dendrites extended toward the unstimulated side showed less new
PSD95 (Fig. 4b,c), ruling out that the effect is a non-specific result of crossing through a
microchannel. In some neurons, new PSD95 enrichment was first visible in stimulated
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synapses 2.5 h after stimulation began (Fig. 4d) and persisted for the duration of the
experiment. Similar results were obtained with CHPG, a specific agonist of mGIuRS5, the
predominant type 1 mGIuR at hippocampal synapses 31 (Fig. 4e). Close examination
revealed that new PSD95 was present in both synapses and dendritic shafts within the
stimulated region (Fig. 4a,e). These findings show that neurotransmitter receptor activation
in a dendritic region can induce accumulation of new copies of PSD95 in the stimulated
region, including at synapses. These results further demonstrate the ability of TS:YFP to
visualize new copies of a synaptic protein during local dendritic stimulations.

Development of photo-oxidizing TimeSTAMPSs

We next sought to visualize new proteins of interest in neurons with ultrastructural
resolution by EM. Because two epitope tags in TS:YFP are drug-dependent (Supplementary
Fig. 5a e), we first tested peroxidase-conjugated antibodies to deposit diaminobenzidine
(DAB) for EM imaging. However, the permeabilization steps required for antibody
penetration resulted in poor ultrastructural detail (Supplementary Fig. 5f). Therefore, we
modified TS:YFP to add the 12-kD genetically encoded singlet oxygen generator miniSOG,
which can mediate photo-oxidation of DAB for EM visualization32, Photo-oxidation with
miniSOG removes concerns about non-specific antibody binding and does not require
sample permeabilization, allowing for better ultrastructural preservation32. We created two
designs incorporating miniSOG (Fig. 5a,b). In TimeSTAMP:YFPmIiniSOG 1 (TS:YSOG1),
miniSOG was fused to the protease domain in TS:YFP for degradation by the N-end rule in
the absence of drug but preservation in its presence (Fig. 5a). In TS:YSOG2, miniSOG was
fused after the C-terminal YFP fragment, and the C-terminal cleavage sequence was
changed to allow for cleavage-induced N-end rule-mediated degradation of miniSOG in the
absence of drug but preservation in its presence (Fig. 5b). Although the second version is
limited by fusion to the C-terminus of proteins of interest because it degrades its C-terminal
cleavage product, its advantage over the first is its applicability for pulse labeling. Because
miniSOG in TS:YSOG?2 is covalently linked to the C-terminal YFP fragment it will remain
bound to the protein of interest during drug pulse and washout (Fig. 5b), whereas miniSOG
in TS:YSOGL1 would be cleaved away and degraded with the protease during drug washout
(Fig. 5a).

In lysates from PSD95-TS:YSOG1 or PSD95-TS:YSOG2-expressing cells grown without
BILN-2061, blotting for the AU1 or HA epitope, respectively, in the miniSOG fragment
detected no protein (Supplementary Fig. 6a,b), confirming efficient cleavage and N-end
rule-mediated degradation. In the continual presence of BILN-2061, only uncleaved PSD95-
TS:YSOG1 or PSD95-TS:YSOG2, respectively, were detected, as expected. Both constructs
exhibited fluorescence induction by BILN-2061 similar to TS:YFP (Supplementary Fig. 6c).
Like PSD95-TS:YFP, PSD95-TS:YSOG1 and PSD95-TS:YSOG?2 bhoth localized to synaptic
sites on dendritic spines (Supplementary Fig. 6d,e) without disrupting synaptogenesis
(Supplementary Fig. 6f).

We tested the performance of photo-oxidizing TimeSTAMP tags in correlated light and
electron microscopy. In 12-DIV neurons expressing PSD95-TS:YSOG1, fluorescence was
negligible in the absence of drug, but appeared throughout cells after 48 h in drug (Fig. 5c).
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We fixed these neurons without permeabilization and performed miniSOG-dependent photo-
oxidation of DAB with blue light. The resulting DAB precipitate overlapped well with the
YFP signal by light microscopy, indicating specificity for the reporter protein (Fig. 5¢). By
EM, fine subcellular structures such as microtubules and synaptic vesicles were clearly
visible in photo-oxidized samples (Fig. 5e), demonstrating excellent ultrastructure
preservation and fine resolution of synaptic elements similar to conventional label-free
samples33. The majority of DAB label localized to submembrane locations across from
synaptic vesicles, consistent with PSD95 localization, and DAB signal was dependent on
drug (Supplementary Fig. 7a). Similar results were obtained with PSD95-TS:YSOG2 (Fig.
5d,f and Supplementary Fig. 7b).

In early experiments, miniSOG-independent DAB signal appeared in neuronal mitochondria
after photo-oxidation (Supplementary Fig. 8a). Endogenous mitochondrial iron-sulfur
complexes can photosensitize oxygen at the wavelengths used with miniSOG, but mersalyl
acid abolishes this effect.28 Indeed, mersalyl acid treatment (5 mM, 30 minutes) before
photo-oxidation reduced mitochondrial DAB signal 8-fold (Supplementary Fig. 8b,c). With
this step included, EM of DAB-positive puncta in neurons expressing PSD95 tagged with
either TS:YSOGL1 or TS:YSOG2 reliably revealed synaptic structures with excellent
ultrastructural preservation and with the highest electron density underneath the postsynaptic
membrane, as expected (Supplementary Fig. 8d,e). These results confirm that photo-
oxidizing TimeSTAMP tags allow high-resolution EM imaging.

Tracking newly synthesized PSD95 proteins by EM

We examined distributions of freshly synthesized PSD95 using TS:YSOGL1 by treating
neurons expressing PSD95-TS:YSOGL1 at 12 DIV, a time of synaptogenesis, with 1 pM
BILN-2061 for 6 h before fixation. By fluorescence, YFP signal appeared diffusely
throughout the dendrite except for a few large puncta (Fig 6a). These puncta appeared larger
than typical PSDs, but the resolution of fluorescence microscopy was insufficient to
determine if they contain synapses. We then performed photo-oxidation and obtained a
pattern of DAB deposition similar to YFP fluorescence. EM visualization of one dendritic
PSD95 accumulation located at a junction with an axon in the fluorescence image (Fig. 6a)
revealed it to be within a dendritic protrusion and containing diffuse DAB signal (Fig. 6b).
There was little signal in the rest of the dendrite, suggesting that new PSD95 was
preferentially localized to these diffuse accumulations (Fig. 6b). The dimensions of this
accumulation was 2 pm wide and 0.6 um deep, larger in each axis than a mature PSD33. The
presence of PSD95 that is not membrane associated implies that some PSD95 protein may
not be palmitoylated34. In addition, the microtubule network appeared disorganized in this
protrusion, suggesting that this was a dynamic structure in the cell3. This protrusion was
apposed to an axonal segment with a low density of vesicles (fewer than 4 within 100 nm), a
criterion used to describe immature synapses under EM36, We speculate that this structure
may be a newly forming synapse, as new synapses often arise at sites with diffuse
accumulations of PSD9511:37,

In PSD95-TS:YSOG1-expressing neurons treated with BILN-2061 for 12 h, we observed
labeling of new PSD95 throughout dendrites by both fluorescence and DAB (Fig. 6¢). In
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one region we examined by EM (Fig. 6c¢), the highest signal was observed within spines
(Fig. 6d), and new PSD95 preferentially accumulated on membranes contacting apposing
mature presynaptic structures (Fig. 6d). These accumulations measured 500 nm wide and
less than 30 nm deep, dimensions typical for a mature PSD33. Thus, new PSD95 populations
appear at mature synapses within 12 h.

To pulse-label PSD95 synthesized in a specific time window, we incubated 12-DIV neurons
expressing PSD95-TS:YSOG2 with 1 uM BILN-2061 for 48 h and then removed drug for 6
h. By fluorescence, we observed YFP signal in small and bright puncta in distal neuronal
processes (Fig. 7a). We also noticed a decrease in diffuse YFP signal in soma and proximal
processes compared to neurons maintained continuously in drug (Fig. 7a, 6b), suggesting
that proteins labeled in the pulse period have moved out of these structures. After photo-
oxidation, we visualized by EM two dendritic areas within one cell (Fig. 7a). A more
proximal area that had only dim diffuse signal by fluorescence microscopy exhibited no
specific DAB signal by EM, suggesting clearance of PSD95 proteins from the cytosol 6 h
after synthesis (Fig. 7b). A more distal area containing multiple fluorescent puncta smaller
than 1 pm in diameter exhibited PSD95 proteins localized to mature synapses, as indicated
by submembranous staining apposing presynaptic structures with abundant vesicles (Fig.
7¢). Taken together, these results show that new PSD95 proteins localize to synapses by 6 h
after synthesis in 14-DIV neurons.

DISCUSSION

Comparison of TimeSTAMPs with other translation reporters

We developed fluorescent and photo-oxidizing TimeSTAMP tags to visualize new copies of
proteins of interest in living neurons and by EM. These new TimeSTAMP tags exhibit a
unique combination of features suitable for studying the fates of newly synthesized proteins
during nervous system development and plasticity. First, they are genetically encoded, so
they can be appended to specific proteins of interest. Second, they are drug-controllable,
which both provides an easy means to control the time period of new protein labeling and
allows easy control in large tissue volumes. Lastly, they are fluorescent and photo-oxidizing,
allowing visualization of new protein copies in living cells and by EM.

As protein tags, TimeSTAMPs can report on all steps that control protein expression and
localization, including transcriptional, translational, and post-translational regulatory events
and protein-protein interactions. This is especially critical for studying synaptic proteins,
which are dynamically regulated by multiple mechanisms. For instance, proteins of the PSD
are held together by a network of protein-protein interactions, which are regulated by post-
translational modifications such as phosphorylation38, palmitoylation3?, proteolysis*?, and
ubiquitination®!. In contrast, destabilized GFP reporters cannot be used as fusion tags
because of their destabilizing nature, and while capable of reporting transcriptional and
translational control?8:2%, do not report on subsequent steps of protein localization,
interactions, or modification.

Monomeric fluorescent protein timers and photoconvertible fluorescent proteins®2 can in
theory be used as fluorescent tags that report on protein age in living cells. However, a
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population of timer molecules changes color gradually over many hours due to an
autocatalytic conversion reaction occurring at different times in each molecule, and thus
fluorescent protein timers cannot provide the same temporal resolution or control as
TimeSTAMP#2, Monomeric photoconvertible fluorescent proteins can be fused to a protein
of interest and converted from one emission wavelength to another using violet light#2, after
which only new proteins will fluoresce at the unconverted wavelength. However, detecting
low concentrations of new proteins requires complete conversion throughout the cell, and
the prolonged exposures and high intensities required often cause phototoxicity#3. Extending
the use of photoconvertible proteins to a large volume in vivo would also be difficult,
whereas drugs are routinely perfused throughout a slice or injected into a brain region.

A powerful non-genetically encoded approach to labeling new proteins is to metabolically
incorporate physically or chemically distinct amino acids. Classically this was performed
with radioactive amino acids for detection by autoradiography. Recently the approach has
been extended to amino acids with nonradioactive isotopes for detection by mass
spectroscopy and, in the BONCAT technique, to unnatural amino acids bearing reactive
chemical groups that can then be conjugated to fluorophores or affinity tags*. These
metabolic labeling approaches differ in applicability from TimeSTAMP in two ways. First,
they result in the labeling of all new proteins proportional to abundance rather than
specifically labeling proteins of interest. Second, they currently do not allow live
visualization of new proteins. For visualization with autoradiography, samples must be fixed
and then exposed to film. For visualization with BONCAT, cells must be starved of natural
amino acids prior to unnatural amino acid addition, then after the labeling period, fixed and
reacted in non-physiological conditions. Metabolic labeling approaches, however, enable de
novo identification of synthesized proteins, either by mass spectrometry for heavy isotopes,
or by reaction to affinity groups and purification for chemically reactive amino acids.
Metabolic labeling methods such as BONCAT can therefore be used to screen for previously
unknown locally translated or activity-induced proteins. In contrast, TimeSTAMPs are
intended to visualize specific proteins of interest, and thus are well suited for further
investigation of any proteins identified in screens by mass spectroscopy or BONCAT.

ncorporation of PSD95 at stimulated synapses

The precise function of activity-induced protein synthesis in synaptic plasticity is still poorly
understood. An attractive hypothesis is that proteins synthesized in response to synaptic
activity function at activated synapses to promote long-lasting structural changes®4°. This
hypothesis predicts that new copies of specific proteins synthesized after synaptic activation
will localize to activated synapses. However, an alternative hypothesis is that new protein
synthesis replenishes pre-existing proteins that are rapidly consumed during synaptic
plasticity#>46. If copies of a particular protein synthesized in response to activity are used
primarily to replenish global stocks rather than to remodel activated synapses, old copies
would be utilized by the stimulated synapses and new proteins would resupply a dendritic
pool to be utilized later by all synapses. These hypotheses thus make different predictions
about the fates of newly synthesized proteins.
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Our results demonstrate that copies of PSD95 synthesized after localized stimulation
preferentially accumulate in stimulated dendritic regions and synapses. This is the first direct
observation that copies of a synaptic structural protein synthesized after local dendritic
stimulation can preferentially incorporate into stimulated synapses. Because new protein
copies are preferentially incorporated at stimulated synapses, our findings support the
hypothesis that new synthesis of PSD95 has synapse-autonomous functions and is not solely
functioning in global replenishment. Multiple mechanisms have been described that can
contribute to the localization of new PSD95 molecules to activated synapses, including local
translation18, activity-induced palmitoylation34, and phosphorylation34:38, Interestingly,
PSD95 molecules within PSDs are immobile during baseline activity but exhibit increased
exchange between postsynaptic and cytoplasmic locations after LTP or LTD induction3947.
Preferential accumulation of new copies of synaptic proteins such as PSD95 within
stimulated dendritic regions could thus provide synapses undergoing plasticity with proteins
to rebuild PSDs or supply fresh copies of proteins that have not yet experienced irreversible
post-translational modifications such as proteolysis by calpain®9. Our finding of high PSD95
levels in stimulated dendritic regions both in synapses and dendritic shafts is consistent with
this possibility.

Visualization of new protein copies in synaptic plasticity had previously only been possible
for the protein Arc, which is expressed at low levels basally and is strongly transcriptionally
and translationally induced after synaptic activity such that induced protein increases can be
attributed to new proteins. In the dentate gyrus of rats, Arc protein levels increase rapidly
and specifically in dendritic regions undergoing LTP*8. However, whether new Arc proteins
function to maintain LTP persistence in a synapse-autonomous manner is not yet clear. Arc
has a well-characterized function in promoting AMPA-type glutamate receptor removal
from synapses in LTD16, and its requirement in LTP persistence may be due in part to
homeostatic removal of glutamate receptors from non-potentiated synapses. Unlike Arc,
which is trafficked with endocytic vesicles away from synapses and is degraded within
hours16:39, PSDY5 has a half-life of days and a subpopulation is stably bound in the synapse
with a persistence of many hours'139, Once incorporated into specific synapses, new PSD95
could thus conceivably exert long-lasting effects on synaptic function.

Other studies have inferred synaptic incorporation of activity-induced proteins but have not
directly demonstrated it. A Dendra2 message tagged with the sensorin 3’ UTR is translated
near activated synapses in Aplysia neurons, suggesting that sensorin itself may be
synthesized and utilized at activated synapses*3, but this has not yet been directly confirmed.
Preexisting Homer-1a protein, marked by photoactivation of a PA-GFP tag 4 h prior to
synaptic activation, can be recruited specifically to activated synapses in mammalian
neurons*®, However, whether copies of Homer-1a synthesized after synaptic activation
target activated synapses has not been studied, and whether Homer-1a synthesis could
contribute to the protein synthesis dependence of LTP persistence remains unclear.
Fluorescent TimeSTAMP tagging of sensorin or Homer-1a could be used to determine if
synapse-specific utilization of new copies follows their activity-dependent synthesis.

A previous study using local subcellular fluorescence recovery after photobleaching (FRAP)
demonstrated that local TrkB stimulation using bead-immobilized BDNF non-specifically
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enhanced PSD95-GFP movement throughout the entire dendritic tree without preferential
enhancement at the stimulation site3. Local FRAP measurements report replacement rates
of total PSD95 in the photobleached location from all sources outside that location. In
contrast, our study specifically investigated the fates of newly synthesized PSD95 copies. If
total protein concentrations are higher than new protein concentrations, then increased
accumulation of new proteins may not be apparent when visualizing the total protein
population. Furthermore, increased retention of PSD95 at stimulated synapses, for instance
by palmitoylation or phosphorylation34:38, would not increase FRAP and indeed could
decrease it if the area of FRAP resides within a larger area of increased retention. The
previous study also did not include the native 3’ UTR in the PSD95 constructs. Because the
3’ UTR mediates mRNA stabilization, dendritic localization, and translational
induction1820, its influence on these events would not have been detected.

Ultrastructural pulse labeling of PSD95

Our results demonstrate that visualizing new and old PSD95 proteins by correlated light and
electron microscopy with photo-oxidizing TimeSTAMP tags TS:YSOG1 and TS:YSOG2
provides a more complete picture of their localization and environment. By fusing these
reporters to PSD95, we found that new and old PSD95 populations exhibited distinct
localization patterns both at the cellular and synaptic level. PSD95 copies less than 6 h old
were found in dendritic protrusions opposite immature presynaptic termini and less abundant
in PSDs of mature spines, whereas older PSD95 populations were preferentially observed at
mature synapses. This indicates that PSD95 turns over more slowly at PSDs of mature
synapses, consistent with previous reports from optical microcopy3°. New PSD95
populations also exhibited unique synaptic accumulation at each of these structures. New
copies that were less than 6 h old were observed to accumulate diffusely in the cytoplasm in
a protrusion apposing a vesicle-sparse presynaptic terminus. By contrast, copies of PSD95
more than 6 h old were not observed in the cytoplasm and accumulated in dense membrane-
bound structures apposing vesicle-rich presynaptic membranes. This could suggest that
recruitment of PSD95 to mature postsynaptic sites may require palmitoylation, which has
been suggested previously3’. Therefore, younger PSD95 molecules do not simply replace
older PSD95 populations, but display distinct localization and may have distinct functions at
growing areas of the neurons.

Without EM, it would be difficult to distinguish PSD95 labeling at immature versus mature
synapses because of the limited contextual information of light microscopy. Super-
resolution optical microscopy allows resolution of single targets below the diffraction limit
but cannot provide the same contextual information as photo-oxidizing TimeSTAMPs
because it is limited by the number of distinct fluorophores that can be imaged
simultaneously. It would be difficult to optically label a protein of interest such as PSD95
together with markers required for context, such as membranes, vesicles, and microtubules.
EM inherently includes such context. The only alternative technique for EM imaging of new
vs. old copies of a genetically defined protein involves sequential FIAsH and ReAsH
labeling of tetracysteine motifs®?. However, the modest singlet oxygen quantum yield of
ReAsH makes it much less sensitive than miniSOG. The biarsenical dyes also suffer from
higher nonspecific background labeling, potential toxicity, and difficulty in application to
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intact tissues and organisms. Photo-oxidizing TimeSTAMPs offer a relatively simple
method for ultrastructural resolution of either newer or older copies of a genetically selected
protein.

Plasmids encoding PSD95 or Arc fused to TimeSTAMP cassettes'! were modified by
standard molecular biology techniques including polymerase chain reaction, restriction
enzyme digestion, and ligation to create new TimeSTAMP variants. New linker sequences
were introduced with synthetic oligonucleotides. All subcloned fragments were sequenced in
their entirety to confirm successful construction. Full sequences of all plasmids in this study
are available upon request.

The following compounds were obtained from Sigma: bicuculline, CHPG, DHPG,
actinomycin D, and cycloheximide. Alexa Fluor 647 carboxylic acid succinimidyl ester was
obtained from Invitrogen. BILN-2061 and ITMN-191 were synthesized by a contract
synthesis company (Acme). BDNF was obtained from Chemicon, Primary antibodies used
were mouse monoclonal anti-PSD95 (Neuromab), mouse monoclonal anti-AU1 (Covance
MMS-130R), rat monoclonal anti-HA (Roche), and rabbit anti-synapsin (Chemicon). For
immunoblotting, primary antibodies were used at 0.1-0.4 pg/mL and HRP-conjugated goat
secondary antibodies (Zymed) at 0.1 pg/mL. For immunofluorescence, primary antibodies
were used at 0.5-1 pg/mL and Alexa Fluor 568- and 647-conjugated goat secondary
antibodies (Invitrogen) at 0.5 pg/mL.

All cell culture reagents were obtained from Invitrogen unless otherwise indicated.
HEK?293A cells (Invitrogen) were cultured in DMEM medium with 10% v/v FBS, 50 U/mL
penicillin, and 50 pg/mL streptomycin and transfected with Lipofectamine 2000.
Hippocampal neurons were dissociated by papain from embryonic day 18 (E18) or postnatal
day 0 (P0) Sprague Dawley rats, transfected by Amaxa electroporation (Lonza AG),
cultured in Neurobasal with B27 supplement, 2 mM GlutaMAX, 50 U/mL penicillin, and 50
pg/mL streptomycin as previously described®. All animal procedures were approved by
Institutional Animal Care and Use Committee of the University of California, San Diego or
of Stanford University.

Compartmentalized neuronal culture chambers

Silicon wafer masters were made by soft photolithography on two layers of photoresist with
patterning provided by two transparency masks created in CAD software and printed on a
20,000 dots-per-inch printer. Polydimethylsiloxane (PDMS) prepolymer and catalyst (Dow
Corning) were mixed at a 10:1 ratio and allowed to polymerize on the masters at 70°C
overnight. Blocks were cut out, sterilized, and adhered to washed coverglasses, then the
channels were coated with poly-D-lysine. More detailed procedures have been previously
published?’.
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Immunoblotting

For analysis of TimeSTAMP cleavage by immunoblotting, HEK293A cells were transfected
with Lipofectamine for 3 h, then transferred to fresh medium without or with BILN-2061.
1-2 days later, cells were rinsed quickly in Hank’s Buffered Saline Solution (HBSS) and
immediately lysed in 0.1% boiling sodium dodecy! sulfate (SDS) loading buffer. Lysates
were sonicated to shear DNA and then run on NuPage 4-12% Novex Bis-Tris SDS
polyacrylamide gels (Invitrogen). Proteins were transferred onto polyvinylidene fluoride
membrane (Millipore) by electroblotting, which were then blocked with 10% nonfat dried
milk in tris-buffered saline with 0.1% Tween-20 (TBST), incubated in primary antibody
overnight in 5% bovine serum albumin in TBST at 4 °C, washed in TBST to remove excess
primary antibody, incubated in HRP-conjugated secondary antibody in 10% nonfat dried
milk in TBST for 45 min at room temperature, and finally rinsed 3 times for 10 min each in
TBST. Proteins were visualized by chemiluminescence (SuperSignal West Pico
Chemiluminescent Substrate, Thermo) and film (Amersham Hyperfilm Blue). For analysis
of stimulus-dependent PSD95 synthesis in neurons by immunoblotting, transfected
dissociated PO rat hippocampal neurons were plated and maintained in 6-well dishes.
Following treatment by the desired pharmacological agents, cells were rinsed quickly with
HBSS and immediately lysed in boiling SDS, then immunoblotting was performed as above.

Immunofluorescence

To quantify effects of TimeSTAMP expression on synaptic density, hippocampal neurons
were dissociated, electroporated, and plated on washed coverslips coated with poly-D-
lysine. Neurons were cultured in the absence of BILN-2061 or in its presence from 4 to 14
DIV. Neurons were fixed by the addition of one culture volume of 8% paraformaldehyde for
15 minutes at room temperature, then washed in phosphate-buffered saline (PBS), blocked
in PBS with 5% non-immune goat serum, and probed for synapsin and HA according to
standard procedures. Specificity of secondary antibodies was confirmed in control samples
without primary antibody. Coverslips were mounted in Vectashield (Chemicon) and sealed
with nail polish. Conditions were randomized and blinded, then images of 7-10 neurons per
condition were obtained on a Zeiss Axiovert 200M with a LSM 5 Live confocal scanner,
using a 40x water-immersion lens with numerical aperture (NA) 1.2 and one of the
following filter sets: 495/10 nm excitation, 515 nm dichroic, 535/25nm emission (YFP);
460/20 nm excitation, 515 nm dichroic, 535/25 nm emission (miniSOG); or 540/25 nm
excitation, 560 nm dichroic, 595/50 nm emission (mOrange, mKOZ2, or mCherry). A stack
of optical sections with 1024 x 1024 resolution at 1-um intervals through each neuron was
obtained and then flattened in a maximum intensity projection. Blinded quantitation of
synaptic density was performed as previously described!!. Analysis was performed on an
Apple Macintosh notebook computer using the public domain NIH ImageJ program
(developed at the U.S. National Institutes of Health and available on the Internet at http://
rsb.info.nih.gov/nih-image).

Time-lapse microscopy

To follow fluorescence development of TS:YFP tags in transfected HEK293A cells, cells
were cultured and transfected on glass-bottom dishes in DMEM with 10% fetal bovine
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serum. One day after transfection, DMEM was exchanged for HBSS with B27. Cells were
imaged on a Zeiss Axiovert 200M equipped with a xenon arc lamp, a 20x0.7 NA lens, a
Photometrics Cascade 11 1024 camera, and a stage-top environmental chamber with
temperature set to 35°C and humidity to 100%. Images were acquired before and at various
times after BILN-2061 addition with exposure times selected to avoid sensor saturation. To
plot normalized fluorescence versus time, total background-subtracted fluorescence from
individual cells at each time point was measured using ImageJ software and normalized to
the maximum value for each cell.

To visualize new synaptic protein synthesis in neurons, dissociated PO hippocampal neurons
were transfected with TimeSTAMP reporters and a mCherry marker by electroporation.
They were then cultured in Neurobasal with B27 in glass-bottom dishes or PDMS chambers.
Cultures were maintained at 37°C in 5% carbon dioxide and 100% humidity. Half of the
medium was replaced every 2 days. On the day of imaging, medium was exchanged for
HBSS with B27. Cells were imaged by epifluorescence on the Zeiss Axiovert 200M as
above. They were also imaged on an Olympus 1X81 using a 20x 0.7 NA lens and a F\V1000
confocal scanning system. For confocal imaging, the following settings were used:
excitation with a 488-nm argon-ion laser line at 10% power and a 559-nm laser diode at
10% power, pinhole 200 um, scan resolution 1024 x 1024 pixels, scanning speed 1 ys per
pixel, photomultiplier voltage 700 V, digital gain 1. In either imaging system, fields
including transfected neurons identified by mCherry fluorescence were imaged before and at
various times after BILN-2061 addition. A stack of optical sections at 1-um intervals
through each neuron was obtained at each position and time point and then flattened in a
maximum intensity projection.

Immunocytochemistry and photo-oxidation for EM

For conventional immuno-EM labeling, cells were fixed in 4% paraformaldehyde and 0.1%
glutaraldehyde in PBS (0.1 M, pH 7.4) for 30 min, rinsed several times in chilled buffer, and
incubated in permeabilizing buffer (0.1% Triton X-100 in PBS) for 5 min. Then cells were
incubated in primary antibody (monoclonal antibody to HA 1:1000, Roche clone 12CA5) in
0.01% Triton X-100 and 5% normal goat serum (NGS) in PBS at 4°C for 3 h to overnight,
secondary conjugated to biotin (Goat anti mouse, 1:1000) in 5% NGS in PBS at 4°C for 1-2
h, and streptavidin-HRP (1:100) in 5% NGS in PBS at 4 °C for 1 hour, allowing for
sufficient washing in 5% NGS in PBS on ice after each incubation. Fluorescent cells were
identified and registered by the grid on the cover glass of these dishes. Confocal images of
these cells were taken with minimum exposure using a MRC-1024 inverted confocal
microscope (BioRad) to identify transfected cells and for correlative light microscopic
imaging. Then the buffer was replaced with a solution of 1 mg/mL DAB and 0.001% H,0,
in PBS. Cells in the registered grids were monitored under a transmission microscope until a
light brown reaction product became visible. The dish was then removed from the
microscope and washed in chilled buffer (5 times for 2 min) and post-fixed in 2%
glutaraldehyde in 0.1 M PBS on ice for 20 min and then in 1% osmium tetroxide (Electron
Microscopy Sciences) in 0.1 M PBS on ice for 30 min. Cells were then washed in chilled
buffer twice and rinsed in distilled water and stained with 2% aqueous uranyl acetate (Ted
Pella Inc.) for 1 h to overnight at 4°C. The samples were then dehydrated in a cold graded
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ethanol series (20%, 50%, 70%, 90%, 100%, 100%, 100%) 2 min each, rinsed once in room
temperature anhydrous ethanol, and infiltrated in Durcupan ACM resin (Electron
Microscopy Sciences) using 1:1 anhydrous ethanol and resin for 30 min, then 100% resin
twice for 1 h each, then into fresh resin and polymerized in a vacuum oven at 60°C for 48 h.
Sample preparation for photo-oxidation was performed as described previously.24
Incubation with mersalyl acid (5 mM in cacodylate buffer for 30 min on ice) followed by
several rinse steps in chilled buffer before photo-oxidation was added in some experiments
to reduce DAB staining of mitochondria.

Electron Microscopy

Labeled and imaged areas of embedded cultured cells were identified by transmitted light
microscopy. Areas of interest were sawed out using a jeweler’s saw and mounted on dummy
acrylic blocks with cyanoacrylic adhesive. The coverslip was carefully removed, ultrathin
sections were cut using an ultramicrotome, and electron micrographs were imaged using a
1200 TEM (JEOL) operating at 80 keV.

Statistical Analysis

Statistical comparisons between two groups for a measure of interest were performed with
two-tailed t-tests assuming unpaired samples with significance level set at a = 0.05.
Comparisons between more than two groups for a measure of interest were performed by
one-factor ANOVA followed by pairwise Tukey’s tests if ANOVA revealed unequal means
at a significance level of a = 0.05. Prior to t-tests and Tukey’s tests, F-tests were first used to
reject a null hypothesis of equal variances for a two-tailed distribution with significance
level set at a = 0.05. If the null hypothesis of equal variances was accepted then Tukey’s test
(for ANOVA post-hoc analysis) or a t-test for samples with equal variances was performed;
otherwise Dunnett’s T3 test (for ANOVA post-hoc analysis) or a t-test for samples with
unequal variances was performed. For analysis of dendritic segment TS:YFP fluorescence or
synaptic density, sample numbers were determined by the number of healthy transfected
neurons in each condition. For analysis of synaptic TS:YFP fluorescence in chambers,
sample numbers were determined by the number of puncta in each segment. Statistical tests
were performed in Excel (Microsoft) and Prism (Graphpad).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Development of TS:YFP, a TimeSTAMP tag with a YFP output. (a) Schematic of the

TS:YFP cassette featuring protease-mediated fragmentation of a fluorescent protein, fused to
the synaptic protein PSD95. (b) Imaging shows TS:YFP fluorescence is drug-dependent in
HEK?293 cells. BILN-2061 was continuously applied from 3 h after transfection to the time
of imaging at 24 h after transfection. (c) Immunoblots confirm expected sizes for processed
and full-length PSD95-TS:YFP fusion proteins in the absence or presence of drug,
respectively (lanes 2 and 3). BILN-2061 was continuously applied from 3 h after
transfection to the time of lysis at 24 h after transfection. In the left lane, PSD95-TS*:YFP is
a protease-dead mutant of PSD95-TS:YFP in which the serine of the catalytic triad is
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mutated to alanine. (d) TS:YFP reveals that new Arc protein synthesis is induced by 20 uM
bicuculline-stimulated synaptic activity in a 21-day in vitro (DIV) neuron. Images are of
cells immediately before BILN-2061 addition and after 6 h in 1 uM BILN-2061. (€)
Quantification of whole-cell Arc-TS:YFP fluorescence over time in unstimulated and
stimulated neurons. Differences at 4 and 6 h are statistically significant (p < 0.05 by
unpaired two-sided t-test, n = 6 neurons per condition). Error bars represent standard error of
the mean (SEM).
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Figure 2.

Tracking of basal and activity-induced PSD95 production with TimeSTAMP. (a) New
PSD95 accumulates in dendritic puncta during arborization in a 7-DIV neuron. New puncta
appear on distal branches simultaneously with their extension. Times in 1 uM BILN-2061
are shown. (b) At 21 DIV, new PSD95 accumulates in puncta throughout the dendritic tree.
(c) Distally located synapses incorporate less new PSD95 than proximal ones in 14-DIV
neurons. PSD95-TS:YFP fluorescence in segments of the primary dendrite was divided by
cotransfected PSD95-CFP fluorescence for each time, then normalized to the initial value in
the 25-um segment. Mean differences between times were significant for 50-75 um and 75—
100 pm segments by ANOVA (p = 0.018 and 0.020 respectively, n = 7 segments each).
Differences between 24 h and 6 h were significant by post-hoc Tukey’s tests (p = 0.017 and
0.016 for segments at 5075 pm and 75-100 pum, respectively). Error bars represent SEM.
(d) Upper image, a representative neuron from (c) showing that PSD95 synthesized for 20 h
in 1 uM BILN-2061 under basal conditions exists in a gradient from the cell body. PSD95-
TS:YFP protein is in green while PSD95-CFP, a marker of total PSD95, is in red. Lower
image, enlarged view of boxed region in upper image. (e) TimeSTAMPa revealed induction
of PSD95 synthesis by stimuli. 14-DIV neurons expressing PSD95-GFP-TimeSTAMPa
were treated for 3 h with 10 pM BILN-2061 and stimuli along with actinomycin D to block
transcriptional upregulation or cycloheximide to block protein synthesis. Anti-PSD95
immunoblotting reveals proteins synthesized during BILN-2061 incubation migrating at the
uncleaved size. 100 ng/mL BDNF, 50 uM DHPG, and 20 uM bicuculline each induce
PSD95 synthesis above baseline independent of transcription. Endogenous PSD95 serves as
a loading control.

Nat Neurosci. Author manuscript; available in PMC 2013 June 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Butko et al.

Page 23

[

8 DIV PSD95-TS:YFP
local BDNF

YFP channel YFP channel YFP channel DIC + YFP merge

o

14 DIV PSD95-TS:YFP
local BDNF

%h 21h
0.0001—

0.0082
2.0 0.00019
[0.0001+

F0.000'I“

Normalized fluorescence
-~
(=]
Normalized fluorescence
Normalized fluorescence

. X Prox Distal Stim . .
Prox Distal Stim distal Prox Distal Stim

Unstimulated distal Unstimulated Unstimulated distal

o

14 DIV PSD95TS:YFP
A3'UTR local BDNF

Figure 3.
BDNF-dependent local accumulation of new PSD95 in neurons. neurons expressing PSD95-

TS:YFP were treated with 100 ng/mL BDNF in the right chamber at time 0 while 1 uM
BILN-2061 was applied to both chambers, also at time 0. Arrowheads within the channels
point in the direction of BDNF diffusion, and bars above the images mark the location of the
50-um barrier. (a) New PSD95 accumulates at BDNF-stimulated growth cones in an 8-DIV
neuron expressing PSD95-TS:YFP. Asterisks mark growth cones with new PSD95. The
fourth panel is an inset of the 21-h field showing merged TS:YFP fluorescence (green) and
differential interference contrast (DIC, grayscale) images. (b) New PSD95 is enriched at
BDNF-stimulated regions in two 14-DIV neurons (asterisks) expressing PSD95-TS:YFP. (c)
New PSD95 mean concentrations are higher in synapses of stimulated regions (within 10 um
of the microchannels, n = 31) versus synapses located more proximally on the same
dendritic branch (n = 40 synapses) as well as versus synapses equidistant from the soma on
an unstimulated branch (n = 36 synapses). Differences were significant by one-way
ANOVA at all time points (p = 0.0001). p values of posthoc unpaired two-tailed t-tests with
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Tukey’s correction are indicated on the charts. Error bars represent SEM. (d) New PSD95 is
not preferentially detected at BDNF-stimulated synapses when the 3’ UTR is removed.
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Figure4.
Local new PSD95 accumulation is induced by local metabotropic glutamate receptor

activation. (a) New PSD95 is enriched in DHPG-stimulated regions in a 14-DIV neuron
(asterisks). Time-lapse imaging was performed in the presence of 1 uM BILN-2061 in both
chambers and 100 uM DHPG in the right chamber for the times shown. (b) Representative
neuron exhibiting no enrichment of new PSD95 in distal dendrites crossing from the DHPG-
stimulated compartment into the unstimulated compartment. (c) The mean ratio of new
PSD95 in synapses within a 20-um dendritic segment crossing the barrier versus in a 20-ym
non-crossing dendritic segment from the same neuron was quantified at 22.5 h. This ratio
was greater than 1 in neurons with cell bodies in the unstimulated compartment extending
dendrites into the stimulated compartment, but less than 1 for neurons extending dendrites in
the opposite direction (p = 0.009 by unpaired two-tailed t-test, n = 8 and 4 segments for
crossing-toward and crossing-away neurons, respectively). Error bars represent SEM. (d)
Enrichment of new PSD95 in synapses and dendrites encountering DHPG (asterisks) can be
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seen as early as 2.5 h. (€) Similar enrichment of new PSD95 in stimulated dendrites was
observed in response to 300 uM of the mGIluR5-selective agonist CHPG. Asterisks mark
new PSD95 at stimulated synapses. The third panel shows merged TS:YFP (green) and
mCherry (red). In the magnified insets, new PSD95 is seen in the dendritic shaft in the
stimulated region (top) but not in the unstimulated region (bottom). The intensity gain of the
TS:YFP signal in the bottom inset is twice that of the other images. In all images,
arrowheads within the channels point in the direction of DHPG or CHPG diffusion, and bars
above the images mark the 50-um barrier.
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Design and development of photo-oxidizing TimeSTAMPs. Schematics of the TS:YSOG1
(a) and TS:YSOG2 (b) cassettes with drug-dependent singlet oxygen generation ability
encoded by the miniSOG domain (aqua), fused to the synaptic protein PSD95. PSD95-
TS:YSOGL1 (c¢) and PSD95-TS:YSOG2 (d) produce correlated drug-dependent fluorescence
and DAB images in neurons. PSD95-TS:YSOGL (€) and PSD95-TS:YSOG2 (f) DAB signal
is localized to PSDs of neurons incubated with drug. Solid arrowhead marks abundant 30- to
40-nm vesicles indicative of a presynaptic bouton. Cyan arrowhead indicates DAB signal at
and beneath the apposing postsynaptic membrane. The excess black dots present in
transmitted light images in (c) and (d) are non-specific miniSOG-independent DAB
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precipitates that commonly form when photo-oxidizing cultured neurons. Because this
signal is mainly extracellular and does not match YFP fluorescence, it was easily
distinguishable from true miniSOG signal at transmitted light and EM levels.
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Figure6.
Tracking new PSD95 populations using TS:YSOGLI. (a) After 6 h in BILN-2061, new

PSD95 protein was visible throughout shafts with enrichment in 2 pm-wide accumulations.
(b) EM imaging of one accumulation after photo-oxidation revealed a diffuse accumulation
of membrane-bound and cytoplasmic PSD95 (cyan arrowhead) in contact with an axonal
region with a low density of vesicles (solid arrowhead). (c) After 12 h in BILN-2061, new
PSD95 protein was visible throughout shafts and in numerous puncta less than 1 pm wide.
(d) EM imaging of two small puncta revealed membranous and submembranous PSD95
(cyan arrowhead) in contact with an axonal region with high vesicular density indicative of a
mature synapse (solid arrowhead).
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Figure7.
Pulse labeling of older PSD95 populations using TS:YSOG2. (a) After 48 h in BILN-2061

followed by 6 h washout, pulse-labeled PSD95 protein was visible at low levels in shafts
with enrichment in numerous puncta less than 1 um wide. (b) EM imaging in a dendritic
shaft area without fluorescent puncta revealed no accumulations of pulse-labeled PSD95. (c)
EM imaging in an area with fluorescent puncta revealed pulse-labeled PSD95 at multiple
synapses, detected as membrane-bound aggregations of 500 nm width (cyan arrowheads)
facing a presynaptic zone with a large number of synaptic vesicles (solid arrowheads).
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