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A biomechanical paradox in fish: 
swimming and suction feeding 
produce orthogonal strain 
gradients in the axial musculature
Yordano E. Jimenez*, Richard L. Marsh & Elizabeth L. Brainerd

The axial musculature of fishes has historically been characterized as the powerhouse for explosive 
swimming behaviors. However, recent studies show that some fish also use their ‘swimming’ muscles 
to generate over 90% of the power for suction feeding. Can the axial musculature achieve high power 
output for these two mechanically distinct behaviors? Muscle power output is enhanced when all of 
the fibers within a muscle shorten at optimal velocity. Yet, axial locomotion produces a mediolateral 
gradient of muscle strain that should force some fibers to shorten too slowly and others too fast. This 
mechanical problem prompted research into the gearing of fish axial muscle and led to the discovery 
of helical fiber orientations that homogenize fiber velocities during swimming, but does such a strain 
gradient also exist and pose a problem for suction feeding? We measured muscle strain in bluegill 
sunfish, Lepomis macrochirus, and found that suction feeding produces a gradient of longitudinal 
strain that, unlike the mediolateral gradient for locomotion, occurs along the dorsoventral axis. 
A dorsoventral strain gradient within a muscle with fiber architecture shown to counteract a 
mediolateral gradient suggests that bluegill sunfish should not be able to generate high power 
outputs from the axial muscle during suction feeding—yet prior work shows that they do, up to 438 
W kg−1. Solving this biomechanical paradox may be critical to understanding how many fishes have 
co-opted ‘swimming’ muscles into a suction feeding powerhouse.

Whether an animal is swimming, jumping, running or flying, the mechanical output of muscle is one of the key 
drivers of performance. Hence, studying the conditions in which muscle contractions produce maximal force, 
work, and power is critical to understanding how animals execute the behaviors that enable them to survive1–5. 
When chasing prey or evading predators, fish accelerate through the water using their axial musculature to flex 
the body from side to side6–9. As the axial muscles contract and bend the body, lateral body flexion produces a 
mediolateral gradient of strain within the axial muscle mass, with the greatest shortening occurring near the skin 
and the least shortening near the backbone10–13 (Fig. 1a). Beam-like bending of an axial musculature with longitu-
dinal muscle fiber orientations (i.e., the null morphology) would produce heterogeneous fiber strains and veloci-
ties, and given the power-velocity properties of muscle14,15, only a thin band of fibers would shorten at velocities 
that generate high powers (Fig. 1b). As a result, this gradient is thought to severely limit muscle power output. 
The detrimental mechanical implications of this null morphology prompted investigations into the mechanical 
role of the helical fiber orientations observed in fish and shark axial muscle. Multiple studies have shown that 
these complex muscle fiber orientations form a sophisticated gearing system that makes muscle fiber strain and 
shortening velocity more homogeneous than predicted by beam-like bending of the null morphology10,11,16–19. 
This strain-homogenizing fiber architecture is thought to enable high power outputs from fibers throughout 
the whole muscle mass, independent of their distance from the vertebral column (i.e., the neutral axis). This 
hypothesis is supported by numerous studies showing that fish generate very high power from the white axial 
musculature during fast-starts, rapid evasive and predatory swimming maneuvers6–8,20.

In addition to locomotion, many fishes have co-opted the axial musculature for suction feeding21–24. Species 
like largemouth bass (Micropterus salmoides) and bluegill sunfish (Lepomis macrochirus) generate over 90% of 
their suction power by actively shortening most of the ‘locomotor’ muscle mass23–26. Suction feeding studies have 
typically modelled epaxial mechanics with the assumption that the epaxial muscle mass functions like muscle 
belly actuating a lever system (Fig. 1c)27–32. This lever model has yielded valuable insights for comparative studies 
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of suction feeding performance across species29–32. The lever model infers from specimen manipulation that the 
fulcrum is at the level of a joint within the pectoral girdle and makes the simplifying assumption that the input 
muscle force acts on a single point of the neurocranium, implying that epaxial muscle shortens uniformly30. The 
lever model is challenged by the finding that neurocranial elevation usually involves dorsal flexion of multiple 
intervertebral joints, suggesting smooth bending rather than hinge-like rotation occurs33. Hence, we hypothesize 
that suction feeding is powered by beam-like bending that produces a dorsoventral gradient of longitudinal 
strain in the epaxial musculature, where muscle strain decreases from dorsal to ventral during any given bout 
of muscle shortening (Fig. 1d).

Figure 1.   Patterns of longitudinal strain in the epaxial musculature for swimming and suction feeding. (a) 
Axial locomotion: lateral body flexion produces a mediolateral gradient of longitudinal strain in the axial muscle 
mass. The neutral axis, the vertebral column, undergoes neither shortening nor lengthening. If the muscle 
fibers were oriented longitudinally, they would also experience this strain gradient. (b) A diagrammatic power-
velocity curve, illustrating how a gradient of fiber strain rate would affect power production. Muscle shortening 
velocities in some regions would be faster (circle) or slower (triangle) than those needed for generating maximal 
power (Vopt), and only some regions (star) would shorten at Vopt. (c, d) Alternative models of epaxial mechanics 
in suction feeding. (c) The lever model of neurocranial elevation for suction feeding30. Epaxial forces acting 
on the in-lever generate neurocranial elevation, intraoral forces acting on the out-lever resist neurocranial 
elevation, and the fulcrum occurs at the level of the S-PT joint in the pectoral girdle. Epaxial muscle dorsal to 
this joint shortens uniformly to produce neurocranial elevation, and therefore could potentially all contract at 
Vopt, but muscle ventral to this joint (dark grey) cannot contribute to cranial elevation. (d) An alternative, the 
beam model of neurocranial elevation for suction feeding, where neurocranial elevation is produced by the 
dorsiflexion of multiple intervertebral joints. All muscle dorsal to the vertebral column can shorten to produce 
neurocranial elevation, but the amount of longitudinal shortening is largest in the dorsal region and approaches 
zero at vertebral column. We test this hypothesis of a dorsoventral gradient in suction feeding in this study. 
Abbreviation: S-PT, supracleithral and post-temporal bones.
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A dorsoventral gradient of longitudinal strain in the epaxial muscle mass (hereafter also referred to as muscle 
strain) during feeding would be anatomically orthogonal to the mediolateral gradient in swimming. If muscle 
fiber architecture is indeed specialized to homogenize fiber strain within the musculature as it undergoes hetero-
geneous longitudinal strain during locomotion, high muscle power outputs are unlikely during suction feeding 
because the muscle fibers would be oriented to counteract a mediolateral gradient, not a dorsoventral gradient. 
Conversely, if the architecture were specialized for equalizing fiber strain along a dorsoventral gradient, this 
would likely impede locomotor power production. Thus, behaviors with motions that produce anatomically 
orthogonal strain gradients in the muscle might have gearing solutions that conflict with each other, preventing 
the muscle from generating maximum power output for both locomotion and suction feeding, and perhaps 
limiting peak muscle performance to only one of these vital behaviors. Here, we measured muscle shortening 
using sonomicrometry to determine whether the dorsal half of the axial musculature, the epaxial musculature, 
of bluegill sunfish exhibits a dorsoventral gradient of longitudinal strain in suction feeding and a mediolateral 
gradient of longitudinal strain in locomotion.

Results
We found that locomotor behaviors produced a mediolateral gradient of longitudinal strain in the epaxial muscle, 
while feeding behaviors produced a dorsoventral gradient of longitudinal strain (Figs. 2 and 3; see supplemen-
tary Fig. S1 for sample EMG traces). If longitudinal muscle strain were homogeneous, strain would be the same 
at the dorsoventral position (‘A’) and mediolateral position (‘B’), independent of their different distances from 
the neutral axes of bending. In this case, the slopes of the regressions in Fig. 3 would be equal to one. However, 
linear regressions showed that all three individuals had slopes statistically significantly greater than one dur-
ing locomotion, indicating that longitudinal strain was larger in the lateral muscle region. Conversely, linear 
regressions showed that all three individuals had slopes statistically significantly less than one during feeding, 
indicating that longitudinal strain was larger in the dorsal muscle region (Fig. 3 and Table 1; significance based 
on the 95% confidence intervals not overlapping with a slope of one). Finally, although we excluded non-planar 
feeding behaviors from our formal analysis, we found that side strikes (feeding behaviors with simultaneous 
dorsiflexion and lateral flexion) produced muscle length dynamics consistent with the finding of anatomically 
orthogonal strain gradients (Fig. 4).

Discussion
The Paradox.  Our discovery of a dorsoventral strain gradient in feeding presents a paradox: bluegill sunfish 
should not be able to attain high power outputs from their epaxial muscle in suction feeding, but they do. Bluegill 
sunfish can generate exceptionally high epaxial muscle power, up to 438 W kg−1, in the most powerful strikes26. 
What makes this a paradox? Within the current paradigm, muscle fiber architecture is specialized to equalize 
fiber strain mediolaterally for axial locomotion. Thus, this same architecture is not expected to be able to equal-
ize fiber strain dorsoventrally in feeding. Yet, the seeming contradiction (i.e., the paradox) is that bluegill sunfish 
do generate very high axial muscle power despite the expectation that a dorsoventral gradient should prevent 
them from doing so.

The current paradigm of fish axial locomotion and white muscle mechanics has argued and shown to varying 
degrees that (1) lateral body flexion causes the whole musculature to deform heterogeneously along a mediolateral 
gradient, (2) muscle fiber orientations in the axial musculature are specialized to allow for homogeneous fiber 
strain within a whole muscle undergoing heterogeneous strain during locomotion because (3) heterogeneous 
fiber strain is mechanically detrimental. We regard point one as uncontroversial, since it has been demonstrated 
repeatedly across different species, including here in bluegill. We regard points two and three as assumptions 
that, if rejected or refined, can resolve the paradox in bluegill sunfish and provide a new biomechanical insight. 
Point two could be rejected if epaxial fiber gearing in bluegill sunfish were specialized for suction feeding, not 
swimming. Point two could also be rejected if epaxial fiber gearing were specialized for both swimming and 
suction feeding with a sophisticated, albeit unknown, gearing system that can homogenize strain for anatomi-
cally orthogonal gradients. Finally, point three could be rejected if bluegill sunfish were capable of generating 
peak power for both behaviors without any specialized fiber gearing. Here we consider each of these solutions 
to the paradox briefly.

The first possibility is that, in bluegill sunfish, gearing of the epaxial muscles is specialized for power produc-
tion during feeding and cannot produce high muscle power output during swimming. Very high muscle power 
is routinely observed in fishes during fast-starts6–8,34, but fast-start power has not been measured in bluegill 
sunfish. Bluegill sunfish may have responded to selective pressures favoring a muscle fiber architecture that 
homogenizes fiber strain along the dorsoventral axis to maximize muscle power output for prey capture. This 
scenario would challenge the prevailing and well-supported view that most fish maximize axial muscle power 
output during fast-starts6–8, and future studies would be needed to determine whether bluegill sunfish actually 
do achieve high mass-specific powers during fast-starts. The second possibility is that bluegill sunfish do indeed 
maximize muscle power for both behaviors, but require a sophisticated gearing system that can homogenize 
fiber strain for orthogonal gradients. Since gearing is determined by fiber angulation and three-dimensional 
muscle deformation35–37, the former of which cannot change in a given organism, the only possible way to 
produce orthogonal gearing gradients would be if the bulging or shearing within the muscle mass was different 
for each behavior.

Both of the aforementioned solutions assume that having a gradient of fiber strain (i.e., fiber strain heteroge-
neity) is as problematic as previously suggested11,19. The problem of heterogeneous fiber strain has often relied 
on assessing muscle performance based on experimentally derived isotonic muscle properties, yet some studies 
have shown the limitations of this approach. Even operating under this assumption, power-velocity curves can 
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have a broad plateau where muscle fibers not shortening at velocities that generate peak power (Vopt) can still 
generate high power3. In addition to isotonic properties, Vopt can vary based on the frequency, strain trajectory, 
and activation patterns of the behavior, among many other factors3,38. Due to these complex interactions, the 
sensitivity of in vivo power production to fiber strain heterogeneity is unclear.

Implications for suction feeding muscle mechanics.  Most suction feeding studies have assumed 
or implied uniform muscle strain when modelling epaxial muscle mechanics (Fig. 1c)29,30,32. Contrary to this 
assumption, we show that suction feeding produces a dorsoventral gradient of longitudinal strain in the epaxial 
musculature of bluegill sunfish (Fig. 1d), where muscle strain varies along the dorsoventral axis of the cross-
section of muscle (Figs.  2 and 3). Yet much of our current understanding of epaxial mechanics is based on 
muscle strain measurements that we now know do not represent the entire muscle. If strain had been measured 
in a ventral epaxial region, longitudinal muscle strain would be lower in magnitude and muscle function would 
have been interpreted differently, as active shortening would imply positive power production (i.e., a motor), but 
active contractions with minimal shortening would imply isometric force production (i.e., a strut or stabilizer). 
Of course, all of this assumes a null morphology of longitudinal muscle fibers, which is certainly not the case in 
the axial muscle of fishes11,18,19. Hence, conclusions about in vivo epaxial mechanics should be made cautiously 

Figure 2.   Sonomicrometer implantation sites and in vivo muscle length dynamics. (a) Lateral view of the 
implantation sites for each sonomicrometer pair. (b) Epaxial length dynamics during an evasive fast-start 
alongside a transverse view of sonomicrometer positions relative to the neutral axis of bending (solid red 
line). In lateral flexion, longitudinal strain is expected to vary as a function of mediolateral distance from the 
neutral axis, and thus the dorsoventral position of the instrument can be ignored. (c) Epaxial length dynamics 
during a suction feeding on live prey alongside a transverse view of sonomicrometer positions. In dorsiflexion, 
longitudinal strain is expected to vary as a function of dorsoventral distance from the neutral axis (solid red 
line), and thus the mediolateral position of the instrument can be ignored. Lengthening before shortening, as 
shown here, occurred in some but not most feeding strikes. Thick lines indicate the duration of muscle activity 
(see supplementary Fig. S1 for sample EMG traces). Data shown are from individual Lm01.
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when using longitudinal strain. Determining in vivo muscle mechanics in suction feeding may require quantify-
ing the variables that have been shown to influence the gearing of muscle—fiber orientations and in vivo muscle 
deformation35,36.

Side strikes: mixed swimming and feeding behaviors.  Bluegill sunfish occasionally bent their heads 
to the side while attacking live prey that were not located directly in front of the mouth. These side strikes were 
characterized by dorsiflexion with simultaneous lateral flexion (Fig. 4). Although we excluded such feeding trials 
from our formal analysis in order to analyze lateral and dorsal bending separately, they illustrate the complex-
ity of muscle length dynamics during behaviors involving simultaneous motion in two planes. These muscle 
length dynamics are both implied by the orthogonal gradients in planar feeding and planar swimming (Fig. 3) 
and evident in otherwise anomalous longitudinal strain data (Fig. 4). Suction strikes with simultaneous dorsal 
and lateral flexion are distinguished from sequences of behaviors with relatively discrete motions, such as lateral 
flexion for acceleration followed by dorsiflexion for suction feeding followed by lateral flexion for deceleration39. 
Among many interesting points, how exactly do side strikes affect power production? Does the concave side of 
the body (where muscle shortens) contribute positive power to cranial expansion? Conversely, does the convex 
side generate negative power, thereby resisting cranial expansion? While these questions are difficult to answer, 

Figure 3.   Feeding produces a strain gradient anatomically orthogonal to swimming. Longitudinal strain 
measured at the ventrolateral location (‘B’) as a function of strain measured at the dorsomedial location (‘A’) 
for three individual L. macrochirus (Lm01, 02 and 04). Locomotion: open blue circles. Feeding: closed red 
circles. In the absence of either mediolateral or dorsoventral strain gradients, the strains at the two locations 
are predicted to be equal as is indicated by the dashed lines with a slope of 1.0. Regression lines are shown 
with 95% confidence intervals. Regression coefficients, equations, and statistics for linear regressions can be 
found in Table 1. Inset shows positions of (‘A’) and (‘B’) relative to the neutral axes of feeding and locomotion 
(orthogonal black lines). ML mediolateral, DV dorsoventral.

Table 1.   Summary of major axis regression analysis.

Individual N r2 Slope y-intercept P-value (two tailed)
Confidence interval 
(2.5% intercept)

Confidence interval 
(97.5% intercept)

Confidence interval 
(2.5% Slope)

Confidence interval 
(97.5% Slope)

Swimming

Lm01 222 0.86 2.45 0.08 < 0.0001 − 0.34 0.46 2.32 2.59

Lm02 299 0.88 1.54 1.29 < 0.0001 0.98 1.59 1.48 1.61

Lm04 231 0.76 2.38 − 0.82 < 0.0001 − 1.31 − 0.38 2.21 2.56

Feeding

Lm01 63 0.76 0.39 0.14 < 0.0001 0.01 0.27 0.34 0.45

Lm02 55 0.88 0.80 − 0.25 < 0.0001 − 0.50 − 0.01 0.72 0.89

Lm04 108 0.84 0.60 − 0.34 < 0.0001 − 0.50 − 0.19 0.55 0.65
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comparing performance of planar strikes and side strikes may be a feasible way of doing so. Considering the 
complexity of the physical environments that many fish species inhabit, side strikes may be, along with planar 
strikes, an important part of the food capture repertoire of fishes in the wild.

Methodological considerations.  We suspect that longitudinal muscle strain for suction feeding is a lin-
ear function of distance from the neutral axis, although we could not determine the linearity of this relationship 
with the spatial distribution of our sampling. Determining linearity would require measuring longitudinal strain 
in at least three positions at different distances from the neutral axis of interest and ideally at the same distances 
from the neutral axis of the other behavior—such that all strain recordings are equally affected by non-planar 
motions. For example, a robust configuration for detecting a linear strain gradient in suction feeding would 
involve measuring longitudinal strain at a dorsal, middle, and ventral position, with each instrument positioned 
close to the vertical septum where longitudinal muscle strain is low for swimming. A related issue is whether 
the measurements of midline curvature in conjunction with beam theory can be used to calculate longitudinal 
muscle strain. This concept has been successfully implemented in locomotion studies but requires a dorsal or 
ventral view of fish swimming in order to calculate midline curvature from a digitized outline of the body12,40–42. 
Of critical importance to this technique is the observation that the midline, calculated using the left and right 
edges of the body, is an accurate estimate of the vertebral column’s position. Such methodology is not feasible 
for dorsiflexion during feeding as the dorsal and ventral edges of the body are not equidistant from the vertebral 
column, and so a calculated midline curvature would not accurately estimate vertebral curvature. Although it is 
not feasible to estimate longitudinal strain with a lateral view of feeding, techniques such as fluoroscopy, roto-
scoping, and XROMM (X-ray Reconstruction of Moving Morphology), could be used to test the relationship 
between vertebral flexion and longitudinal epaxial strain. Even so, this relationship may not be simple because 
the epaxial muscles are physically connected with the hypaxial muscles, the ventral half of the axial muscula-
ture that plays a complementary but distinct kinematic role in suction feeding—actuation of the hyo-pectoral 
interface43. Finally, quantitatively associating the neutral axis of axial dorsiflexion with a discrete anatomical 
structure is complicated by the kinematic variability of suction feeding behaviors at both the individual and spe-
cies levels, although the available evidence suggests that the neutral axis of bending is approximately at the level 
of the vertebral column33.

Concluding remarks.  Past studies have only examined the problem of heterogeneous fiber strain in the 
axial musculature of fishes within the context of locomotion. Our findings suggest that we must broaden our 
investigation of strain heterogeneity to include suction feeding. Strain heterogeneity may be particularly prob-
lematic for species that require high mass-specific power outputs from the axial musculature, such as bluegill 
sunfish26. In contrast, strain heterogeneity may be less problematic for species that activate only a small cross-
sectional area of the epaxial muscle during suction feeding (largemouth bass)24, and those that generate relatively 
low mass-specific power from axial muscle during suction feeding (largemouth bass and channel catfish)26,44. 
Interspecific variation of swimming and suction feeding performance is well-known in fishes, but here we show 
how the muscle mechanics for high-performance swimming and high-performance suction feeding may be at 
odds. Indeed, orthogonal strain gradients may create mechanical constraints and tradeoffs between axial loco-
motion and suction feeding in fishes. Investigating the dual functionality of this muscle will elucidate how many 
fishes have successfully co-opted, and perhaps in some cases mechanically specialized, the ‘locomotor’ muscle 
for generating powerful feeding behaviors that are crucial for survival.

Figure 4.   Muscle length dynamics in burst swimming followed by mixed swimming and feeding behavior. Plot 
shows a sprint (grey area) followed by a strike with body bending to the right (orange area). The sprint sequence 
shows the expected cycles of muscle lengthening and shortening, and more importantly, the higher magnitudes 
of longitudinal strain the lateral sonomicrometer (green) relative to the medial sonomicrometer pair. The sprint 
sequence is then followed by a strike on pellet food with simultaneous lateral flexion to the right, which shows 
the more complex yet expected pattern of high muscle shortening in the dorsal region (blue) with muscle 
lengthening in the lateral region (green). Data shown are from individual Lm01.
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Methods
Animals and training protocol.  Bluegill sunfish (Lepomis macrochirus) were caught at Morses Pond in 
Wellesley, Massachusetts. Fish (standard length 173, 171, and 161 mm for Lm01, Lm02, and Lm04, respectively) 
were housed at Brown University in tanks at room temperature. We acclimated the fish for a minimum of six 
weeks, during which time they were trained to feed on carnivore pellets and live prey, such as goldfish (Carassius 
auratus) and rosies (Pimephales promelas). All procedures were approved by the Institutional Animal Care and 
Use Committee (IACUC) of Brown University and followed guidelines and policies set forth by the IACUC of 
Brown University. Reporting of methods and results followed ARRIVE guidelines45.

Sonomicrometer positions.  We anesthetized and CT scanned each individual in vivo to measure the 
mediolateral and dorsoventral distances from the vertebral column at the intended implantation sites. Sonomi-
crometers were positioned to measure strain at different distances from the neutral axes of bending, not to 
measure strain within a single myomere. Each sonomicrometer transducer was mounted on a custom-made 
stainless steel holder with three arms46 that allowed the transducer to be positioned at the desired muscle depth. 
We implanted two pairs of transducers (1 mm diameter) in the epaxial musculature on the left side of the body 
at approximately  35% standard length (SL; Fig. 2a). Each pair was approximately 15 mm apart and parallel to 
the long-axis of the animal, defined as a line going from the snout tip to the notch in the caudal fin. One pair 
was implanted dorsomedially at approximately 14 mm dorsal to the vertebral column and 3 mm lateral to mid-
line. The other pair was implanted ventrolaterally at approximately 8 mm dorsal to the vertebral column and 5 
mm lateral to the midline. After each experiment, we anesthetized and CT-scanned each individual to confirm 
sonomicrometer positions.

Surgical procedures.  Fish were anesthetized via immersion in 0.12 g/L buffered MS-222 (Tricaine meth-
anesulfonate). We then placed the fish in a surgical tray with a flow of anesthetic solution, and intubated the 
mouth to flow oxygenated water over the gills. For each sonomicrometer (4 total per individual), we removed 
scales from the region of implantation, made a small dermal incision (1 mm), and used a 16-gauge needle with a 
blunted tip to make a path for the sonomicrometer-holder unit. We then sutured the external arms of the holder 
onto the skin. As a part of a related project, we also implanted three electrodes in the epaxial muscle on each side 
of the body at approximately 35% SL. The electrode and sonomicrometers wires exiting from the muscle were 
glued together (E600 flexible craft adhesive) to form a common cable, which we then sutured onto the region 
above the head to prevent the sonomicrometers from dislodging.

Data collection.  Muscle length (L) data were recorded at a sampling rate of 1041 Hz in SonoLab software 
(version 3.4.81) using a Sonometrics system (Model TR-USB Series 8). We measured water temperature to get 
the muscle temperature in our ectothermic fish, and input the appropriate speed of sound at the beginning of 
each experiment to account for any temperature changes47. We synchronized strain recordings and light video by 
using a LabChart PowerLab (Model PL3516) to send a 1 Hz signal to the sonomicrometry acquisition software 
and a flashing LED light in the field of view of the cameras. We elicited various swimming (turns [i.e., non-fast 
start body bends], sprints and fast-starts) and feeding behaviors (suction feeding on live prey and pellets, coughs, 
and chews) that require varying degrees of axial flexion. We used synchronized recordings to classify behaviors 
and to exclude trials in which the fish moved in more than one plane (e.g., suction feeding strikes with concomi-
tant lateral flexion). Post-processing of the sonomicrometer signals was done in Igor Pro (Wavemetrics) and 
recordings were smoothed using the smooth.spline function in the stats package in R48.

Statistical analysis.  Muscle strain was calculated as (L-Li)/Li, where L is muscle length and Li is initial 
muscle length, the muscle length prior to the onset of the behavior and muscle shortening or lengthening. Each 
trial consists of a full, half, or quarter wavelength of lengthening or shortening, depending on the behavior. Each 
data point is the absolute value of peak strain measured at both positions during the behavior. As neither the 
dorsomedial nor ventrolateral position is an independent variable, we performed a model 2 major axis linear 
regression using the lmodel2 package in R49. A major axis regression is appropriate for our data because both the 
dorsomedial and ventrolateral positions are expected to have similar measurement errors, and the relationship 
between X and Y is symmetric50. Data from each individual were analyzed separately, since variation in sonomi-
crometer implantation was expected to impact the slope of the regressions. Regression results and confidence 
intervals can be found in Table 1.

Data availability
Strain data for Fig. 3 are available in Dryad. Sonomicrometry and video data used in this study are available on 
the Zoological Motion Analysis Portal upon request (zmaportal.org, Study Identifier ZMA27).
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