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Abstract Loss of ESCRT function in Drosophila imaginal discs is known to cause neoplastic

overgrowth fueled by mis-regulation of signaling pathways. Its impact on junctional integrity,

however, remains obscure. To dissect the events leading to neoplasia, we used transmission

electron microscopy (TEM) on wing imaginal discs temporally depleted of the ESCRT-III core

component Shrub. We find a specific requirement for Shrub in maintaining septate junction (SJ)

integrity by transporting the claudin Megatrachea (Mega) to the SJ. In absence of Shrub function,

Mega is lost from the SJ and becomes trapped on endosomes coated with the endosomal retrieval

machinery retromer. We show that ESCRT function is required for apical localization and mobility of

retromer positive carrier vesicles, which mediate the biosynthetic delivery of Mega to the SJ.

Accordingly, loss of retromer function impairs the anterograde transport of several SJ core

components, revealing a novel physiological role for this ancient endosomal agent.

Introduction
Developmental and physiological functions of epithelia rely on a set of cellular junctions, linking cells

within the tissue to a functional unit. While E-cadherin-based adherens junctions (AJs) provide adhe-

sion and mechanical properties, formation of the paracellular diffusion barrier depends on tight junc-

tions (TJs). Proteins of the conserved claudin family play a key role in establishing and regulating TJ

permeability in the intercellular space by homo- and heterophilic interactions with Claudins of neigh-

boring cells (Günzel and Yu, 2013). Arthropods, such as Drosophila, do not possess TJs but a func-

tionally similar structure in ectoderm-derived epithelia termed pleated septate junction (pSJ, SJ

hereafter), characterized by protein dense septa lining the intercellular space in electron micro-

graphs (Gilula et al., 1970). Structure and function of Drosophila SJs depend on a convoluted multi-

protein complex containing at least a dozen components. Three claudins, among them Megatrachea

(Mega), have been shown to be required for SJ formation and barrier function in flies (Behr et al.,

2003; Nelson et al., 2010; Wu et al., 2004). Besides claudins, several transmembrane proteins

(TMPs) such as Neurexin-IV (NrxIV), Neuroglian (Nrg) or ATPa contribute to the formation of the sta-

ble SJ core complex, which is characterized by low mobility within the membrane

(Baumgartner et al., 1996; Genova and Fehon, 2003; Oshima and Fehon, 2011). At the intracellu-

lar side of the junction, cytoplasmic proteins such as Coracle (Cora), Varicose (Vari), and Discs large

(Dlg) associate with the transmembrane components, contributing to the formation of a stable

fence-like scaffold (Bachmann et al., 2008; Lamb et al., 1998; Laval et al., 2008; Woods and Bry-

ant, 1991; Wu et al., 2007). While junction formation during embryogenesis requires the SJ local-

ized cytoplasmic protein Dlg, this basolateral cell polarity factor is not a structural part of the

immobile junction core complex (Oshima and Fehon, 2011; Woods et al., 1996). This explains the

functional separation of barrier formation and apicobasal polarity despite the close association of

Dlg-complex components with the SJ. Albeit growing knowledge about the structural composition

of SJs, the intracellular events required for assembly and maintenance of SJ complexes remain
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largely unknown. Specifically, how proliferative tissues, such as the imaginal disc epithelium, maintain

SJ integrity is not well established.

It was recently shown that newly synthesized SJ components integrate into the junction from the

apical side (in between AJ and SJ) in a ‘conveyor belt-like’ fashion (Babatz et al., 2018;

Daniel et al., 2018). In addition, SJ components are frequently associated with endosomal compart-

ments, suggesting a role for the endosomal system in coordinating transport and turnover of SJ

complexes (Nilton et al., 2010; Tempesta et al., 2017; Tiklová et al., 2010). Consistently, endocy-

tosis is required to concentrate SJ components at the junctional region during embryogenesis

(Tiklová et al., 2010). This suggests that passage of SJ TMP components (or the whole SJ protein

complex) through the endosomal system may be a requirement for SJ formation, with the underlying

mechanisms remaining poorly characterized.

The endosomal system fulfils a plethora of physiological functions by tightly regulating the intra-

cellular transport of TMPs and membranes within the cell. Following endocytosis from the plasma

membrane, TMPs enter the endosomal system where they undergo cargo specific sorting. This pro-

cess provides separation of proteins destined for degradation from those that exit the endosomal

system to be recycled. Two evolutionary conserved endosomal sorting machineries, the endosomal

sorting complex required for transport (ESCRT) and the retromer complex, mediate cargo sorting

into the degradative and recycling pathway, respectively (Cullen and Steinberg, 2018). To coordi-

nate these opposing transport activities, the endosomal system comprises a highly dynamic

eLife digest Proteins are large molecules responsible for a variety of activities that cells needs

to perform to survive; from respiration to copying DNA before cells divide. To perform these roles

proteins need to be transported to the correct cell compartment, or to the cell membrane. This

protein trafficking depends on the endosomal system, a set of membrane compartments that can

travel within the cell and act as a protein sorting hub. This system needs its own proteins to work

properly. In particular, there are two sets of proteins that are crucial for the endosomal systems

activity: a group of proteins known as the ESCRT (endosomal sorting complex required for

transport) machinery and a complex called retromer. The retromer complex regulates recycling of

receptor proteins so they can be reused, while the ESCRT machinery mediates degradation of

proteins that the cell does not require anymore. In the epithelia of fruit fly larvae – the tissues that

form layers of cells, usually covering an organ but also making structures like wings – defects in

ESCRT activity lead to a loss of tissue integrity.

This loss of tissue integrity suggests that the endosomal system might be involved in transporting

proteins that form cellular junctions, the multiprotein complexes that establish contacts between

cells or between a cell and the extracellular space. In arthropods such as the fruit fly, the adherens

junction and the septate junction are two types of cellular junctions important for the integrity of

epithelia integrity. Adherens junctions allow cells to adhere to each other, while septate junctions

stop nutrient molecules, ions and water from leaking into the tissue. The role of the endosomal

system in trafficking the proteins that form septate junctions remains a mystery.

To better understand the role of the endosomal system in regulating cell junctions and tissue

integrity, Pannen et al. blocked the activity of either the ESCRT or retromer in wing imaginal discs –

the future wings – of fruit fly larvae. Pannen et al. then analyzed the effects of these endosomal

defects on cellular junctions using an imaging technique called transmission electron microscopy.

The results showed that both ESCRT and retromer activities are necessary for the correct delivery of

septate junction components to the cell membrane. However, neither retromer nor ESCRT were

required for the delivery of adherens junction proteins.

These findings shed light on how retromer and the ESCRT machinery are involved in the

epithelial tissue integrity of fruit fly larvae through their effects on cell junctions. Humans have their

own versions of the ESCRT, retromer, and cell junction proteins, all of which are very similar to their

fly counterparts. Since defects in the human versions of these proteins have been associated with a

variety of diseases, from infections to cancer, these results may have implications for research into

treating those diseases.
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membrane network governing retromer-dependent tubulation for recycling and ESCRT-mediated

generation of intraluminal vesicles (ILV) for degradation.

Endocytosed proteins can evade ESCRT-dependent packaging into ILVs by exiting the maturing

endosome (ME) through tubular retrieval domains induced by specialized recycling machineries such

as retromer. Initially characterized as a regulator of endosome-to-Golgi cargo retrieval in yeast, this

endosomal agent comprises two subcomplexes that cooperatively drive cargo sorting into tubular

recycling carriers (Carlton et al., 2004; Horazdovsky et al., 1997; Seaman et al., 1997). Similar to

the ESCRT machinery, cargo clustering and membrane deformation is performed by distinct func-

tional units within the retromer pathway. Motif-based cargo recognition and aggregation is medi-

ated by the endosomally localized Vps26:Vps29:Vps35 complex, which has been termed cargo-

selective complex (CSC) (Lucas et al., 2016; Nothwehr et al., 2000; Seaman et al., 1997). Since

the ancient CSC does not possess membrane bending activity, cooperation with tubulating factors

such as proteins of the SNX-BAR (Sorting Nexin-Bin/Amphiphysin/Rvs) family is required for recycling

carrier generation (Cullen, 2008). Proteins containing the curved BAR-domain can assemble into

regular helical coats on endosomes, thereby inducing cytoplasm faced tubulation (Frost et al.,

2009). Concerted action of CSC stably complexed with SNX-BAR proteins to retrieve endosomal

cargo was initially characterized as the classical retromer pathway in yeast (Horazdovsky et al.,

1997; Seaman et al., 1998). In metazoans however, retromer function is not restricted to SNX-BAR-

dependent pathways. Specifically, cooperations of CSC with SNX3 or SNX27 (both lacking BAR-

domains) emerged as alternative routes for endosomal retrieval (Harterink et al., 2011;

Lauffer et al., 2010; Steinberg et al., 2013). Proteomic data from mammalian cells suggest that

surface levels of well over 100 TMPs depend on retromer and many of these proteins seemingly

interact with CSC or SNX27 (Steinberg et al., 2013). Recently, Drosophila has proven invaluable for

assessing and confirming the physiological relevance of some of these putative retromer cargos in

vivo (Strutt et al., 2019).

Cargo proteins within the endosomal system that do not undergo recycling can enter the degra-

dative trafficking route starting with their sorting into ILVs. Generation of ILVs at the limiting mem-

brane of MEs requires the canonical ESCRT function, which is performed by four in sequence acting

complexes (ESCRT-0, -I, -II, III) and the ATPase Vps4 (Babst et al., 2002b; Babst et al., 2002a;

Babst et al., 1998; Bilodeau et al., 2002; Katzmann et al., 2001). Ubiquitination of TMPs serves as

the primary degradative sorting signal and sequestration of TMPs into ILVs is an essential prerequi-

site to complete lysosomal degradation. Several ESCRT components such as Vps27/Hrs (ESCRT-0)

and Vps23/TSG101 (ESCRT-I) possess ubiquitin interacting motifs, which allow them to bind and

cluster ubiquitinated TMPs (Bilodeau et al., 2002; Katzmann et al., 2001; Shih et al., 2002). Conse-

quently, local concentration of ubiquitinated cargo by ESCRT complexes establishes a degradative

subdomain at the endosomal membrane that is spatially separated from the retrieval subdomain

(Norris et al., 2017; Raiborg et al., 2002; Raiborg et al., 2001). While ESCRT-0-II complexes pro-

vide cargo recognition and clustering, the membrane-deforming activity required to bud and abscise

ILVs into the endosomal lumen depends on ESCRT-III components, which polymerize into helical

arrays at the endosomal membrane (Hanson et al., 2008; Saksena et al., 2009). The most abundant

ESCRT-III component is the highly conserved yeast Snf7/Vps32, encoded by the gene shrub (shrb) in

Drosophila (Sweeney et al., 2006; Teis et al., 2008). Unlike upstream ESCRT components, ESCRT-

III proteins only transiently assemble into a heterooligomeric complex at the endosomal membrane

(Teis et al., 2008; Wollert et al., 2009). In consequence of ESCRT activity, the maturing endosome

accumulates cargo-containing ILVs and is recognized in electron micrographs as a multi-vesicular

body (MVB). The ESCRT/MVB pathway ends with Vps4-dependent dissociation of ESCRT-III compo-

nents from the endosomal membrane. This step is required for the release of the nascent ILV and

subsequent rounds of ILV formation (Babst et al., 1998; Wollert et al., 2009). Loss of ESCRT func-

tion was initially studied in yeast cells in which it led to the emergence of an aberrant pre-vacuolar

endosomal organelle, termed class E compartment (Raymond et al., 1992). This defective endoso-

mal structure is characterized by accumulation of degradative cargo and a failure to fuse with the

vacuole/lysosome (Doyotte et al., 2005; Raymond et al., 1992).

The physiological relevance of ESCRT-mediated degradative TMP trafficking is particularly evi-

dent in Drosophila imaginal disc tissue. Here, loss of ESCRT function induces severe overgrowth,

multilayering, apoptosis, and invasive behavior of the tissue; a phenotype attributed to mis-regula-

tion of cellular signaling pathways, such as the Jak/Stat-, Jun-Kinase-, and Notch pathways
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(Herz et al., 2006; Moberg et al., 2005; Thompson et al., 2005; Vaccari and Bilder, 2005). Conse-

quently, ESCRT components were classified as endocytic neoplastic tumor suppressor genes (nTSG)

in Drosophila (Hariharan and Bilder, 2006). While induction of over-proliferation and apoptosis in

nTSG mutants have been extensively characterized, the events leading to loss of cell polarity and

ultimately neoplastic transformation of the tissue remain poorly understood.

Here, we have analyzed the integrity of cellular junctions in an ESCRT-depleted wing imaginal

disc epithelium to gain insight into the initial events leading to neoplastic transformation. To our sur-

prise, preceding neoplastic overgrowth, we found a strong and specific reduction in the density of

SJ. We show that ESCRT and retromer functions are required for anterograde transport of SJ com-

ponents. By dissecting the intracellular trafficking itinerary of the claudin Megatrachea, we reveal

that biosynthetic delivery of this core SJ component depends on a complex basal to apical transcyto-

sis route relying on ESCRT and retromer functions.

Results

ESCRT knockdown specifically affects SJ integrity
To analyze the impact of ESCRT loss of function on junctional integrity, transmission electron micros-

copy (TEM) was used on wing imaginal discs that have been depleted of ESCRT function. We

devised an RNAi-based approach allowing spatiotemporal knockdown of the ESCRT-III component

Shrub. By using hhGal4 and the temperature sensitive Gal4 Repressor (tubGal80ts), we specifically

inhibited Shrub protein expression in the posterior compartment by expressing a UAS-shrub-RNAi

construct (Sweeney et al., 2006) for specified durations. After 32 hr of RNAi expression, Shrub pro-

tein was effectively reduced in the posterior compartment as visualized by antibody staining

(Figure 1A). ESCRT loss of function is known to induce high levels of apoptosis in imaginal disc tis-

sue (Herz et al., 2006; Thompson et al., 2005; Vaccari and Bilder, 2005). Since apoptotic cells dis-

assemble their junctions prior to extrusion from the tissue (Brancolini et al., 1997;

Steinhusen et al., 2001), we co-expressed the viral caspase inhibitor p35 (Hay et al., 1994) with

shrub-RNAi to preserve tissue integrity and allow unambiguous analysis of junctional structures.

Interestingly, while 48 hr expression of p35 + shrub-RNAi yielded discs with no apparent morpholog-

ical defects seen in a thin section (Figure 1B), discs after 65 hr of expression were disorganized and

multi-layered in the posterior compartment as reported for shrub null mutant clonal eye disc tissue

(Figure 1C; Vaccari et al., 2009). This indicates that our assay is able to reproduce the hallmarks of

ESCRT-mediated neoplasia.

We used the 48-hr stage to analyze junctions by TEM prior to neoplasia. In the wildtype anterior

control compartment, the membrane basal to the AJ was lined with the ladder-like electron-dense

structures that represent the SJ (Figure 1E). In the posterior (shrub-RNAi) compartment however,

only few electron-dense structures basally to the AJ were detected and an obvious ladder pattern

was rarely seen (Figure 1E´). Interestingly, we did not find AJ appearance to differ noticeably

between wildtype and shrub-RNAi compartments (Figure 1E/E´). We sought to quantify SJ integrity

by measuring the total length of electron-dense structures basally to the AJ in a region of interest

(ROI) with specified length of 2 mm. In anterior control compartments, roughly 32% of membrane

within ROIs was lined with SJ (Figure 1D). This value decreased to about 15% in posterior compart-

ments, indicating that 48 hr expression of p35 + shrub-RNAi reduces SJ density in wing discs by

more than 50% (Figure 1D). Due to the lack of apparent neoplastic transformation at the 48 hr

stage, we conclude that reduction in SJ density does not reflect indirect effects resulting from

ESCRT induced epithelial to mesenchymal transition (EMT), but rather suggests a direct involvement

of ESCRT in maintaining SJ density in wing imaginal discs.

We turned to fluorescence microscopy to analyze the subcellular localization of junctional proteins

upon Shrub depletion. Again, we used depletion for 48 hr, which does not show apparent neoplastic

overgrowth and thus preserves epithelial monolayer organization. We used antibodies against E-cad-

herin and the claudin Mega to reveal AJ and SJ, respectively. Both proteins localized almost exclu-

sively at the apical membrane in wildtype cells of the anterior compartment of the disc (Figure 1F,

left arrowheads). However, in the Shrub-depleted posterior compartment, Mega was not detected

at the SJs, while E-cad showed wildtype AJ localization (Figure 1F, right arrowheads). The absence

of Mega from SJs is also visible in maximum intensity projections of the junctional region
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Figure 1. The ESCRT-III component Shrub is required for SJ integrity. (A) 32-hr expression of shrub-RNAi under the control of hhGal4 effectively

depletes Shrub levels in the posterior compartment of wing imaginal discs. (B–C) Thin sections of wing discs co-expressing shrub-RNAi and p35 for

either 48 hr (B) or 65 hr (C). Note the intact epithelial monolayer at the 48 hr stage (B) vs. posterior neoplastic overgrowth after 65 hr (C). (D)

Quantification of electron-dense SJ in TEM sections reveals a ~50% reduction of SJ strands within Shrub-depleted compartments (48 hr) compared to

control. Each data point represents a single junctional region of interest (ROI) of 2 mm length as defined in (E) A two-tailed t-test was used for statistical

analysis with the significance level **** representing a p-value<0.0001. Representative ROIs of control (E) and Shrub-depleted compartments (E’)

visualize the reduction in electron-dense SJ. (F) Optical section of a wing disc after 48 hr of Shrub depletion in the posterior compartment. The claudin

Mega is lost from the apical SJ (compare arrowheads) and accumulates basal to the nuclei (arrow). In contrast, E-cad localization to AJ between the

anterior control and the posterior compartment is largely unaffected (compare arrowheads in F’) while only little accumulation is seen at the basal pole

(arrow). (G) Projections of the junctional area show the close association of E-cad with Mega in anterior control compartments (G) and apparent lack of

junctional Mega in the Shrub-depleted tissue (G’). In basal planes, intracellular accumulation of Mega within the shrub-RNAi compartment is evident as

a punctate pattern, colocalizing with the endosomal marker Rab7 (H). Subcellular localization of the SJ component Lachesin::GFP is restricted to SJ in

anterior control compartments while showing extensive spread along the entire lateral membrane in Shrub-depleted cells (arrowheads in I). (J)

Fluorescence recovery after photobleaching (FRAP) analysis of Lac::GFP at the SJ level reveals increased mobility in shrub-RNAi tissue, indicating

defective fence function of SJ. a: anterior/p: posterior. The red graph displays mean Lac::GFP fluorescence recovery in the posterior compartment, the

green graph represents mean values for the anterior control compartment. Error bars indicate standard deviation for each individual time point. Scale

bar in (A) 100 mm, (B–C) 50 mm, (E) 0.5 mm, and all other panels 10 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure 1 continued on next page
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(Figure 1G). Importantly, Mega accumulated in vesicle like structures at the basal side of the cells,

suggesting that it might be trapped in intracellular compartments (Figure 1F, arrow). This basal frac-

tion of Mega colocalized with the endosomal marker Rab7, suggesting that Mega was trapped

within maturing endosomes (inset in Figure 1H´).

We reasoned that junctional loss of Mega together with the decreased SJ density revealed by

TEM analysis point toward defects in SJ integrity/function in shrub-RNAi tissue. Indeed, dye exclu-

sion experiments suggest that epithelial barrier function is compromised in shrub-RNAi expressing

wing discs (Figure 1—figure supplement 1). Results from another experiment also support this

notion: The GPI-anchored SJ protein Lachesin (Lac) is required for barrier function and localized at

the outer membrane leaflet (Llimargas et al., 2004). We visualized endogenous Lac localization by

using a GFP protein trap line in p35 + shrub-RNAi expressing discs. While Lac::GFP was restricted to

SJ in the anterior control compartment, the protein spread more laterally in shrub-RNAi tissue

(Figure 1I, arrowheads).

Interestingly, this phenotype resembles mis-localization of SJ proteins in mutants of individual

complex components during junction formation in the embryo. For example, in mega deficient

embryos, NrxIV fails to concentrate at the SJ and localizes along the entire lateral membrane

(Behr et al., 2003). We conclude that Shrub function maintains integrity of the SJ complex required

for containment of Lac within the junction of the wing disc epithelium. Strikingly, when we depleted

posterior wing disc compartments of Mega, we could only detect a faint lateral spreading of Lac::

GFP basal to the SJ (Figure 1—figure supplement 2). This suggested that in wing discs, Shrub

depletion more severely affects integrity of the SJ complex with respect to Lac::GFP confinement to

the junction compared to Mega depletion. This made us wonder whether junction levels of other SJ

core components might be affected upon Shrub depletion. Indeed, when we analyzed subcellular

localization of the SJ core component ATPa upon 48 hr of shrub-RNAi expression, we found a

strong and specific reduction of its junctional level in the Shrub-depleted compartment (Figure 1—

figure supplement 3). This result indicates that the function of Shrub in regulating junctional mem-

brane levels is not limited to Mega.

The lateral spreading of Lac::GFP within the membrane in Shrub-depleted tissue also suggested

that its mobility might be increased. We measured fluorescence recovery after photobleaching

(FRAP) of Lac::GFP to test this hypothesis. Consistent with a very stable and immobile SJ complex

(Oshima and Fehon, 2011), Lac::GFP fluorescence recovery at the junction was low in the anterior

control compartment, with GFP signal intensities barely reaching 20% of the pre-bleach levels half

an hour after photobleaching (Figure 1J, green graph). In the shrub-RNAi compartment however,

Lac::GFP fluorescence recovery at the SJ was quick and reached a plateau at roughly 40% of pre-

bleach levels after a few minutes. This suggests that a fraction of Lac::GFP molecules shows

increased mobility within the SJ membrane region in shrub-RNAi expressing cells, in line with a

defective barrier/fence function of the SJ complex.

Altogether, these results indicate that SJ integrity critically depends on ESCRT function and sug-

gest that Shrub is required for intracellular transport of Mega from an endosomal compartment

toward the junction.

The retromer CSC regulates membrane levels of SJ core components
The loss of Mega from the SJ and concomitant accumulation in basal aggregates cannot easily be

explained with a role of Shrub in Mega degradative trafficking but rather suggest that its export

from the endosomal system might be impaired in Shrub-depleted tissue. Consistent with a non-deg-

radative ESCRT role in transport of Mega, we did not find Mega to accumulate intracellularly when

we interfered with endosomal maturation or prevented endolysosomal fusion downstream of ESCRT

Figure 1 continued

Source data 1. Quantification of SJ density in WT and Shrub-depleted (+p35) tissue.

Source data 2. FRAP kinetics of Lac-GFP in WT and Shrub-depleted (+p35) tissue.

Figure supplement 1. Epithelial barrier function is compromised in Shrub or Vps26-depleted wing disc tissue.

Figure supplement 2. Mega depletion causes slight lateral spreading of Lachesin::GFP.

Figure supplement 3. Junctional levels of the core SJ component ATPa are reduced in Shrub-depleted wing imaginal disc tissue.
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function, in contrast to the canonical ESCRT cargo Notch (Figure 2—figure supplement 1). These

results suggest that Mega undergoes very little (if any) lysosomal turnover in wing imaginal discs and

point toward an ESCRT function that is distinct from the degradative MVB pathway in trafficking of

Mega.

We hypothesized that biosynthetic delivery of Mega to the SJ might require an endosomal recy-

cling pathway depending on ESCRT for its proper function. To test this idea, we depleted imaginal

discs of proteins known to regulate endosomal recycling and analyzed the impact on junctional

Mega levels. We found that expression of an RNAi construct targeting the retromer CSC component

Vps35 led to a significant reduction of Mega at the SJ (Figure 2—figure supplement 1), which led

us to investigate the function of retromer in transport of SJ components. We generated null mutant

clones of the retromer core component Vps35 (Vps35MH20, Franch-Marro et al., 2008) in wing discs

and analyzed the subcellular distribution of junctional proteins. While Mega membrane levels at the

SJ were reduced in Vps35MH20 tissue, junctional E-cad levels were unaffected (Figure 2A). This result

is analogous to the phenotype seen upon shrub-RNAi expression (Figure 1).

We also found reduced membrane levels of the SJ core components ATPa, NrxIV and Nrg in

Vps35MH20 clones, visualized by using endogenously tagged GFP protein trap lines (Figure 2B–D).

These data suggest that retromer has a general function in SJ protein trafficking that is not restricted

to Mega. In line with this, quantification of junctional signal revealed that all of the affected SJ core

components show similarly reduced levels in Vps35MH20 tissue (roughly 50% compared to wildtype,

Figure 2H). Additionally, we found Vps35 to be required for regulating membrane levels of SJ com-

ponents in several tissues, such as eye/leg imaginal discs and pupal wings, pointing to a common

requirement for the retromer pathway in SJ protein transport (Figure 2—figure supplement 2). Sur-

prisingly, loss of NrxIV::GFP from the SJ membrane in Vps35MH20 mutant pupal wing tissue was

more severe compared to the phenotype seen in third instar wing discs, suggesting that SJs within a

tissue that undergoes morphogenetic changes and does not strongly proliferate might be even

more sensitive toward loss of retromer function (Figure 2—figure supplement 2).

Clones mutant for the Vps35 interaction partner Vps26 phenocopied Vps35MH20 tissue with

regard to Mega membrane levels, supporting a general function of the CSC in transport of SJ com-

ponents (Figure 2E). Interestingly, in contrast to these structural SJ core components, the levels of

the associated cytoplasmic scaffolding proteins Dlg and Cora were unaffected in Vps35MH20 mutant

tissues (Figure 2F,G). This is consistent with Vps35MH20 clones maintaining intact apicobasal polarity

and supports a role of retromer in trafficking specific structural components of SJs. Nevertheless,

our extended analysis with further SJ components revealed that the GPI-anchored proteins Lachesin,

Contactin, as well as the cytoplasmic Varicose, show reduced SJ levels in Vps35MH20 clones (Fig-

ure 2—figure supplement 3). This indicates that the retromer CSC regulates apical levels of a large

subset of SJ components. Importantly, while membrane levels of the SJ core components Mega and

ATPa were reduced within retromer clones (Figure 2A–B), levels of the SJ-associated TMP FasIII

were not affected (Figure 2—figure supplement 3). These data mirror the phenotypes observed

upon Shrub depletion (Figure 1F–G and Figure 1—figure supplement 3) and hint at a common

pathway in apical delivery of a subset of SJ proteins.

Next, we quantified SJ density detected by TEM in wing discs depleted of Vps26 and found a

reduction of electron-dense septa by about 60% (Figure 2—figure supplement 4). Consistent with

compromised SJ integrity, a diffusible dye readily infiltrated Vps26-depleted tissue, indicating defec-

tive barrier function (Figure 1—figure supplement 1). We conclude that the retromer CSC regulates

membrane levels of many SJ core components, thereby contributing to junction integrity and

function.

In optical sections of Vps35MH20 clones, endogenously tagged Mega::YFP protein shows reduced

overall levels throughout the mutant tissue (Figure 2—figure supplement 3). This suggests that mis-

routing of Mega into the degradative pathway may occur upon loss of Vps35 function, as has been

shown for many retromer cargos (Franch-Marro et al., 2008; Harterink et al., 2011; Pocha et al.,

2011). Consistently, when retromer function and endo-lysosomal fusion are simultaneously impaired,

Mega::YFP shows reduced SJ levels and accumulates in intracellular vesicles, hinting at a failure to

be degraded (Figure 2—figure supplement 1). This result supports the idea that misrouting of

Mega into the degradation pathway occurs when CSC function is compromised. We conclude that

Mega behaves like a bona fide retromer cargo.
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Figure 2. The retromer CSC regulates membrane levels of SJ core components. (A) Null mutant clones of the retromer component Vps35 were

generated in wing discs. Mutant tissue (-/-) is marked by absence of either GFP or RFP. Mega signal at the SJ is reduced in Vps35MH20 tissue (A´´), while

apical E-cad levels are unaffected (A´´´). (B–D) Endogenously tagged SJ core components ATPa (B), NrxIV (C) and Nrg (D) show reduced membrane

levels in Vps35MH20 tissue. (E) Vps26 clones phenocopy Vps35 clones with respect to junctional localization of Mega (compare E´ with A´´). (F–G)

Figure 2 continued on next page

Pannen et al. eLife 2020;9:e61866. DOI: https://doi.org/10.7554/eLife.61866 8 of 31

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.61866


To gain further insight into the CSC-dependent pathway required for SJ delivery of Mega, we

investigated null mutant clones of known retromer-associated factors (SNX-BAR, Snx3, Snx27, and

the WASH-complex component Fam21). Surprisingly, we failed to find any of these proteins to be

required for the regulation of Mega membrane levels, raising questions on the mechanism governing

CSC-dependent transport of Mega (Figure 2—figure supplement 5). Nevertheless, based on above

findings, we propose a novel function of the retromer CSC in delivery of SJ core components to the

junction, thereby contributing to SJ homeostasis in the proliferative wing disc epithelium.

ESCRT regulates subcellular localization and mobility of the retromer
CSC
The above results indicate that retromer is required for regulating membrane levels of Mega and

other SJ components. Therefore, trapping of Mega in basally localized endosomal compartments

upon shrub-RNAi expression could be a consequence of defective retromer-dependent endosomal

export in this ESCRT deficient situation. We reasoned that loss of ESCRT function might alter organi-

zation and function of retromer-dependent carrier vesicles, thereby affecting cargo flux. To test this

hypothesis, we analyzed the subcellular distribution of retromer components in Shrub-depleted

cells.

We visualized the retromer CSC by using an endogenously tagged Vps35 allele (Vps35::RFP,

Koles et al., 2016). In anterior control compartments, Vps35::RFP was found in vesicular structures

throughout the cell, but with significantly higher abundance in the apical cytoplasm (Figure 3A–D,

arrows). Interestingly, this polarized apical localization is consistent with an apical transport hub at

the junction level in wing disc cells that is characterized by enrichment of more than half of the Dro-

sophila Rab GTPases (Dunst et al., 2015). In contrast to its concentration within the apical hub, little

Vps35::RFP was detected in the basal cytoplasm of wildtype tissue (Figure 3A´). Upon shrub-RNAi

expression however, Vps35::RFP strongly accumulated basally (Figure 3A´, arrowhead) while apical

hub localization was almost completely abolished (Figure 3A). Therefore, loss of Shrub function

appears to re-distribute Vps35::RFP positive vesicles from the apical hub into the basal cytoplasm

where they accumulate. This apical to basal shift of retromer CSC positive vesicles is also evident in

optical cross sections of wing discs expressing RNAi constructs for several ESCRT components

(Figure 3B–D).

Importantly, RNAi directed against the ESCRT-I component TSG101 or Vps4, but not ESCRT-0,

phenocopied shrub-RNAi expression with regard to Vps35::RFP subcellular localization (Figure 3B–

D, Figure 3—figure supplement 1). This indicates that several ESCRT complexes are required for

maintaining apical hub localization of the CSC in the wing disc epithelium. We found strong colocali-

zation of Mega and Vps35::RFP on basal endosomal aggregates of shrub-RNAi expressing cells (Fig-

ure 3—figure supplement 2). This is in line with Mega being trapped in aberrant Rab7 and CSC

positive endosomal compartments residing in the basal cytoplasm of ESCRT deficient cells. Our anal-

ysis of these basal aggregates revealed that besides containing Mega, they are enriched in ubiquiti-

nated cargo and are coated with retromer components, Hrs and endosomal GTPases Rab5 and

Figure 2 continued

Junctional localizations of SJ-associated cytoplasmic proteins Dlg and Cora are unaffected in Vps35MH20 cells. (H) Quantification of junctional

membrane levels of indicated proteins in wildtype and Vps35MH20 tissue. Each dot represents fluorescence intensity of a junctional region in either

clonal (Vps35MH20) or surrounding wildtype tissue. n = 4 discs for each component. A two-tailed t-test was used for statistical analysis with the

significance levels **** representing a p-value of <0.0001, ***<0.001, and n.s. (not significant):�0.05. Note that the transmembrane SJ components

Mega, ATPa, NrxIV, and Nrg are similarly affected, showing reduced levels at the SJ within Vps35MH20 tissue by ~50%, while E-cad and Dlg apical levels

do not significantly differ between wildtype and Vps35MH20 tissue. Scale bar in (A) 50 mm, in all other panels 10 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Quantification of SJ protein apical levels in WT/Vps35 mutant clones.

Figure supplement 1. Mega is not target of lysosomal degradation under steady-state conditions.

Figure supplement 2. Retromer CSC-dependent transport of SJ components is conserved throughout tissues.

Figure supplement 3. Analysis of further SJ components in retromer CSC mutant clones.

Figure supplement 4. Retromer CSC function maintains SJ density.

Figure supplement 4—source data 1. Quantification of SJ density in WT and Vps26/retromer-depleted tissue.

Figure supplement 5. Retromer CSC-associated sorting nexins (SNX) are dispensable for SJ delivery of Mega.
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Figure 3. ESCRT function is required for CSC retromer apical hub localization and mobility. (A) Endogenously tagged Vps35::RFP localizes in a vesicular

pattern within the apical hub in wildtype control compartments (arrow). After 48 hr of Shrub depletion, Vps35::RFP apical hub localization is largely

abolished and basal accumulation is seen (arrowhead in A’). (B–D) The shift in subcellular localization of Vps35::RFP from the apical hub (wildtype,

arrows) to basal aggregates (ESCRT-depleted compartment, arrowheads) is detected upon knockdown of ESCRT components TSG101, Shrub as well as

Vps4. This indicates that regulation of retromer subcellular localization is a general ESCRT function in wing discs. (E) Live imaging and vesicle tracking

of a genomic Vps26-EGFP construct at the anterior/posterior boundary of a wing disc expressing shrub-RNAi for 48 hr in the posterior compartment

under control of enGal4. Note the apical hub in the anterior control compartment and the large basally localized Vps26-EGFP aggregates in the

posterior Shrub-depleted compartment (compare with Vps35::RFP in C). (E’) Individual vesicle trajectories visualize Vps26-EGFP movement within the

tissue after a 5 min imaging acquisition. Note the high mobility of several vesicles along the apicobasal axis in the anterior control compartment

(arrows). In contrast to long-distance shuttling of Vps26-EGFP in the control tissue, basal Vps26-EGFP aggregates (arrowheads) in the Shrub-depleted

posterior compartment are largely static and overall vesicle dynamic is reduced. (F) Quantification of Vps35::RFP mobility in wildtype (anterior) and

Shrub-depleted (posterior) tissue. Each dot represents mean velocity of a single tracked vesicle. Note the reduced mean velocity of Vps35::RFP and the

high ratio of low mobility vesicles within Shrub-depleted compartments. A two-tailed t-test was used for statistical analysis with the significance level

**** representing a p-value <0.0001. (G) Endogenously tagged Mega::YFP colocalizes with Vps26 in vesicular structures residing in the apical as well as

basal cytoplasm (arrowheads). Scale bars in all panels represent 10 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. TrackMate raw data of Vps35::RFP vesicle tracking in WT and Shrub-RNAi +p35 tissue.

Figure supplement 1. ESCRT-0 is not required for SJ delivery of Mega.

Figure supplement 2. Characterization of basal ‘class E-like’ endosomal compartments induced by Shrub-RNAi.

Figure 3 continued on next page
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Rab7 (Figure 3—figure supplement 2). We conclude that these aggregates likely represent Dro-

sophila ‘class E-like’ compartments, which is supported by TEM analysis of basally localized endoso-

mal structures within shrub-RNAi expressing wing disc tissue (Figure 3—figure supplement 3).

While the regularly shaped and sized wildtype MVBs were absent in Shrub-depleted cells, we found

a variety of enlarged, abnormal membranous compartments that are reminiscent of class E compart-

ments in mammalian cells (Doyotte et al., 2005; Stuffers et al., 2009). We speculate that these

irregular compartments aberrantly cluster endosomal machineries and cargos, thereby interfering

with endosome function. Consequently, the SJ phenotype seen in shrub-RNAi tissue (Figure 1) could

be explained by basal displacement of retromer-dependent carriers, which are required for targeting

SJ components to the junctional region.

The apical bias of Vps35::RFP positive vesicles in wildtype cells suggests a polarized movement of

CSC carriers along the apicobasal axis with relatively long dwell times at the apical hub. We rea-

soned that in wing discs, a majority of CSC-dependent cargo might be released preferentially at the

apical pole of the cells. We turned to live imaging to study movement of CSC positive vesicles in

wildtype and Shrub-depleted cells. We visualized CSC using Vps35::RFP or a transgene encompass-

ing the genomic region of Vps26 fused to a C-terminal EGFP-tag (Wang et al., 2014). In anterior

control compartments, Vps26-EGFP localized in a vesicular pattern throughout the cells with

increased abundance at the apical hub (Figure 3E, arrow). In the posterior Shrub-depleted cells

however, Vps26-EGFP localization at the apical hub was reduced and basal accumulation was evi-

dent (Figure 3E). Therefore, live imaging of Vps26-EGFP recapitulates the apical to basal shift of

Vps35::RFP in ESCRT-depleted fixed tissue (Figure 3B–D). We used Vps35::RFP/Vps26-EGFP to

record time series of CSC positive carrier vesicles within wildtype and Shrub-depleted tissue. We

applied the Fiji plugin TrackMate (Tinevez et al., 2017) to map individual trajectories of Vps35::RFP/

Vps26-EGFP vesicles over a timeframe of 5 min (Figure 3E’). The results show that the CSC carriers

in anterior control cells were highly mobile along the apicobasal axis with a subset of vesicles moving

rapidly and relatively long distances between the apical and basal poles (Figure 3E’, arrows). This

suggests that CSC carriers, although preferentially residing at the apical hub, are highly mobile and

occasionally shuttle between the apical and basal poles of wing disc cells. In contrast, long-distance

movement of Vps35::RFP/Vps26-EGFP vesicles was severely reduced in the posterior Shrub-

depleted compartment (Figure 3E’ and F). Importantly, the large basal CSC aggregates (class E-like

compartments) were mostly immobile, showing no apparent movement along the apicobasal axis

(Figure 3E’, arrowheads). These results indicate that ESCRT function is required for the mobility of

CSC positive endosomes.

We hypothesize that certain retromer cargos might rely on CSC shuttling between the apical and

basal poles for efficient transport. Mega::YFP vesicular structures overlapped extensively with Vps26

not only at the junctional level but also in

vesicles with close proximity to the basal pole of

the cells (arrowheads in Figure 3G). Colocaliza-

tion analysis revealed that 71.9% of Mega::YFP

vesicles along the apicobasal axis were positive

for Vps26 (n = 3 discs/128 vesicles). This sug-

gests that Mega and possibly other SJ compo-

nents shuttle along the apicobasal axis in CSC

positive carrier vesicles. We confirmed this by

live imaging of Mega::YFP together with Vps35::

RFP, which revealed extensive co-mobility of this

retromer component with the vesicular fraction

of Mega::YFP (Animation 1). Thus, Mega is mov-

ing along the apicobasal axis in CSC decorated

vesicles.

Figure 3 continued

Figure supplement 3. TEM analysis of aberrant endosomal compartments induced by 48 hr of Shrub depletion.

Animation 1. Live imaging time series of a wildtype

wing imaginal disc expressing Mega::YFP and Vps35::

RFP. Note the close association of Mega and Vps35 at

dynamic vesicular structures along the apico-basal axis.

Time stamp indicates passed time in minutes, starting

from the initial frames of the acquisition.

https://elifesciences.org/articles/61866#video1
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Together, the results reveal that ESCRT function regulates the mobility and apical hub localization

of retromer CSC positive endosomes in wing imaginal discs. We conclude that by trapping CSC on

aberrant endosomal compartments, loss of ESCRT function impairs retromer-dependent export of

Mega from the endosome, consequently depleting its SJ pool in wing disc cells.

Mega undergoes basal to apical transcytosis prior to reaching the SJ
Endosomal trafficking by retromer could occur via several different pathways. While certain retromer

cargos are transported directly from endosomes to the plasma membrane, the classical retromer

route involves cargo recycling in a detour via the Golgi. Besides these two endosomal recycling

pathways, retromer has also been shown to regulate transcytosis from one membrane domain to

another (Vergés et al., 2004). Prior to all retromer and ESCRT-dependent trafficking events, endo-

cytosis of cargo is required for subsequent sorting within the endosomal system. We reasoned that

blocking endocytosis of Mega might reveal the membrane domain from which it is internalized into

the endosomal system and aid in understanding how the retromer pathway is involved in its

trafficking.

We suppressed clathrin-mediated endocytosis by RNAi induced depletion of clathrin heavy chain

(Chc) for 32 hr in the posterior compartment. While depletion of Chc did not have an apparent effect

on junctional E-cad levels (Figure 4A’), Mega::YFP levels were strongly reduced at the SJ

(Figure 4A"). Since membrane proteins accumulate at their site of endocytosis when the internaliza-

tion process is inhibited, this result argues against Mega undergoing clathrin-dependent endocytosis

at the apical membrane. Importantly, we found Mega::YFP accumulating at the most basal region of

the lateral membrane (Figure 4A"’), suggesting that Mega is continuously removed from a basal

membrane pool by endocytosis. These results also suggest that Mega, prior to accumulating at the

SJ, undergoes clathrin-mediated endocytosis at the most basal section of the basolateral membrane

(for the sake of simplicity, we will refer to this as the basodistal membrane).

Next, we interfered with dynamin-dependent endocytosis by expressing a dominant negative ver-

sion of Shibire, the Drosophila dynamin homolog (UAS-ShiK44, Moline et al., 1999) under the control

of hhGal4. An expression of ShiK44 for 16 hr was sufficient to cause strong accumulation of Notch at

the apical membrane, indicating that dynamin-dependent endocytosis of apically internalized mem-

brane proteins is effectively impaired (Figure 4B). In line with diminished uptake of Notch into the

endosomal system, we found reduced abundance of intracellular Notch vesicles in the posterior

compartment (Figure 4B, arrowheads). In contrast to apically endocytosed Notch, Mega::YFP

seemed to be reduced at the SJ level upon 16 hr of ShiK44 expression (Figure 4C). In addition, it

accumulated at the basal pole of the cells (Figure 4C, arrow). Reduced SJ levels accompanied by

basodistal membrane accumulation of Mega::YFP were also found upon depleting the tissue of

Rab5 by RNAi (Figure 4D). This common phenotype suggests that a critical step in SJ supply of

Mega is its internalization from the basodistal membrane, hinting at a transcytosis-like mechanism

with basal to apical direction.

We confirmed the close association of Mega with Chc in wing imaginal discs by detecting colocal-

ization of Mega::YFP and Chc in vesicular structures in wildtype tissue (Figure 4E), which is consis-

tent with Chc being part of the Mega proteome in Drosophila embryos (Jaspers et al., 2012).

Importantly, Mega::YFP vesicles in proximity to the basodistal membrane were Chc positive, in line

with Mega being endocytosed basally (Figure 4E, arrows). Colocalization analysis revealed that

throughout the entire cell, 55.2% of Mega::YFP vesicles stained positive for Chc (n = 4 discs/87

vesicles). This Chc positivity rate was slightly increased to 63.01% in focal planes at the basal cell

pole (n = 3 discs/73 vesicles), consistent with Mega::YFP entering the endosomal system by clathrin-

dependent endocytosis at the basodistal membrane.

Together, these data support a transcytosis-like mechanism from the basodistal domain of the lat-

eral membrane to the SJ, which is required to supply the junction with newly synthesized Mega. This

process depends on the endocytic and early endosomal machinery as interference with dynamin, cla-

thrin and Rab5 function leads to reduced SJ levels of Mega accompanied by its accumulation at the

basodistal membrane. These results suggest that Mega needs to traverse through the endosomal

system prior to reaching the SJ and argue against a conventional recycling function of retromer in

this process. This notion is further supported by our comparative analysis of Mega trafficking to that

of Crumbs (Crb), an established retromer recycling cargo in wing discs (Pocha et al., 2011). It
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Figure 4. Mega is endocytosed at the basodistal membrane. (A) Depletion of clathrin via Chc-RNAi expression for 32 hr in the posterior compartment

reduces apical membrane levels of Mega::YFP. While E-cad-based AJ appear unaffected following Chc depletion (A’), the junctional Mega::YFP pool is

reduced (A’’). In a basal focal plane, Mega::YFP is seen accumulating in the basodistal part of the lateral membrane in the Chc-RNAi expressing

posterior compartment. (B–C) Expression of a dominant negative Dynamin construct (ShiK44) leads to apical accumulation of Notch within an epithelial

fold of the hinge region (arrow in B) and reduces the amount of Notch positive vesicles (arrowheads). In contrast, posterior Mega::YFP signal at the SJ is

reduced and a basal pool is visible (arrow in C). (D) Depleting Rab5 in the posterior compartment yields a similar Mega::YFP phenotype with respect to

junctional levels and basal accumulation (arrow in D). (E) In line with internalization from the basodistal membrane, Mega::YFP colocalizes with clathrin

at vesicular structures near the basal cell pole and along the apicobasal axis (arrows in E and E’). Scale bars in all panels represent 10 mm except for (A),

in which it represents 50 mm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of Mega phenotypes with the retromer CSC cargo Crumbs.
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revealed distinct phenotypes upon Vps35 loss or inhibition of endocytosis, suggesting that these

proteins do not traverse a common retromer-dependent pathway (Figure 4—figure supplement 1).

We conclude that Mega is not undergoing apical recycling but rather requires basal to apical

transcytosis for junctional delivery. Thus, our data suggest that transcytosis of SJ components is not

limited to initial SJ formation in the embryo (Tiklová et al., 2010), but is also required in a prolifer-

ative epithelium to maintain the junctional pool of the SJ component Mega.

Basal to apical transcytosis of Mega depends on ESCRT and retromer
function
The complex anterograde trafficking of Mega to the SJ prompted us to investigate it in more detail.

We generated an HA-tagged UAS-Mega construct, allowing us to analyze its delivery to the SJ upon

overexpression. Continuous hhGal4-driven expression of UAS-HA-Mega led to its integration into

SJ, which we confirmed by colocalization with Lac::GFP (Figure 5A"). Interestingly, in contrast to

endogenous Mega, we detected a fraction of HA-Mega at the most basal part of the epithelium

(Figure 5A). This suggests that the basodistal membrane pool of Mega that we observed upon

endocytosis block is also detectable upon Mega overexpression. We also found increased abun-

dance of intracellular vesicles, consistent with elevated trafficking of Mega within the cells

(Figure 5B). HA-Mega colocalized with Vps35::RFP on vesicles (Figure 5B, arrows), reminiscent of

endogenous Mega::YFP shuttling in Vps35::RFP positive endosomal carriers (Animation 1). Hence,

we conclude that over-expression of UAS-HA-Mega recapitulates the hallmarks of Mega intracellular

transport.

While the majority of HA-Mega signal upon continuous overexpression was detected at the SJ

level (Figure 5C, arrowhead), HA-Mega was also found in lateral and basal membrane regions

(Figure 5C, arrow). Strikingly, the basodistal pool of HA-Mega was characterized by an intense

membrane localization pattern resembling the staining of the junctional region (Figure 5C’).

The previous experiments suggested that Mega is continuously endocytosed from the basodistal

membrane to supply the SJ pool. We therefore reasoned that basodistal membrane accumulation

might be a short-lived intermediate step in Mega transport toward the SJ. To proof this assumption,

we conducted a pulse-chase experiment using the Gal4/Galt80ts system and found that HA-Mega

localization was much more confined to the SJ (similar to endogenous Mega localization) when its

expression was halted for 14 hr after continuous expression (Figure 5D). After this chase, the baso-

distal membrane pool was almost completely diminished (Figure 5D’). This is consistent with a tran-

sient localization of Mega at the basodistal membrane prior to endocytosis and subsequent

targeting to the SJ.

Next, we investigated the roles of ESCRT and retromer in HA-Mega trafficking. Strikingly, when

we expressed HA-Mega in shrub-RNAi tissue, it failed to reach the SJ altogether and instead was

trapped within aberrant endosomal compartments in the basal cytoplasm (Figure 5E, arrow). Coloc-

alization with Vps35::RFP confirmed that HA-Mega accumulated in basal retromer CSC positive com-

partments (Figure 5F, arrows), consistent with the results obtained from Mega staining in shrub-

RNAi tissue (Figure 3—figure supplement 2). When we expressed HA-Mega in CSC-depleted tissue

(Vps35-RNAi), a similar, albeit weaker trapping of HA-Mega in basally localized vesicular compart-

ments was observed (Figure 5G, arrows). In contrast to exclusive localization of HA-Mega in basal

aggregates upon shrub-RNAi expression (Figure 5F, arrows), we also detected a pool of HA-Mega

at the SJ level (Figure 5G). However, imaging the SJ plane revealed that apical HA-Mega was mostly

vesicular with no apparent membrane staining (Figure 5I). This is in strong contrast to HA-Mega

localization in wildtype tissue, characterized by a distinct junctional honeycomb pattern in both the

disc proper and the overlaying peripodial disc cells (Figure 5J). These results suggest that HA-Mega

fails to integrate into the SJ in retromer or ESCRT-depleted wing disc cells.

Recognition of proteins by the ESCRT machinery requires cargo ubiquitination, serving as a sort-

ing signal for the ILV pathway (Bilodeau et al., 2002; Katzmann et al., 2001; Shih et al., 2002). To

test whether HA-Mega requires ubiquitination for its integration into SJ, we devised a UAS-HA-

Mega construct in which all intracellular lysines (K) were changed to arginines (R) (UAS HA-MegaK2R).

This construct should be devoid of any potential ubiquitination, thereby preventing a possible recog-

nition by ESCRT and sorting into the ILV pathway. However, upon expression in wing disc cells, HA-

MegaK2R targeting to the junctional membrane was not impaired and the subcellular localization of

the construct was indistinguishable from wildtype HA-Mega (Figure 5—figure supplement 1). This
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result suggests that Mega transcytosis and SJ integration does not require ubiquitination and that

direct interaction with ESCRT components and sorting into ILVs is dispensable during anterograde

transport of Mega. These data are compatible with a model of indirect regulation of Mega traffick-

ing by ESCRT that is based on the requirement for ESCRT function in maintaining apical hub localiza-

tion and mobility of the retromer CSC.

Figure 5. Basal to apical transcytosis of Mega requires ESCRT and retromer function. (A) UAS-driven overexpression of HA-tagged Mega reveals a

basal pool opposing the apical SJ fraction. Similarly to endogenously tagged Mega::YFP (see Figure 3G), HA-Mega colocalizes with the CSC on

vesicles along the apicobasal axis (arrows in B). (C) Continuous overexpression of HA-Mega yields a strong SJ signal (arrowhead) as well as lateral and

basal (arrow) staining of HA-Mega. (C’) In a basal focal plane, the strong accumulation of HA-Mega in a junction like fashion at the basodistal

membrane is seen. (D) Following a 14 hr chase at 18˚C to halt further expression, HA-Mega signal is almost exclusively confined to the SJ (arrowhead)

with very little basal staining (arrow). (D’) The basodistal membrane pool of HA-Mega (compare with C’) vanished after 14 hr chase, in line with a

transient localization of HA-Mega at this membrane domain. (E) In Shrub-depleted tissue, overexpressed HA-Mega does not reach the SJ and is found

exclusively in large basal aggregates (arrow). (F) These basal aggregates are positive for Vps35::RFP (arrows). (G) Similarly, in Vps35-depleted tissue,

apical SJ signal of HA-Mega is faint and vesicular accumulation in the basal cytoplasm is seen (arrows). (H) Knockdown efficiency of the Vps35-RNAi. (I)

No distinct membrane staining of HA-Mega is visible in the SJ plane of Vps35-depleted tissue, in contrast to HA-Mega junctional localization in

wildtype tissue (J). Scale bar in (B) represents 5 mm, in (G): 50 mm and in all other panels: 10 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Mega transport toward the SJ is independent of intracellular lysines.
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Based on above findings, we conclude that a functional endosomal system is critically required

for Mega transcytosis from the basodistal to the apical membrane, which is an essential prerequisite

for its delivery to the SJ. Importantly, our data indicate a crucial role for ESCRT and retromer in a

pathway that regulates anterograde trafficking of an apically localized membrane protein.

Mega translation and subsequent exit from the Golgi occurs in the
basal cytoplasm
The previous experiments suggested that Mega, despite residing in apical SJs, requires crucial traf-

ficking steps at the basodistal plasma membrane prior to its integration into the junction. We there-

fore wondered whether locally restricted synthesis of Mega in the basal part of the cell might

account for the transient pool at the basodistal plasma membrane observed upon endocytosis block

or Mega overexpression.

We used RNA fluorescence in situ hybridization to reveal the subcellular localization of Mega tran-

scripts. To verify RNA probe specificity, we expressed UAS-HA-Mega using hhGal4, which should

strongly increase transcript abundance and consequently fluorescence signal intensity in the poste-

rior compartment. Consistently, we found intense Mega RNA staining in the posterior compartment,

confirming the specificity of our probe (Figure 6A). We also detected some apical fluorescence sig-

nal that is notably visible in the epithelial fold of the hinge region (Figure 6A,B, red asterisk). Very

likely, this fraction represents unspecific signal from fluorophores accumulating in the extracellular

space between the peripodial membrane and the disc proper, since the signal intensity did not differ

between the wildtype anterior and the HA-Mega overexpressing posterior compartment (Figure 6B,

red asterisk). In contrast, the specific intracellular signal representing Mega transcript was markedly

increased in the posterior compartment (Figure 6B). Strikingly, endogenous, as well as overex-

pressed Mega RNA, was almost exclusively detected in dotted structures residing in the basal cyto-

plasm (Figure 6B, arrows and arrowheads, respectively).

The basal subcellular localization of Mega RNA is in strong contrast to that of the protein, which

almost exclusively localizes in SJs at the apical pole of the cells (Figure 6C). Thus, the discrepancy in

RNA and protein localization may explain the necessity for a transcytosis route from the basodistal

membrane to the SJ. We reasoned that Mega mRNA is translated basally, which may result in its ini-

tial targeting to the basodistal membrane following passage through the Golgi. Consistent with this

idea, we found robust colocalization of HA-Mega with the Golgi marker Golgin84 (Riedel et al.,

2016) at the basal pole of the cells (Figure 6D, arrows). In contrast, little colocalization was found in

the apical region in proximity to the SJ. This is surprising, since the majority of Golgi stacks

appeared to reside apically (Figure 6D’). To further study the early biosynthetic trafficking of Mega,

we induced a short hhGal4-driven expression of UAS-HA-Mega for 2 hr. Only single cells within the

posterior compartment showed detectable expression of HA-Mega (Figure 6E, arrows). Strikingly,

we occasionally detected cells containing exclusively basal vesicular HA-signal that overlapped with

Golgin84 (Figure 6F, arrows). Other cells showed extensive spreading of HA-Mega along the apico-

basal axis and colocalization with Lac::GFP at the apical membrane, indicating integration into the

SJ (Figure 6G–I, arrow). These data are consistent with the first appearance of HA-Mega post bio-

synthesis in basal Golgi stacks, followed by transport to the basodistal membrane and subsequent

transcytosis toward the SJ.

Together, the results suggest that basal subcellular localization of Mega mRNA supports its local

translation and subsequent secretion of Mega protein from basal Golgi stacks. Thus, the transient

basodistal membrane pool of Mega is likely a consequence of this locally restricted secretion and

represents newly synthesized protein that has not yet entered the transcytosis pathway required for

anterograde delivery to the SJ.

Discussion
Here, we describe a novel role of the endosomal ESCRT and retromer machineries in regulating SJ

maintenance in a proliferating epithelium, the wing disc of Drosophila. By studying the intracellular

trafficking route of the SJ component Mega, we reveal a transcytosis-like mechanism in a basal to

apical direction that delivers Mega to the junctional region and requires ESCRT and retromer

functions.
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While transcytosis of SJ components has been shown to occur during the initial establishment of

the SJ in the embryo (Tiklová et al., 2010), we here reveal that this mechanism is also continuously

required during maintenance of the SJs in a rapidly proliferating epithelium. Our data reveal that the

retromer CSC functions downstream of ESCRT to export Mega from the endosome. We propose a

Figure 6. Mega is secreted from Golgi stacks within the basal cytoplasm. (A) Fluorescence in situ hybridization (FISH) signal from a Mega RNA probe

after posterior overexpression of UAS-HA-Mega. Note the strong posterior signal, indicating probe specificity. Unspecific signal between peripodial

membrane and disc proper is visible in the epithelial fold of the hinge region (red asterisks in A and B). (B) Mega RNA is detected primarily in the basal

cytoplasm of both the wildtype and the UAS-HA-Mega overexpressing posterior compartment (arrows and arrowheads, respectively). Note the higher

abundance of fluorescence signal in the posterior compartment with a subcellular localization comparable to endogenous Mega RNA within the

anterior tissue. (C) In stark contrast to basally localized mRNA, Mega protein (Mega::YFP) localizes within the SJ at the apical pole of the cells. (D)

Overexpressed Mega colocalizes with the Golgi resident protein Golgin84 in vesicular structures within the basal cytoplasm (arrows), consistent with

basal secretion of Mega. Note the high abundance of Golgi stacks in proximity to the SJ but lack of overlap with HA-Mega in this apical region. (E–I) A

short expression of HA-Mega for 2 hr yields discs that contain single cells with detectable HA-Mega expression (arrows). (F) Some cells stain for HA-

Mega exclusively in basal, punctate spots which overlap with Golgin84 (arrows). This is in line with initial appearance of HA-Mega at the basal cell pole

during secretion from local Golgi stacks. (G–H) Intracellular spreading of HA-Mega along the apicobasal axis toward the SJ. (I) HA-Mega extensively

colocalizes with Lac::GFP at the apical pole, indicating efficient SJ targeting (arrow). Scale bars in (A, B) represent 50 mm, in (B), (C): 10 mm and in all

other panels: 5 mm.
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novel physiological role for the retromer CSC in regulating membrane levels of several SJ core com-

ponents. While our data suggest that retromer fails to export Mega from aberrant endosomes

induced by ESCRT depletion, the exact mechanism behind this remains to be determined.

Requirement for ESCRT function in CSC-dependent endosomal retrieval
of Mega
Our data reveal a critical requirement for ESCRT in a transport pathway that depends on retromer-

mediated transcytosis to deliver newly synthesized Mega to its apical destination. Defects in endoso-

mal retrieval upon ESCRT inactivation have been previously described in other systems, such as yeast

or mammalian cells and, thus, appear to represent a common feature of the pleiotropic ESCRT defi-

cient phenotype. In yeast, the endosome-to-Golgi retrieval of the sorting receptor Vps10p and its

cargo carboxypeptidase Y (CPY) depends on retromer function (Seaman et al., 1997;

Seaman et al., 1998). ESCRT mutant strains accumulate CPY in class E compartments from which

retrieval to the Golgi is blocked (Babst et al., 1997; Piper et al., 1995; Raymond et al., 1992). Sim-

ilarly, the mammalian retromer cargo mannose 6-phosphate receptor (M6PR) also failed to recycle

from endosomes to the Golgi in HeLa cells depleted of TSG101/ESCRT-I function (Doyotte et al.,

2005). In this study, the authors suggested that generation of class E compartments occurs at the

expense of endosomal tubules (Doyotte et al., 2005). Consistently, the retromer-associated tubula-

tion factor SNX1 and its yeast homolog Vps5p were found on the rims of mammalian and yeast class

E compartments, respectively (Doyotte et al., 2005; Seaman et al., 1998). Together with our find-

ing of CSC accumulation on Drosophila class E-like compartments (Figure 3, Figure 3—figure sup-

plement 2), this suggests that ESCRT deficient endosomes remain coated with retromer

components but fail to export specific cargo.

While we cannot rule out the possibility of ESCRT components directly cooperating with retromer

to form recycling tubules (note that SNX-BAR, Snx3, and Snx27 are not required for Mega transport;

see Figure 2—figure supplement 5), we favor an indirect mechanism linking ESCRT and retromer in

this transport pathway. Our analysis of the aberrant endosomal compartments induced upon Shrub

depletion revealed that they are enriched in endosomal organizers such as Rab5 and Rab7, which

could potentially interfere with retromer-dependent export when their activity at the limiting mem-

brane is unrestrained (Figure 3—figure supplement 2). While the role of Rab7 in endosomal recruit-

ment of the CSC is well established, the necessity for Rab7 GDP/GTP cycling during retromer-

dependent carrier generation is still under debate (Jia et al., 2016; Jimenez-Orgaz et al., 2018;

Seaman et al., 2009). Rab7 and its GTPase-activating protein (GAP) Tbc1d5 are interaction partners

of the CSC and can modulate its capability to retrieve endosomal cargo (Jia et al., 2016;

Seaman et al., 2009). For example, interfering with Rab7-GTP hydrolysis by Tbc1d5 depletion

yielded defects in retromer-dependent transport in HeLa cells (Jia et al., 2016). Strikingly, under

these conditions, retromer cargo was trapped in CSC-coated endosomes, paralleling our observa-

tion of Mega subcellular localization upon ESCRT depletion (Jia et al., 2016). Similarly, by exposing

the interplay between the CSC component Vps29, Tbc1d5, and Rab7 in adult Drosophila brains, the

authors of a recent study reported the capability of endosomal Rab7 to interfere with retromer CSC

function in vivo (Ye et al., 2020).

While the exact mechanism rendering retromer dysfunctional at Drosophila class E compartments

remains to be determined, our data support the mounting pool of evidence that ESCRT is required

for multiple endosomal retrieval pathways. It is therefore likely that aspects of the pleiotropic ESCRT

phenotype in metazoans stem from defective export of proteins from the endosomal system. For

example, in Drosophila, leaky SJ could support ESCRT-mediated neoplastic transformation by per-

mitting diffusion of signaling molecules within the imaginal disc tissue.

Transcytosis as a means to provide biosynthetic delivery of SJ
components
We here found that biosynthetic delivery of Mega depends on a transcytosis-like mechanism from

the basodistal to the apical plasma membrane. This long-distance transport required sequential

action of endocytic (clathrin, dynamin, Rab5) and endosomal (ESCRT, retromer CSC) machineries.

Importantly, the finding that overexpressed HA-Mega is unable to reach the SJ in absence of retro-

mer and ESCRT function (Figure 5) is in agreement with biosynthetic delivery of Mega relying on
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endosomal function. Therefore, although we cannot exclude the possibility that Mega transiently

passes the Golgi after endocytosis at the basodistal membrane, we favor the unconventional transcy-

tosis model. Strikingly, while retromer-dependent endosomal recycling has been extensively docu-

mented, only one mammalian cell culture study implicated retromer in transcytosis from one

membrane domain to another (Vergés et al., 2004). Thus, SJ delivery of Mega in imaginal discs rep-

resents a novel physiological role of retromer to study this process in vivo. The finding that CSC-

mediated anterograde transport of Mega is independent of retromer-associated sorting nexins (Fig-

ure 2—figure supplement 5) indicates that this transcytosis pathway is distinct from many estab-

lished CSC-dependent routes and suggests that it may require unknown cofactors (or does not

require endosomal tubulation).

Our analysis of Vps35 clones in pupal wings or leg imaginal discs revealed that in these tissues,

clones completely devoid of the SJ core component NrxIV occur frequently (Figure 2—figure sup-

plement 2). Similarly, shrub mutant clones in the pupal notum were entirely lacking junctional ATPa

(Roland Le Borgne, personal communication, July 2020). This is in contrast to surface levels of SJ

components in Vps35 mutant wing discs, which were consistently reduced by about 50% (Figure 2).

This provokes the hypothesis that a parallel endosomal export pathway for SJ components may exist

in wing discs that could partially compensate for loss of retromer. However, we think this is unlikely

since overexpressed HA-Mega fails to reach the SJ not only upon Shrub but also upon Vps26 deple-

tion (Figure 5E–J). One has to keep in mind that this experiment specifically monitors delivery of

newly synthesized HA-Mega while the Vps35 clonal analysis assesses the impact of retromer loss of

function on pre-existing SJ. Thus, in a clonal situation, a ‘thinning out’ of junctions is expected with

consecutive rounds of cell division, which could explain incomplete phenotypic expressivity in wing

disc Vps35 clones. Nevertheless, it remains to be determined why in leg discs and pupal wings, SJ

appear to be more sensitive toward CSC loss (Figure 2—figure supplement 2). During metamor-

phosis, wing imaginal disc cells undergo drastic morphogenetic changes to form the pupal wing epi-

thelium, a process known to require AJ remodeling (Classen et al., 2005). It is therefore possible

that analogously to AJ, SJ may also be actively remodeled during pupal wing formation. This could

explain the strong requirement for retromer function in maintaining SJ integrity in a tissue undergo-

ing morphogenetic changes.

Paralleling our findings described here, a previous study showed that embryonic SJ formation

depends on endocytosis and subsequent redistribution of junction components from the lateral

membrane to the SJ (Tiklová et al., 2010). Thus, transcytosis of SJ components is a mechanism likely

required for both initial SJ formation as well as maintenance of SJ integrity in non-embryonic tissues

in Drosophila. While we did not assess the roles of ESCRT and retromer CSC in initial SJ formation,

it is conceivable that they are already required for transporting SJ components during embryogene-

sis. Consistently, shrub mutant embryos display a defective epithelial barrier function, suggesting

they fail to form functional SJ (Dong et al., 2014).

The reason for SJ maintenance to rely on such an elaborate trafficking of its components remains

to be determined. It has been suggested that SJ components form stable complexes prior to inte-

gration into the junction. Potentially, essential post-translational modifications of certain SJ compo-

nents required for complex formation may occur exclusively at the basodistal membrane or during

the passage through the endosomal system. If transient localization of SJ components at the baso-

distal membrane is a prerequisite for efficient SJ core complex formation, depositing transcripts for

structural components such as Mega in the basal cytoplasm would shorten the route individual SJ

components need to pass prior to SJ complex formation at the basodistal membrane domain. Alter-

natively, the finding that Mega mRNA predominantly localizes in the basal cytoplasm (Figure 6) pro-

vides the foundation for another hypothesis: It is widely accepted that apical and basolateral cargos

undergo motif-based sorting leading to secretion toward the respective membrane domains

(Stoops and Caplan, 2014). Basal subcellular localization of Mega transcripts could potentially

reflect an apical/basolateral sorting divergence at the mRNA level. Accordingly, basal translation

and exocytosis of Mega (induced by a putative basal/basolateral sorting signal) may lead to its tar-

geting toward the basodistal membrane, despite the fact that the SJ resides apically in wing disc

cells. Thus, transcytosis may serve as an adaptation for redistribution of cargos to their destined

membrane domain when they are initially secreted to a different one due to early sorting signals.

Since the columnar wing imaginal disc cells have a very elongated shape and possess Golgi stacks all

along the apicobasal axis, it is conceivable that certain Golgi stacks residing at the apical and basal
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poles are specialized in secreting apical and basolateral cargos, respectively. Although this is highly

hypothetical, systematic analysis of transcript localization for apical (e.g. E-cad) and basolateral (e.g.

SJ components) cargos could reveal a potential spatial separation of distinct secretory routes already

at the mRNA level.

In wing imaginal discs, a similarly complex transcytosis route (albeit with an apical to basal direc-

tion) has been described for the signaling molecule Wingless, which is translated apically, transiently

presented at the apical membrane and finally transcytosed toward the basal membrane where it is

secreted (Yamazaki et al., 2016). Thus, distinct transcytosis pathways in the wing disc epithelium

provide a mechanism for targeting certain proteins to their site of action, specifically when the pro-

tein is translated far away from its terminal destination.

A novel retromer function in transport of SJ proteins
In this study, we unravel a novel physiological retromer function in regulating surface levels of a clau-

din and other structural SJ components (e.g. Nrg, ATPa, Lac, NrxIV, Cont) in several Drosophila tis-

sues (Figure 2 and Figure 2—figure supplement 2). Presently, we do not know how the SJ

components are selected for this retromer-dependent pathway, and whether it requires physical

interaction with CSC components. Since SJ proteins may traverse the endosomal system in complex,

the vast number of different components brings about a plethora of possible interaction sites.

Importantly, a mass-spectrometry-based study of the Mega interactome did not detect any retromer

CSC components or associated factors but confidently found SJ core components as well as clathrin

(Jaspers et al., 2012). While the interaction mode of CSC and SJ proteins remains to be deter-

mined, our data reflect the assumption that several SJ core components represent novel putative

retromer cargos in Drosophila.

Strikingly, among the proteins affected by retromer loss of function, many possess mammalian

homologs (e.g. NrxIV/CNTNAP2, ATPa/ATP1A1, Nrg/NRCAM). This suggests they could represent

a novel set of conserved retromer cargos. Indeed, several lines of evidence suggest that ESCRT/ret-

romer-mediated transport of SJ components may be evolutionary conserved from Drosophila to

mammals. Depletion of ESCRT-I component TSG101 in mammalian epithelial cells led to a reduction

of trans-epithelial resistance (TER), indicating defects in TJ-mediated barrier function (Dukes et al.,

2011). Additionally, Claudin-1, an essential TJ component, continuously underwent endocytosis and

recycling back to the plasma membrane in several mammalian cell lines in a process requiring ESCRT

function (Dukes et al., 2011).

Importantly, the mechanism behind reduced recycling and entrapment of Claudin-1 in ubiquitin-

positive aberrant endosomes upon interference with ESCRT function remained elusive (Dukes et al.,

2011). Thus, it is unknown how the export of Claudin-1 from the endosomal system in mammalian

cells is achieved (Dukes et al., 2011). By revealing an ESCRT-dependent function of the retromer

CSC in claudin endosomal export in Drosophila, our data may provide an explanation for a possibly

conserved trafficking pathway of claudins. In support of this, Claudin-1 and Claudin-4 membrane lev-

els were significantly reduced in a mass spectrometry-based surface proteome study of Vps35-

depleted human cells (Steinberg et al., 2013). Furthermore, the TJ protein Zonula occludens-2 (ZO-

2) was strongly enriched in a Vps26 interactome, suggesting that a presumptive retromer function in

TJ maintenance in mammalian cells may not be limited to claudins, similar to our findings in Dro-

sophila presented here (Steinberg et al., 2013). It remains to be determined whether a physiologi-

cal role of retromer in mammalian TJ maintenance occurs also in vivo. An increasing amount of

tools, such as conditional Vps35 knockout mice (de Groot et al., 2013), will enable analysis of this

putatively conserved retromer function in mammalian systems and reveal any possible implications in

development and/or disease.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

UAS-HA-Mega
(II.) and (III.)

This paper N-terminally HA-
tagged WT Mega
for Gal4/UAS-
driven expression

Genetic reagent
(D. melanogaster)

tubP-HA-
Mega (II.)

This paper N-terminally HA-
tagged WT Mega
expressed under
the control of a
tubulin promotor

Genetic reagent
(D. melanogaster)

UAS-HA-
MegaK2R

This paper N-terminally HA-tagged
Mega (intracellular
lysines exchanged with
arginines) for Gal4/UAS-
driven expression

Genetic reagent
(D. melanogaster)

UAS-Rab5-RNAi Vienna Drosophila
Resource Center

V34096

Genetic reagent
(D. melanogaster)

UAS-Vps35-RNAi Bloomington Drosophila
Stock Center

BL22180

Genetic reagent
(D. melanogaster)

UAS-Chc-RNAi Vienna Drosophila
Resource Center

V103383

Genetic reagent
(D. melanogaster)

UAS-Vps4-RNAi Vienna Drosophila
Resource Center

V101722

Genetic reagent
(D. melanogaster)

UAS-TSG101-RNAi Bloomington Drosophila
Stock Center

BL35710

Genetic reagent
(D. melanogaster)

UAS-shrub-RNAi Sweeney et al., 2006

Genetic reagent
(D. melanogaster)

UAS-Vps26-RNAi Bloomington Drosophila
Stock Center

BL38937

Genetic reagent
(D. melanogaster)

UAS-Vps39-RNAi Bloomington Drosophila
Stock Center

BL42605

Genetic reagent
(D. melanogaster)

Rbcn-3A-RNAi Vienna Drosophila
Resource Center

V108547

Genetic reagent
(D. melanogaster)

Rab7-RNAi Vienna Drosophila
Resource Center

V40337

Genetic reagent
(D. melanogaster)

UAS-Hrs-RNAi Vienna Drosophila
Resource Center

V20933

Genetic reagent
(D. melanogaster)

UAS-mega/pickel-RNAi Vienna Drosophila
Resource Center

V36306

Genetic reagent
(D. melanogaster)

hhGal4 Bloomington Drosophila
Stock Center

BL67046

Genetic reagent
(D. melanogaster)

tubGal80ts Bloomington Drosophila
Stock Center

BL7108

Genetic reagent
(D. melanogaster)

UAS-p35 Bloomington Drosophila
Stock Center

BL5072

Genetic reagent
(D. melanogaster)

enGal4 Bloomington Drosophila
Stock Center

BL30564

Genetic reagent
(D. melanogaster)

Lac::GFP Gift from Christian
Klämbt, University
of Münster,
Germany

Endogenously
GFP-tagged lac
allele

Genetic reagent
(D. melanogaster)

ATPa::GFP Bloomington Drosophila
Stock Center

BL6834

Genetic reagent
(D. melanogaster)

NrxIV::GFP Edenfeld
et al., 2006

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

Nrg::GFP Bloomington Drosophila
Stock Center

BL6844

Genetic reagent
(D. melanogaster)

FasIII::GFP Bloomington Drosophila
Stock Center

BL59809

Genetic reagent
(D. melanogaster)

Vari::Dendra Babatz et al., 2018 Endogenously
Dendra-tagged
vari allele

Genetic reagent
(D. melanogaster)

Mega::YFP Gift from Reinhard
Schuh, Max
Planck Institute
for Biophysical
Chemistry,
Göttingen,
Germany

Endogenously
YFP-tagged
mega
allele

Genetic reagent
(D. melanogaster)

Vps35::RFP Bloomington Drosophila
Stock Center

BL66527

Genetic reagent
(D. melanogaster)

Vps26-EGFP Bloomington Drosophila
Stock Center

BL67153

Genetic reagent
(D. melanogaster)

UAS-ShiK44 Bloomington Drosophila
Stock Center

BL5811

Genetic reagent
(D. melanogaster)

Ubx-Flp Bloomington Drosophila
Stock Center

BL42730

Genetic reagent
(D. melanogaster)

hsFlp Bloomington Drosophila
Stock Center

BL8862

Genetic reagent
(D. melanogaster)

hsFlp
FRT19A ubi-
nls-RFP

Bloomington Drosophila
Stock Center

BL31418

Genetic reagent
(D. melanogaster)

FRT40A 2xGFP Bloomington Drosophila
Stock Center

BL5189

Genetic reagent
(D. melanogaster)

FRT42D 2xGFP Bloomington Drosophila
Stock Center

BL5625

Genetic reagent
(D. melanogaster)

FRT42D
ubi-nls-RFP

Bloomington Drosophila
Stock Center

BL35496

Genetic reagent
(D. melanogaster)

FRT82B
ubi-nls-RFP

Bloomington Drosophila
Stock Center

BL30555

Genetic reagent
(D. melanogaster)

FRT42D Vps35MH20 Bloomington Drosophila
Stock Center

BL67202

Genetic reagent
(D. melanogaster)

Vps26B FRT19A Bloomington Drosophila
Stock Center

BL57140

Genetic reagent
(D. melanogaster)

HrsD28

Stam2L2896 FRT40A
Tognon et al., 2014 BL56816

Genetic reagent
(D. melanogaster)

Dmon1Mut4 FRT40A Yousefian et al., 2013

Genetic reagent
(D. melanogaster)

Snx2725

FRT19A
Strutt et al., 2019

Genetic reagent
(D. melanogaster)

FRT42 Fam21KO Strutt et al., 2019

Genetic reagent
(D. melanogaster)

Snx1D2 FRT40A Zhang et al., 2011

Genetic reagent
(D. melanogaster)

Snx61 FRT40A Zhang et al., 2011

Genetic reagent
(D. melanogaster)

FRT82B Snx3EY05688 Harterink et al., 2011
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

Rab7GAL4-KO Chan et al., 2011

Antibody anti-ATPa (mouse monoclonal) DSHB a5 IF (1:50)

Antibody anti-Shrub (rabbit polyclonal) Bäumers et al., 2019 IF (1:100)

Antibody anti-Mega (mouse monoclonal) Jaspers et al., 2012 IF (1:50)

antibody anti-E-cad
(rat
monoclonal)

DSHB 5D3 IF (1:50)

Antibody anti-Rab7 (mouse monoclonal) DSHB Rab7 IF (1:100)

Antibody anti-Dlg
(mouse monoclonal)

DSHB 4F3 IF (1:500)

antibody anti-Cora
(mouse monoclonal)

DSHB C566.9 IF (1:100)

Antibody anti-Vps26 (guinea
pig polyclonal)

Wang et al., 2014 IF (1:1500)

Antibody anti-Chc
(rat polyclonal)

Wingen et al., 2009 IF (1:50)

Antibody anti-Golgin84 (mouse monoclonal) DSHB 12–1 IF (1:100)

Antibody anti-Lgl (guinea
pig polyclonal)

Shahab et al., 2015 IF (1:500)

Antibody anti-Cont (guinea pig
polyclonal)

Faivre-Sarrailh
et al., 2004

IF (1:2000)

Antibody anti-Notch (mouse monoclonal) DSHB C458.2H IF (1:100)

antibody anti-Hrs
(guinea
pig polyclonal)

Lloyd et al., 2002 IF (1:500)

Antibody anti-Ubiquitin
(FK2) (mouse
monoclonal)

Enzo
Life Sciences

BML-PW8810 IF (1:100)

Antibody anti-Crb (rat
polyclonal)

Richard
et al., 2006

rat anti-Crb 2.8 IF (1:500)

Antibody anti-HA
(rabbit monoclonal)

Cell
Signalling
Technology

C29F4 IF (1:1500)

Antibody anti-Rab5
(rabbit polyclonal)

Abcam ab31261 IF (1:250)

Antibody anti-Fmi
(mouse monoclonal)

DSHB #74 IF (1:10)

Sequence
-based
reagent

fw-NotI-ATG-
HA-3xGly-
Mega

This paper PCR primer See method
section for
sequence

Sequence
-based
reagent

rev-Mega-XhoI This paper PCR primer See method
section for
sequence

Other Hoechst 33258 Sigma
Aldrich/
Merck

B2883 IF (1:10.000),
DNA/Nucleus
staining

Drosophila stocks and genetics
A complete list of all stocks used in this study is found in the key resources table above. Flies were

raised on standard cornmeal/molasses/yeast diet and kept at room temperature. Crossings were

raised on 25˚C, except for experiments containing the temperature sensitive tubGal80ts

(McGuire et al., 2004). Those flies were kept at 18˚C (permissive temperature) to inhibit Gal4/UAS-
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mediated expression (Brand and Perrimon, 1993) and shifted to 29˚C (restrictive) for specific time

spans to activate UAS-based expression. Flp/FRT system (Xu and Rubin, 1993) induced clones were

either generated by expression of Ubx-FLP or using hs-FLP with an 70 min heatshock in the first

instar larval stage (24–48 hr after egg laying).

Generation of transgenic flies
For generation of UAS and tubP expressed HA-tagged Mega constructs, the clone LD14222 from

Drosophila Genomics Resource Center (DGRC) was used as cDNA source. The HA-tag followed by a

3xGlycin linker was fused to the N-terminus of the Mega open reading frame by PCR using the fol-

lowing primers: fw-NotI-ATG-HA-3xGly-Mega GgcggccgcatgTACCCATACGAcGTTCCAGAcTACGC

TggcgggggcCGCGAACTTAACAAGCAGCAG rev-Mega-XhoI ctgcactcgagTTATATGTAGCCC

TGCAGGC.

The generated PCR fragment was restriction digested with NotI and XhoI enzymes (New England

Biolabs) and subsequently cloned into pUAST-attB and pTUB vectors. The tubulinP-based plasmid

derived from a pCaSpeR4-tubulin-QF#7 vector (addgene) with SV40 polyA 3’ UTR. The UAS-HA-

MegaK2R construct was designed analogous to UAS-HA-Mega with all intracellular lysines exchanged

to arginines. The cDNA for this construct was synthesized by BaseClear B.V. Generation of trans-

genic flies was performed by attB/attP specific genomic integration into the landing sites 51C (for

2nd chromosome) and 86Fb (for 3rd chromosome) (Bischof et al., 2007). Injection of embryos was

either performed in house or by BestGene Inc (CA 91709, U.S.A).

Immunohistochemistry (IHC)
A complete list of all antibodies used in this study is found in the key resources table above. Late L3

larvae or pupae were dissected in phosphate-buffered saline (PBS, pH 7.4) on ice and immediately

fixed for 30 min in 4% paraformaldehyde in PBS. Following three 10 min wash steps in PBT (0.3% Tri-

ton X-100 in PBS), tissue was blocked with 5% normal goat serum (NGS, Jackson ImmunoResearch)

in PBT and subsequently incubated with primary antibodies in 5% NGS in PBT for 2 hr. After three

15 min wash steps with PBT, discs were incubated with fluorochrome-conjugated antibodies (Alexa-

488, –568, �647 from Thermo Fisher Scientific) for 2 hr in 5% NGS in PBT. For nuclear staining,

Hoechst 33258 (Sigma Aldrich) was used at a concentration of 1:10,000. Discs or pupae were

mounted in Vectashield (Vector Laboratories) and imaged with a Zeiss AxioImager Z1 wide field

microscope equipped with a Zeiss Apotome. For SJ length measurements, ROIs were manually

assigned with Fiji and the total length of electron-dense SJ within ROIs was measured to yield a SJ

length/ROI length ratio. Statistical analysis was performed with GraphPad Prism 7.0 d.

Live imaging
Late L3 instar larvae were dissected in PBS and immediately mounted on coverslips in Schneider’s

Drosophila medium (Pan Biotech). Double-sided tape containing a punchhole was used both as a

spacer to avoid tissue damage during mounting and as a short-term imaging chamber that restricted

wing disc movement. Imaging was performed with a Zeiss LSM 880 laser scanning microscope

equipped with an Airyscan detector. For time series, frames were acquired in 1–4 s intervals and line

switching was used for dual channel acquisition.

Fluorescence recovery after photobleaching (FRAP)
Wing discs were mounted as described above (see Live Imaging). Photobleaching and imaging were

performed on a Zeiss LSM 880 confocal microscope using a gallium arsenide phosphide (GaAsP)

detector and 40x objective with a numeric aperture of 1.2. A 15x digital zoom was applied to yield a

detection area of 14.17 � 14.17 micron, equivalent to 512 � 512 pixels. In the focal plane of the

junctions, a bicellular SJ ROI (0.83 � 0.83 microns) was bleached with 100% excitation laser intensity

and 10 repeats. The laser dwell time for each pixel was 4.1 ms. After bleaching, the tissue was

imaged in 2 min intervals for 30 min and any potential drifting (x-, y-, z-axis) was corrected manually.

Images were merged into a time series with Fiji and the mean gray values within the ROI were plot-

ted against time/min (Figure 1J). Statistical analysis was performed with Microsoft Excel and Graph-

Pad Prism 7.0 d.

Pannen et al. eLife 2020;9:e61866. DOI: https://doi.org/10.7554/eLife.61866 24 of 31

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.61866


Vesicle tracking
The Fiji plugin TrackMate (Tinevez et al., 2017) was used on bleach corrected (exponential fit) time

series obtained by live imaging to analyze movement of vesicles positive for either Vps26-EGFP or

Vps35::RFP. A Dog detector with estimated blob diameter of 2 micron and threshold 1 were used as

a fixed setup. Tracks were analyzed by the simple LAP tracker with following parameters: Linking

max distance: 2. Gap closing distance: 2. Gap closing max frame gap: 20. Mean velocity was used as

the parameter for comparing vesicles within wildtype and Shrub-depleted tissue. Statistical analysis

was performed with GraphPad Prism 7.0 d.

Transmission electron microscopy (TEM)
Wing discs were dissected in 0.1M phosphate buffer (0.1M PO4) on ice and immediately fixed with

2.5% glutaraldehyde in 0.1M PO4 for 1 hr. Following five 5 min washsteps with 0.1M PO4, tissue was

postfixed with osmium tetroxide (2% in 0.1M PO4) for 1 hr on ice. After three 5 min washsteps with

0.1M PO4 and further washsteps with ddH2O, the specimens were gently dehydrated with ethanol in

concentrations ranging from 50 to 100%. Acetone was used as an intermediate solvent to support

Epoxy Embedding Medium (Epon, Sigma Aldrich) infiltration into the tissue. Specimens were stored

over night in 100% Epon and subsequently embedded and sectioned. Semi-thin sections were

stained with Richardson blue. Ultra-thin sections were contrasted with 2% uranyl acetate and lead

citrate prior to imaging. Sections were analyzed with an EM 902 (Zeiss) microscope at 80 KV.

Fluorescence in situ hybridization (FISH)
For generation of Mega RNA antisense probe, the Mega/Pickel cDNA containing LD14222 clone

from DGRC was linearized by EcoRI digestion following T7 polymerase-dependent in vitro transcrip-

tion and digoxigenin (DIG) labeling. RNA probes were purified with a NucleoSpin Gel and PCR

clean-up kit before use in the hybridization reaction. For FISH, late L3 larvae were dissected in PBS

on ice and fixed for 20 min in 3.7% formaldehyde in PBS. Specimens were handled according to

standard protocols. Briefly, larval tissue was incubated with RNA probes in formamide-based hybrid-

ization buffer at 65˚C over night. To detect probes, HRP-conjugated anti-DIG antibodies (Perkin

Elmer) were used, followed by a tyramide signal amplification reaction (TSA plus Cyanine 3 Fluores-

cence Kit, Perkin Elmer). Wing discs were mounted in Vectashield (Vector Laboratories) and imaged

with a Zeiss AxioImager Z1 wide field microscope equipped with a Zeiss Apotome.

Dye penetration assay
Late L3 larvae were dissected in PBS and briefly rinsed (30 s) in PBS containing 10 kDa Texas-dsRed

labeled Dextran (Molecular Probes D-1828) in a concentration of 1 mg/ml. Following two quick wash

steps in PBS, imaginal discs were dissected from the carcasses and immediately mounted in Vecta-

shield (Vector Laboratories) on microscope slides. To avoid tissue damage due to compression, dou-

ble-sided tape was used as a spacer between slide and cover slip. Images were acquired on a Zeiss

AxioImager Z1 wide field microscope immediately after mounting (within a timeframe of 5 min).

Colocalization analysis
For measuring colocalization of Mega::YFP with either Vps26 or Chc, dual channel images of single

fluorescent planes (either lateral views or basal planes) were adjusted for brightness in FiJi. Colocali-

zation was manually determined for each individual Mega::YFP vesicle using the FiJi cell counter

plugin.
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