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Abstract: Rheumatoid arthritis (RA) is an autoimmune disease with an unclear pathogenic mechanism.
However, it has been proven that the key underlying risk factor is a genetic predisposition.
Association studies of the HLA-DRB1 gene clearly indicate its importance in RA morbidity. This review
presents the current state of knowledge on the impact of HLA-DRB1 gene, functioning both as
a component of the patient’s genome and as an environmental risk factor. The impact of known
HLA-DRB1 risk variants on the specific structure of the polymorphic HLA-DR molecule, and epitope
binding affinity, is presented. The issues of the potential influence of HLA-DRB1 on the occurrence
of non-articular disease manifestations and response to treatment are also discussed. A deeper
understanding of the role of the HLA-DRB1 gene is essential to explore the complex nature of RA,
which is a result of multiple contributing factors, including genetic, epigenetic and environmental
factors. It also creates new opportunities to develop modern and personalized forms of therapy.
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1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease which leads to a progressive joint
destruction and disability. RA affects approximately 1–2% of the adult population, which makes it one
of the most common rheumatic diseases [1]. The mechanism of RA development has not been fully
uncovered yet, however, the role of genetic factors that predispose an individual to the disease after
the activation of factors inducing chronic inflammation, e.g., environmental factors, appear to play
a critical role.

A properly functioning human immune system requires a balance between the identification and
subsequent elimination of foreign environmental antigens and maintenance of the immunological
tolerance in relation to its own antigens [2]. Maintaining immunological tolerance takes place at
two levels:

• central, in which the self-reactive B and T cells are deleted during maturation in the thymus and
bone marrow, respectively,

• peripheral, occurring through one of three mechanisms: clonal deletion (usually via apoptosis),
induction of anergy (functional inactivation without cell death), or suppression of lymphocytes
activation either by regulatory T cells or by clonal ignorance [3].
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A loss of tolerance occurs when autoreactive lymphocytes are not inhibited due to the above
mechanisms maintaining the homeostasis. It is a result of a complex process, in which environmental
factors affect genetically susceptible individuals, which may lead to the development of systemic
autoimmune diseases, including RA. The autoimmune response in RA is presumably initiated by
citrullination of self-peptides, leading to alterations of their properties. This leads to the activation
of complex immune responses and specific anti-citrullinated protein antibodies (ACPA) generation,
found in approximately 75% of RA patients [4].

The risk of developing RA largely depends on hereditary factors, i.e., the disease is polygenic [5].
Multiple genome-wide association studies (GWAS) have already uncovered over 100 genetic loci
associated with an increased risk of RA [6]. The new challenge in the post-GWAS era is to unravel
the roles of susceptibility loci in disease development by estimation of its contribution to the overall
heritability. The estimated heritability assessed in twin studies is not conclusive and ranges from
12% to 65% [7–9]. Interestingly, twin studies have found no difference in heritability in subsets
of ACPA-positive and ACPA-negative RA [10], which is contrary to the results of another familial
aggregation study. An analysis of large Swedish population registers showed estimated heritability,
accounting for around 50% for ACPA-positive RA, but only 20% for ACPA-negative RA [11].

In terms of relevance in RA pathogenesis, the most recognized part of the human genome
is the human leukocyte antigen (HLA) region located on chromosome 6 (Figure 1). The region
consists of genes encoding molecules responsible for regulating immune response. HLA molecules
are cell surface–bound glycoproteins classified into three classes. HLA class I and III are involved in
presentation peptides from inside the cell and complement activation, respectively. HLA class II is
expressed on the surface of antigen-presenting cells (including macrophages, B cells and dendritic cells)
and is essential in order to display peptides to T-helper CD4+ cells, inducing their activation. HLA class
II antigens are encoded by DR, DQ and DP (classical) and DM, DO (nonclassical) loci. Individual
amino acid position variance in HLA class II molecules, especially within HLA-DR molecules forming
antigen-binding grooves, explain to a large extent the overall importance of the HLA region in RA.

Figure 1. Human leukocyte antigen (HLA) molecules are encoded by three classes of genes located on
short arm of chromosome 6 at positions 6p21.1–21.3. Within the DR subregion there is an outstandingly
polymorphic HLA-DRB1 gene, which is of key importance in the pathogenesis of rheumatoid
arthritis (RA).

Previously, the contribution of HLA locus has been estimated to be 37–50% [10,12]. Recently,
novel statistical methods have been introduced for fine-mapping trait-associated genomic regions with
the use of statistics from GWAS studies. A large-scale HLA fine-mapping analysis of RA in the Japanese
population was performed, showing that HLA genes account for 9.2% of the phenotypic variance of
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ACPA-positive RA, and only 1.5% of ACPA-negative RA. Within the HLA region, the contribution of
the HLA-DRB1 gene was far stronger than other HLA loci (6.4% vs. 2.8%) [13].

Until now, HLA-DRB1 genotyping has neither been used in everyday clinical practice, nor included
in the current ACR/EULAR 2010 rheumatoid arthritis classification criteria. However, it has been
shown that some HLA-DRB1 variants may predict the unfavorable course of the disease, including
a higher risk of radiographic damage progression, higher incidence of interstitial lung disease or
lymphoproliferative diseases. It also seems possible that the identification of high-risk patients with
the HLA-DRB1 risk allele may be important in personalizing therapy. It was observed that early and
aggressive immunosuppressive treatment brings particular benefits in patients with HLA-DRB1 risk
alleles [14,15]. Further research concerning the contribution of HLA-DRB1 to the RA pathogenesis
may open new pathways for enhanced diagnostics and therapy of this common, disabling disease.

2. The Pathogenic Link between ACPA and HLA in Rheumatoid Arthritis

Citrullination is a posttranslational modification of proteins catalyzed by
peptidyl-arginine-deiminases (PADs), a calcium-dependent, intracellular group of enzymes.
It results in a change of positively charged arginine to a polar—but neutral—citrulline, introducing
novel epitopes on self-proteins. ACPA, generated by citrulline-specific B cells, may react with various
citrullinated autoantigens, including fibrin, fibrinogen, vimentin, type II collagen, α-enolase, histones,
immunoglobulin binding protein-BIP, tenascin-C. In clinical practice, ACPA detection relies mostly on
the commercially available measure of antibodies against cyclic citrullinated peptide (CCP) fragments
of natural human proteins. The appearance of ACPA may precede many years of the development of
RA symptoms. In addition, prevalence of ACPA gradually increases up to the diagnosis [16,17].

The pathogenetic significance of ACPA in RA is a result of their multidirectional biological
activities (Figure 2). Complexes consisting of citrullinated fibrinogen and ACPA, found in nearly two
thirds of ACPA-positive patients, have been shown to stimulate Fcγ receptors on macrophages [18],
thereby inducing the release of tumor necrosis factor-α (TNF-α), a multifunctional proinflammatory
cytokine [19]. The TNF-α secretion may be further amplificated by the incorporation of IgM RF IgM
rheumatoid factor (RF) into ACPA-immune complex (ACPA-IC) [20]. In addition, IgM and IgA RF
fractions show potential to propagate ACPA-IC-mediated complement activation [21]. Other postulated
biological effects of ACPA are: activation of complement via both the classical and alternative pathways,
induction of neutrophil extracellular traps (NETs) and activation of osteoclasts [22–24].
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Figure 2. Various biological effects of anti-citrullinated protein antibodies (ACPA). The production of
ACPA reflects break of immune tolerance and is dependent on the occurrence of both genetic, epigenetic
and environmental factors. Genetic factors are: shared epitopes (SEs), protein tyrosine phosphatase
non-receptor type 22 (PTPN22), α1-antitrypsin, type I interferons. Epigenetic modifications are:
DNA methylation, histone acetylation and deacetylation, miRNA expression. Environmental factors
include: noxious agents, influence of pathogens such as Porphyromonas gingivalis, Aggregatibacter
actinomycetemcomitans (Aa) and Epstein–Barr virus (EBV). Interaction between genetic and
environmental factors led to the activation of antigen presenting cells (APCs), such as dendritic
cells, macrophages or B cells. Additionally, various noxious agents have a potential to activate
toll-like receptors (TLRs). Triggering the innate immune response activate Ca2+-mediated
peptidyl-arginine-deiminase (PAD) of granulocytes and macrophages, which catalyze citrullination
of the target proteins located in the immune cells. The formation of neutrophil extracellular traps
(NETs) may be induced by pathogens and reactive oxygen species (ROS). NETosis contributes to
ACPA production by the externalization of citrullinated autoantigens and releasing of activated PAD,
which form a pool of autoantigens that fuels autoimmunity. ACPA biologic effects rely on complement
activation, osteoclasts stimulation, as well as direct macrophages and neutrophils activation. Joint pain
may precede synovial inflammation and may be induced by ACPA via both osteoclast activation and
direct Fc receptor binding [25].

Currently, it is thought that the production of ACPA is mainly determined by the presence of
specific environmental factors, rather than genetic factors. This hypothesis is evidenced by the existence
of an association between the presence of the HLA-DRB1 risk alleles (specifically shared epitope alleles,
further described) and ACPA in people with RA, and the absence of such an association in healthy,
but ACPA-positive people. Consequently, the association of HLA-DRB1 alleles and the increased risk
of developing RA is may not be due to the effect on ACPA production, but rather due to the effect
on the pathogenicity of these antibodies. Intriguingly, the ACPA response tends to evolve prior to
the onset of RA. The number of recognized citrullinated peptides increases (which may be related to
epitope spreading), and avidity maturation also takes place [26,27].

The analysis of the distinct molecular structure of ACPA is crucial to understand its contribution
to RA pathophysiology. ACPA, compared to other antibodies, is characterized by contained glycans
in the Fc region and N-linked glycans in their variable domains (Fab) [28,29]. The formation of
N-glycosylation sites is likely to be a cause of the pathogenicity of ACPA, or it may affect their
persistence. Long-term observations of RA patients indicate that the ACPA glycosylation process can
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be detected already more than 15 years before the RA onset and intensifies as the first symptoms of the
disease approach [30,31]. The incorporation of N-glycosylation sites is thought to be a result of CD4+

T cell dependent somatic hypermutation of ACPA [32].
According to the results of recent studies, the occurrence of HLA-DRB1 risk alleles predispose the

formation of N-glycosylation sites in ACPA-IgG, but the precise mechanism of this predisposition is
not known [30]. Nevertheless, due to the fact that HLA-DR (encoded by HLA-DRB1 gene) molecules
are necessary for the activation of CD4+ T cell, we assume that it is likely that HLA-DRB1 risk alleles
induce somatic hypermutation of ACPA, leading to their pathogenicity.

3. Role of Hypervariable Regions

The association between HLA-DR and RA susceptibility was first reported over 40 years ago [33].
It soon became apparent that the HLA-DR complex is highly polymorphic, especially in the DRβ1
chain encoded by the HLA-DRB1 gene [34]. To date, 2690 distinct alleles of the HLA-DRB1, encoding
1899 proteins, have been identified (Figure 3).

Figure 3. The HLA class II beta chains are much more polymorphic than the alpha chains. The
most polymorphic HLA class II locus is HLA-DRB1-2690 alleles of this gene have been identified.
Source: adapted from http://hla.alleles.org/nomenclature/stats.html; accessed on 21 April 2020.

The HLA-DRB1 gene consists of six exons, each encoding different protein domains (Figure 4).
The Exon 2 of HLA-DRB1 is the most variable one and shares the amino acid sequence of the antigen
recognition site.

Amino acid variations within different HLA-DR molecules were clustered into three major regions
of hypervariability (HVR). The third region (HVR3) is encoded by Exon 2 and is located between amino
acids 67–74 on the alpha helix of the HLA β1 chain, which form the most important site for primary
T-cell recognition [35]. Allelic variations in HLA-DRB1 can result in HVR3 charge differences and can
affect interactions with T cells. In RA, the impact of electric charge on disease susceptibility was shown.
Amino acid motifs of the HVR3-carrying positive electric charge are associated with an increased risk
of developing RA, whereas neutral or negative electric charge protects against RA [36,37].

http://hla.alleles.org/nomenclature/stats.html
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Figure 4. HLA-DRB1 gene is encoded by six exons. Exon 1 encodes the leader peptide, Exons 2 and 3
encode the two extracellular domains, Exon 4 encodes the transmembrane domain, and Exon 5 encodes
the cytoplasmic tail. Amino acid motifs forming the first hypervariable region (HVR1) are encoded by
Exon 1, the major HVR3, and shared epitope motifs are encoded by Exon 2.

Recently, a conditional haplotype analysis by Raychaudhuri et al. revealed that HVR1 region,
formed by amino acids in positions 9–13, encoded by Exon 1, also strongly conferred ACPA-positive
RA risk. Interestingly, amino acid residues 11 and 13 showed stronger association than any other
polymorphic HLA-DRB1 amino acid position.

4. Shared Epitope Hypothesis

Over 30 years ago Gregersen et al. coined a hypothesis of a pathogenic role of three amino acid
sequences (70QRRAA74, 70RRRAA74 or 70QKRAA74) located at positions 70–74, i.e., within the HVR3
of the DRβ1 chain, which form the so-called “shared epitope” (SE) [36]. It was hypothesized that the
presence of these SE sequences allows the presentation of self-antigens to T lymphocytes, and thus
plays a key role in the development of RA [36]. Recent reports confirm that the RA autoimmune process
may be mostly triggered by the privileged binding of citrullinated peptides by HLA-DR molecules
containing SE sequence [38].

The allele of the shared epitope (HLA-DRB1 SE) is present in 64–82% of patients with RA, which is
significantly more than in their first-degree relatives (53.9–55%) and in the healthy control population
(39–52%) [39–41]. The importance of a shared epitope in the development of the disease was confirmed
in twin studies: RA developed in both twins 3.7 times more frequent when HLA-DRB1 SE was
present and five times more frequent in pairs homozygous to SE as compared to pairs without SE [42].
The presence of the HLA-DRB1 shared epitope is very strongly associated with the development
of ACPA-positive RA. HLA-DRB1 SE alleles show a significantly higher frequency in patients with
anti-CCP (82–89.6%) than in anti-CCP-negative patients (53–70%) [40]. The presence of HLA-DRB1 SE
alleles strongly affects the heritability of ACPA-positive RA, explaining 18% of the genetic variance in
anti-CCP-positive RA, in contrast to 2.4% in ACPA-negative RA [10]. The presence of the SE allele
is also associated with higher ACPA antibody levels [43]. Interestingly, a clear association between
HLA-DRB1 SE and ACPA-positivity is that healthy individuals have not been found [44]. A recent
study shows that this phenomenon can be at least partially explained by the impact of SE on ACPA-IgG
V-domain glycosylation, not ACPA-positivity itself [30].

HLA-DRB1 SE has been also found to have relevant clinical importance by predisposing more
destructive joint disease [45] and increased mortality [46]. Of particular interest, SE alleles were found
more often among men, despite the fact that RA is more common in women [47]. The SE-coding
alleles include:
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• DRB1 *0401, *0409, *0413, *0416, *0421, *1419, *1421 (encoding 70QKRAA74 sequence),
• DRB1 *0101, *0102, *0105 *0404, *0405, *0408, *0410, *0419, *1402, *1406, *1409, *1413, *1417, *1420

(encoding 70QRRAA74)
• DRB1 *1001 (encoding 70RRRAA74) [48].

The greatest impact on the increase in the relative risk of RA is believed to have HLA-DRB1 *0404
(allele-odds ratio (OR) 3.5, 95% CI) [49]. The frequency of individual SE alleles varies depending on the
age of onset of the first symptoms of the disease. Young-onset RA (≤40 years) is associated with the
presence of DRB1 *0401 and *0404, while late-onset RA (≥60 years) is associated with DRB1*0101 [50].
The HLA regions in both young-onset RA and polyarticular juvenile idiopathic arthritis (JIA) patients
show high similarity, and the common denominator is HLA-DRB1 *0401. This fact may indicate
very similar pathomechanisms leading to the development of both diseases [51]. HLA-DRB1 *0405 is
the most common SE allele in the Japanese population. Additionally, the relationship between the
occurrence of HLA-DRB1 *0405 and serine in position 57 (non-SE residue) was shown. This amino
acid residue also correlates with a higher risk of RA and is specific for the population of Asia [52].

The immunological role of SE probably is associated with an impact on adaptive immunity.
Patients with SE are characterized by an increased expression of HLA-DR on B cells, which interact
with T cell receptors. Consequently, it promotes CXCR4 expression on memory CD4+ T cells.
The immunophenotyping analysis indicated higher frequency of memory CXCR4+CD4+ T cells in RA
patients with at least one susceptible SE allele [53]. In addition, in the SE-positive patient, a significant
increase in frequencies of both Th1 and Th17 lymphocyte subsets was observed [54].

5. HLA-DRB1 Alleles Other than the SE

It is estimated that over 20% of RA patients do not have the SE alleles [55]. The classic SE alleles
determine only the shape of external binding site of the HLA-DR molecule. Therefore, shared epitope
hypothesis does not explain the significance of allelic variations within HLA genes coding for the
internal part of the binding groove. The identification of the new casual variants in HLA region
is difficult due to its huge polymorphism. However, some protein variances outside the original
SE motif were also identified as risk factors for RA. Raychaudhuri et al. analyzed the genome of
20,000 individuals, including over 5000 patients with anti-CCP positive RA, and identified gene variants
contributing to RA risk, which encode two amino acids located in Positions 11 and 13 within HVR1 of
the HLA-DRβ1 chain. While the role of Codon 13 in RA risk is still uncertain, Val 11 and Leu 11 have
been reported to strongly influence the RA risk (OR = 3.8 and OR = 1.3, respectively) [56]. Moreover,
a recent experimental model in macaques has shown that Val 11 and Phe 13 positions may be even
more important than SE positions in the process of inducing the T-cell response against citrullinated
peptides [57]. Val 11 has also been shown to correlate with the higher incidence of anti-CCP antibodies,
similarly to SE variants [58].

The amino acids at Positions 11 (within HVR1), 71 and 74 (within HVR3) define 16 haplotypes.
Val 11, Lys 71 and Ala 74 show the strongest association with the occurrence of RA. This amino acid
sequence corresponds to the DRB1*0401 allele [56]. Some of the alleles overlap in terms of the amino
acid sequences they encode (Table 1). The Lys 71 is associated with a high risk of RA and is present in
patients carrying SE allele HLA-DRB1*0401. Nonetheless, this specific amino acid sequence occurs
also in patients carrying other than SE-positive alleles, such as *1303 and *0301 [41].

Several studies indicate higher RA risk in individuals with the DRB1*0901 allele encoding
a 70RRRAE74 motif in the HVR3 region [59]. HLA-DRB1*0901 allele frequency was significantly
increased in RA patients without anti-CCP antibodies compared with controls and RA patients
with anti-CCP antibodies [60]. The association with RA has been reported both in Caucasian and
Korean populations [61].
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Table 1. HLA-DRB1 alleles encoding amino acids at Positions 11, 71, 74 the “shared epitope” (SE) motif
(associated with increased risk of RA) and the DERAA motif (associated with a reduced risk of RA).
Several HLA alleles share overlapping amino acid sequences. The coexistence of the “shared epitope”
motif and Val 11, Lys 71, Ala 74, is the most strongly associated with RA in Caucasians and it corresponds
to the DRB1*0401 allele. Source: Data from Cruz GI, et al. Ann Rheum Dis 2017; 0: 1–6.

Allele Ala 74 Val 11 Lys 71 SE DERAA

*0101 + - - + -

*0102 + - - + -

*0103 + - - - +

*1102 + - - - +

*1301 + - - - +

*1302 + - - - +

*0401 + + + + -

*0404 - + - + -

*0405 - + - + -

*0408 - + - + -

*1001 - + - + -

*0402 + + - - +

*0403 - + - - -

*0407 - + - - -

*1101 + - - - -

*1103 + - - - -

*1501 + - - - -

*1502 + - - - -

*1104 + - - - -

*1201 + - - - -

*1601 + - - - -

*0301 - - + - -

*1303 + - + - -

6. Protective Alleles

The DERAA (D = aspartic acid, E = glutamic acid, R = arginine, A = alanine) sequence of amino
acids at Position 70–74 in the HVR3 of the DRβ1 chain is considered the most important protective
factor for seropositive RA, however, the mechanism of this allele-based protection is unknown [62].
Several DERAA-containing alleles have been identified: HLA-DRB1*0103, *1102, *1103, *1301, *1302,
*1304 and *0402 [63]. The meta-analysis of four European trials underlined the protective impact of
HLA-DRB1*13. It suggested that the DRB1*13 allele, rather than the whole DERAA, is associated with
a protective effect. In addition, among DRB1*13, only the DRB1*1301 was identified as protective [64].
The protective effect of the DRB1*1302 allele was confirmed in the Japanese study [65]. The significance
of the DRB1*0402 remains a matter of controversy. This allele was identified as having a protective
effect over a dozen years ago, however, it has not been confirmed in subsequent studies [37,66,67].
The protective effect of the Ser 11 of the DRβ1, corresponding to the HLA-DRB1*03 allele, was also
demonstrated in a few reports [56,68]. However, this remains controversial, because a possible role of
the DRB1*03 allele in the development of anti-CCP-negative RA was also reported [69].
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7. Ethnic Differences

The link between the presence of SE sequence and the increased risk of RA development exists
regardless of ethnic or racial origin. However, there are ethnic differences in the incidence of specific
SE alleles:

• DRB1 * 0401, * 0404, * 0408 are more frequent in the Caucasian population [70],
• DRB1 * 0405 in Asian population [71],
• DRB1 * 1402 in Native Americans [72],
• DRB1 * 0401, * 0404, * 0405 in Latin American ancestry population [73,74],
• DRB1 * 0101, * 0102 in Israeli Jews population [75],
• DRB1 * 1001, * 0102, * 0405 in African Americans. Interestingly, the overall prevalence of the

SE-coding HLA-DRB1 alleles in African Americans is much lower (25%) than in European
populations [76,77].

Substantial ethnical differences have been found in the prevalence of non-SE alleles, for example, in
East Asians, a population-specific association with the DRB1*09:01 and DRB1*0405/*0901 heterozygotes
has been identified [78,79]. Interestingly, the protective influence of individual alleles also varies
depending on ethnicity. Among Asians, the alleles containing DERAA are not stipulated as having
a protective significance, as opposed to the HLA-DRB1 * 0301, * 0403, * 0406, * 0701 and * 1405 alleles [80].
In populations from southern Mexico, HLA-DRB1*08 shows a definite protective effect [81].

8. Peptide Binding Affinity

The antigen-binding groove of the HLA-DR molecule consists of nine pockets that interact with
the bound peptide. The most important are pockets P1, P4, P6, P7, and P9, binding the side chains
of the Peptide Residues 1, 4, 6, 7, and 9, respectively [82]. The positive electric charge of the P4
pocket, which is strongly associated with the occurrence of SE alleles, significantly affects the increased
ability to bind citrullinated peptides [37]. Citrulline in the P4 pocket predisposes the formation of
a stabilizing hydrogen bond with the lysine-71β/arginine-71β. The analysis of crystal structures of
HLA-DR-citrullinated epitope complexes has revealed that the mode of peptide binding is highly
conserved in the P4 pocket, regardless of the SE variant (HLA-DRB1*04:01/*04:04/*04:05) [38].

The electronegative P4 pocket tends to accommodate arginine instead of citrulline and is associated
with RA-protective HLA-DRB1 alleles. The important difference between protective HLA-DRB1*04:02
and *0401 is glutamate instead of lysine at Position 71β (E71K). This results in a lack of the hydrogen
bond in the peptide backbone at Position P5, which is highly conserved in other HLA-DR molecules.
In addition, aspartic acid at Position 70β enhances the formation of a salt bridge with P4-arginine [83,84].

Despite the conserved orientation of citrulline in the P4 pocket, a study by Ting et al. showed that
the binding affinities vary depending on the type of peptide ligands, possibly due to differences in
amino acid positions outside the P4 pocket. Indeed, HLA-DRB1*0404 and *0405 exhibit P1 and P9
pocket specificities. HLA-DRB1*0404 is characterized by a glycine-to-valine substitution in Position
86β (G86V) at the P1 pocket, which hinders the binding of hydrophobic residues. This results in
low affinity for citrullinated peptides possessing a tyrosine instead of glycine in the P1 position.
Similarly, HLA-DRB1*0405 shows a different selection of peptides with P9 residues, presumably due to
an aspartic acid-to-serine substitution in Amino Acid Residue 57β (D57S) at the P9 pocket, which forms
extensive hydrogen bonds with aspartate, making the HLA-DR–protein complex less stable [38].

Within the P6 pocket, there are Amino Acid Positions 11 and 13, which also likely play a role
in antigen presentation. Positions 11 and 13 are also located in the peptide binding region of the
HLA class II molecule, suggesting their likely role in antigen presentation. Position 11 appears to
be the most variable residue in Pocket 6 of the β chain, determining the binding specificity of that
pocket. It is thought that the possibility of peptide binding may be conditioned by interactions between
molecules, as it has been shown that hydrophobic polar state of amino acid residues at Position 11
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alter the binding of an antigen [85]. The side chains of amino acids in Positions 71 and 74 are spatially
close to those in Positions 11 and 13, likely indicating interactions between the polymorphic HVR1
and HVR3 regions [56]. The importance of van der Waals contacts between His 13 and P4-Cit is
particularly suspected. This is consistent with the observation of an occurrence of a histidine-to-serine
polymorphism in Position 13 in protective HLA-DRB * 13: 01 [56,86].

In the HLA-DRB1 SE, the preferential accommodation of citrulline over arginine is not only found
in Pocket 4, but also in other pockets (Table 2). Interestingly, the enhanced capacity to bind citrullinated
peptides has been demonstrated also in case of some HLA-DQ2, HLA-DQ7 and HLA-DQ8 variants,
but the significance of these observations for the ability of antigen presentation and possible influence
on RA pathogenesis remains unknown. HLA-DRB1*0301 is an interesting example of an allele being
associated with both a protective effect on RA and a positively charged P4 pocket, in which peptide
binding affinity is low despite the expected preference of uncharged citrulline residues. The explanation
for this phenomenon probably lies in the preferential accommodation of positively charged arginine
residues in the P6 and P9 pockets [38]. In line with the above uncertainties, we need more studies
assessing the influence of arginine-to-citrulline conversion in distinct pockets in molecules other than
SE HLA-DRB1.

Table 2. Influence of selected HLA-DRB1 alleles and their molecular distinctions on binding affinity.
HLA-DRB1 variants differ in case of P4 pocket net charge and preference for citrulline in other pockets
of the binding groove. The occurrence of specific amino acid substitutions D57S at pocket P9 and G86V
at pocket P1 results in slightly different hierarchies of binding in citrullinated self-peptides between
SE allomorphs.

HLA-DRB1
Allele

Influence
on RA
Risk

P4
Pocket
Charge

Preference for
Cit over Arg

Binding

Amino Acid
Specificity

Binding Affinity of Selected RA Epitopes
ReferenceVim-64,69,71Cit

(59–71)
Vim-71Cit

(66–78) CII1240Cit

*0401 risk allele positive P4; other
unknown no low high high [38,83]

*0402 protective negative
Preference for

Arg in P4; other
unknown

E71K at P4
pocket unknown high low [83,87]

*0404 risk allele positive P4, P7 G86V at P1
pocket low high low [38,88]

*0405 risk allele positive P1, P4, P6, P9 D57S at P9
pocket moderate moderate low [38,88]

*0301 protective
in Asians positive Preference for

Arg in P6, P9 unknown unknown no binding moderate [87,88]

Peptides with IC50 values <1 µm, 1–5 µm, 5–250 µm, >250 µm were considered to have high, moderate, low and no
binding, respectively. Cit = citrulline; Arg = arginine; Vim = vimentine; CII1240Cit = Collagen type II-1240Cit.

9. Genetic and Environmental Risk Factor’s Interactions

9.1. Genetic Interactions

The risk of developing RA is determined by both alleles of the HLA-DRB1 gene, coming from the
mother and father. Balandraud et al. analyzed the associations of specific risk genotypes and anti-CCP
antibody status and identified 30 “high-risk” genotypes, of which 10 contained a “double dose” of
alleles predisposing RA. The highest risk genotypes were: HLA-DRB1*0401/* 10 (OR = 28.2), *0401/*09
(OR = 15.3). A total of 27 genotypes were considered “low risk” including, i.e., HLA-DRB1*12/*13,
*07/*08, *11/*14, *03/*03, *08/*11 (OR = 0.2). Interestingly, also in this group was the HLA-DRB1 *01/*13
genotype, containing an RA-associated SE allele. This phenomenon was explained by the influence
of the second protective allele. The contribution of the second allele is also visible on the example
of genotypes with the HLA-DRB1*0401 allele-odds ratio depending on the concurrent allele ranges
from 28.2 (HLA-DRB1*0401/*10) to 1.1 (HLA-DRB1*0401/*03) [67]. Anti-CCP positive RA may also be
a result of the interaction between alleles of two different genes, as in the case of HLA-DRB1 SE and
protein tyrosine phosphatase, a non-receptor type 22 (PTPN22) R620W A allele [40].
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9.2. Smoking

In the RA pathogenesis, we can see an interaction between genes and environment, which may
lead to trigger the disease (Figure 5). A strong interaction was found between HLA-DRB1 SE alleles
and cigarette smoking, contributing to the development of anti-CCP positive RA [89]. Recent studies
have shown that cigarette smoking affects not only positivity, but also higher levels of both ACPA
and RF. Importantly, the impact of smoking on ACPA levels has been observed only in patients with
SE alleles, while RF levels were elevated in all patients. The risk of future ACPA positivity and high
levels have been attenuated by smoking cessation before the onset of RA [90]. It seems also likely
that smoking in genetically predisposed individuals triggers immunity to citrullinated α-enolase [91].
Interestingly, additive interaction analyses showed that excessive salt intake among smokers more
than doubled the risk of developing HLA-DRB1 SE-positive RA, indicating an important additive
effect between these two RA risk factors [92].

Figure 5. HLA-DRB1 interactions leading to the development of RA. By contributing to autoimmunity,
the HLA-DRB1 SE alleles may interact with environmental factors such as smoking, Epstein–Barr virus
(EBV), Porphyromonas gingivalis infection, as well as other susceptibility loci.

9.3. Alcohol Consumption

Another recent observational study has indicated that alcohol consumption is dose dependently
associated with a reduced risk of both ACPA-positive and ACPA-negative RA. Increased susceptibility of
ACPA-positive RA has been shown to be a result of the interaction between risk factors, i.e., HLA-DRB1
SE and non-drinking [93].

9.4. Viral Infections

The Epstein–Barr virus (EBV) is another important environmental factor influencing the increased
risk of RA development [94]. The analysis of the structure of the virus revealed the presence of the
QKRAA sequence within the glycoprotein gp110. This sequence is also coded by the HLA-DRB1*0401
allele [95]. Moreover, the data from an in vitro study indicated that anti-CCP antibodies have an affinity
to a deiminated protein encoded by EBV [96]. The cross-reactive autoimmune response resulting
from molecular mimicry is a probable mechanism contributing to RA. Some studies have showed
a synergistic effect between HLA-DRB1*04 and parvovirus B19 infection, but its plausible mechanism
is unknown [97,98].

9.5. Periodontal Infections

In the context of RA, the role of infection by Porphyromonas gingivalis is also emphasized.
This pathogen has been identified as a keystone in periodontitis, which is also associated with HLA-DRB1
alleles. P. gingivalis is unique among other periodontal pathogen in carrying peptidylarginine deiminase



Cells 2020, 9, 1127 12 of 31

(PAD), an enzyme contributing to hypercitrullination of host proteins by deamination of C-terminal
arginine. Similar cellular hypercitrullination induces pore-forming toxin leukotoxin-A (LtxA) produced
by another periodontal pathogen, Aggregatibacter actinomycetemcomitans. Among HLA-DRB1
SE-positive individuals exposed on LtxA enhanced antibody response against citrullinated proteins
was observed. This indicates a possible putative link between forming citrullinated neoantigens and
driving autoimmunity in HLA-DRB1-SE—positive patients [99,100].

In animal models, HLA-DRB1 SE has an impact on the composition of the human gut microbiome.
Recently, an association between HLA-DRB1 SE alleles and dysbiosis has been confirmed in humans
but the mechanism is still unclear and there is a need for further studies [101].

10. Microchimerism and Non-Inherited Maternal Antigens

The vast majority of RA patients have at least one SE allele which may contribute to RA.
However, some patients do not have any SE alleles. There is a number of reports supporting that the
HLA-DRB1 gene affects the risk of developing RA not only as part of the patient’s genome, but also as
an environmental factor. The exposure of pregnant woman to a fetal genotype probably contributes
to the occurrence of RA in mothers, and this may partly explain the fact that RA is more frequent in
women [102].

A small number of non-host stem cells can persist in another individual, which is called
a phenomenon of microchimerism (Mc). The fetal and maternal cell exchange is common during
pregnancy and may result in both the engraftment of fetal cells into the maternal organism (fetal Mc) and
maternal cells into fetus (maternal Mc). Postnatal maternal Mc may also be the result of breastfeeding,
as breast milk is rich in both cellular and soluble maternal HLA antigens [103]. Microchimeric cells
persist in the host for many years [104]. In order to assess the incidence of Mc, the HLA-DRB1
gene was analyzed. The overall Mc frequency was 28.2%, fetal Mc was observed in 32.0% of the
mothers, whereas maternal Mc in 23.4% of the newborns [105]. Some reports have implicated Mc onto
the increased risk of developing autoimmune diseases, such as RA, type 1 diabetes, systemic lupus
erythematosus, and systemic sclerosis [55,106–109]. Fetal Mc is probably one of the key phenomena
affecting the development of RA in mothers without own SE alleles. In a study conducted by Rak
et al. higher frequency and levels of HLA-DRB1*04, and HLA-DRB1*01 Mc were found in women
with RA compared with healthy women. No differences were observed for other alleles, which are
unrelated to RA development [102]. Cruz et al. also analyzed the impact of the child’s genotype on
the mother’s risk of RA, by testing for alleles encoding SE and DERAA sequences, and Val 11, Lys 71,
Ala 74 amino acids.

A three-fold higher risk was found in mothers with at least one child with SE allele, regardless of
their own genotype. In addition, the risk was two-fold higher if the child had HLA-DRB1 risk alleles
other than SE. Interestingly, having a child with the DERAA sequence was paradoxically associated
with an increased risk of the disease in mothers. Another analysis conducted on a group of mothers
without any of the risk alleles was partially consistent. It confirmed the fact of an increased risk of
RA in women with a child with alleles coding for DERAA and Lys 71, but no statistically significant
association was found in women with a child with alleles coding for the SE sequence, as well as Val 11
and Ala 74 [41]. The results associating RA to the exposure to DERAA alleles during pregnancy are
consistent with the results of studies on the effect of DERAA sequence on T cell activation. Van Heemst
et al. demonstrated that the epitope containing DERAA, derived from citrullinated vinculin proteins
and from bacteria, is in vitro recognized by T cells. A similar activation of high affinity T cells probably
occurs in pregnant women. Such a phenomenon was not observed in women with the HLA-DRB1*13
allele. The epitope with the core sequence DERAA encoded by HLA-DRB1*13 most likely induces
an immunological self-tolerance in the mother, and thus protects against the development of RA [110].

Maternal Mc possibly affects the immune response of the child via the induction of fetal
regulatory T-cells (T-regs) which suppress fetal T-cell reactivity against non-inherited maternal antigens
(NIMA) [111]. The modulating impact on the immune response against NIMA has been described
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mainly in patients who underwent organ or bone marrow transplantation [112–114]. However,
the association between NIMA and increased risk of autoimmune diseases development in the child,
including rheumatoid arthritis and type 1 diabetes, has also been described [115–117]. Guthrie et al.
showed the association between HLA-DRB1*04 encoding NIMA and the increased risk of RA in women
with young-onset RA [55].

11. Significance of HLA-DRB1 Methylation Status

Epigenetic factors affect the function of a gene by regulating its expression. One of the most
important epigenetic processes is DNA methylation, which prevents the binding of transcription
factors to the gene promoter and, consequently, inhibits the transcription process. There is increasing
evidence that the lower methylation (hypomethylation) of HLA-DRB1 gene promoter, leading to
HLA-DRB1 overexpression, is associated with a higher risk of developing various autoimmune
diseases. The loss of DNA methylation has been shown to be involved in psoriasis and multiple
sclerosis pathogenesis [118,119]. Consistently, the rs9267649 protective variant was associated
with increased DNA methylation and lower HLA-DRB1 expression in multiple sclerosis [119].
Furthermore, hypomethylation of HLA-DRB1 loci also induces HLA-DRB1 expression in systemic
lupus erythematosus CD8+ T cells [120]. The HLA-DRB1 methylation status is likely to be relevant to
RA, also. However, to date, there is a lack of information on its pathogenetic and clinical significance.

12. Associations with Clinical Presentations

12.1. Mortality Risk

Some amino acid haplotypes in HLA-DRB1 can be useful for the stratification of patients in terms
of long-term outcomes, i.e., all-cause mortality, risk of radiographic damage, laboratory measures of
disease activity, and response to treatment. RA disease severity and overall prognosis have been also
shown to be gene-dose dependent, which means that patients with two copies of the susceptibility
alleles are at risk of worse prognosis compared to single-copy carriers [121,122]. The multivariable
analysis of 16 haplotypes (defined by Amino Acid Positions 11, 71, and 74) performed by Viatte et al.
identified increased all-cause mortality for carriers of the VKA haplotype (Val 11, Lys 71 and Ala 74)
and decreased for the SEA haplotype (Ser 11, Glu 71 and Ala 74). The strongest genetic predictor of
mortality is thought to be Valine at Position 11 [123]. Surprisingly, these findings were not replicated
in a recent study by Zhao et al., in which higher mortality was associated neither with the presence
of VKA, Val 11, nor SE, but only the SKA haplotype (Ser 11, Lys 71 Ala 74), but this may be at least
partially explained by the differences in patient populations [124]. The presence of HLA-DRB SE
alleles, in particular, the HLA–DRB1*01/*04 genotype and homozygosity for the HLA–DRB1*0401
alleles, also contribute to a higher risk of premature death, largely from cardiovascular disease [46].

12.2. Risk of Radiographic Progression

The exact mechanism leading to radiographic damage in RA is unclear, however, the link between
presence of anti-CCP antibodies, high levels of C-reactive protein and higher risk of radiographic
progression is well established [125]. HLA-DRB1 haplotypes influence CRP levels, which is mainly
mediated by anti-CCP status. The heritability of RA radiographic progression is moderate, with the
estimated heritability rate of 45–58% [126]. In previous studies, both the HLA-DRB1 SE, Val 11
and Leu 11 amino acids conferred a risk of a more destructive course of disease, which denotes
the tendency to develop erosions earlier and more rapidly, whereas DERAA motif was associated
with a lower risk of radiological progression [45,58,124]. Furthermore, Val 11 showed the strong
association with clinical (high swollen joint count) and laboratory (elevated sera inflammatory
levels) RA activity measures, in contrast to serine at this position which was associated with lower
inflammatory markers [127]. Nevertheless, in the recent meta-analysis of seven GWAS of 2775 cases
(both seropositive and seronegative) testing for associations with radiological damage, the only
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single-nucleotide polymorphism attaining genome-wide significance regardless of ethnicity was
rs112112734, which is in close proximity to HLA-DRB1 and with strong linkage disequilibrium with
the shared-epitope. The association was less significant when the researchers adjusted for the presence
of the rheumatoid factor. It is worthwhile to note, that for the purpose of this study, SE was represented
by rs660895, tagging the commonest SE-encoding HLA-DRB1*0401 allele, which was also significantly
associated with the trait and showed the same direction of effect in all but one GWAS [128].

12.3. Extra-Articular Manifestations

RA is a disease characterized not only by progressive joint damage, but also by potentially
life-threatening extra-articular manifestations. Although the precise pathogenetic mechanism leading to
them is unclear, a key role is widely assigned to HLA-DRB1 polymorphisms [129]. In a study by Turesson
et al., the genotype’s influence on the development of extra-articular manifestations, such as interstitial
lung disease, vasculitis, neuropathy, Felty’s syndrome (the triad of rheumatoid arthritis, splenomegaly
and neutropenia), polyserositis (pleuritis, pericarditis), scleritis and glomerulonephritis, was analyzed.
The presence of any of the individual HLA-DRB1 SE alleles was not significantly associated with
extra-articular RA overall. However, a statistically significant association of the DRB1*0401 allele and
the DRB1 *0401/0401 genotype with Felty’s syndrome was identified. “Double dose” HLA-DRB1*04
SE genotypes were found to modestly increase the risk of vasculitis (OR 2.44) and the overall risk of
extra-articular RA (OR 1.79) [130]. Gorman et al. showed a strong relationship of vasculitis and the
following three genotypes containing a “double dose” of SE alleles: DRB1*0401/0401, DRB1*0401/0404
and DRB1*0401/0101 [131]. Furthermore, in another study, in patients with the DRB1*04 allele
(in particular *0404), a disfunction of endothelium-dependent vasodilatation was observed [132].
These data indicate that the determination of HLA-DRB1 status may possibly be a prognostic factor for
the risk of cardiovascular events.

12.4. Pulmonary Fibrosis

Pulmonary fibrosis, which is a result of the rheumatoid arthritis-associated interstitial lung disease,
alongside cardiovascular disease, is the most important extra-articular feature increasing mortality in
RA [133]. In recent years, a rapid advance in RA treatment has been made, however, the benefits of
new drugs were not demonstrated in RA-associated lung disease, suggesting that the development
of pulmonary fibrosis is based on a different pathomechanism than the one responsible for joint
inflammation. The HLA-DRB1*07 allele may play a particularly important role in the development of
this extra-articular manifestation. In the study conducted in the United Kingdom, the HLA-DRB1*07
was found to be significantly more frequent in the group of patients with RA and secondary pulmonary
fibrosis than in the group of patients with RA alone [134]. Another article has emphasized the role of
the HLA-DRB1* 1502 allele among Asians, which may indicate a slightly different mechanism in this
population [135].

12.5. Follicular Lymphoma

The identification of certain amino acid haplotypes in the HLA-DRB1 region may be useful
in predicting the risk of follicular lymphoma (FL) development in RA patients. Patients with RA
are at a three- to five-fold increased risk of disease-related non-Hodgkin’s lymphoma (NHL) [136].
FL is an indolent subtype of NHL with an overlapping genetic background with RA, strongly
associated with HLA class II region variations. Baecklund et al. identified three of the most FL
amino acid-associated haplotypes in HLA-DRB1: Ser11-Ser13-Asp28-Tyr30; Leu11-Phe13-Glu28-Cys30;
and Pro11-Arg13-Asp28-Tyr30, corresponding with HLA-DRB1*03, *11, *13, *14; HLA-DRB1*01;
and HLA-DRB1*15, *16 allelic groups, respectively. SE alleles, linked with the Leu11-Phe13-Glu28-Cys30
haplotype, also increased the risk of FL occurrence. Additionally, a significant smoking and shared
epitope status interaction has been identified in FL patients [137].
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13. HLA-DRB 1 and Response to Treatment

13.1. Conventional Synthetic Disease-Modifying Anti-Rheumatic Drugs and Cyclosporine A

Joint destruction severity in RA depends not only on the influence of genetic and immunological
factors, but may be modulated using synthetic or biological disease-modifying antirheumatic
drugs. Testing for specific HLA-DRB1 amino acid positions may possibly enable better treatment
personalization and cost optimization in the future. The treatment of RA is based on conventional
synthetic disease-modifying anti-rheumatic drugs (csDMARDs), such as methotrexate, sulfasalazine,
leflunomide, and antimalarial drugs (chloroquine, hydroxychloroquine). Methotrexate is considered
the first-line therapy for most patients with RA with an estimated ACR 50 (at least a 50% improvement)
response rate around 41% [138]. In patients with a lack of methotrexate efficacy, several combination
therapies of csDMARDs may be used. Shared epitope alleles are associated not only with high RA
activity and less likely DMARD-free remission, but also as a predictor of an insufficient response to
csDMARDs, predominantly methotrexate [139–142]. The HLA-DRB1*04, especially the *0405 allele,
has proven to be of particular importance for this effect in both European and Japanese populations
(Figure 6) [143,144]. Data also show that in SE-positive patients, triple-DMARD therapy (consisting of
methotrexate, sulfasalazine and hydroxychloroquine) brings more benefit than if treated with
methotrexate alone (94% and 32% responders, respectively; p < 0.01), with no such difference in
SE-negative patients [15]. It has been also shown that aggressive immunosuppressive treatment in the
SE-positive group is more effective if applied early [14]. Apart from SE, in a single study concerning
the Pakistani population, HLA-DRB1*03 was found to be significantly associated with non-responders
to methotrexate, but later, meta-analysis failed to confirm this observation [145,146].

Figure 6. Potential HLA-DRB1 causal variants influencing specific treatment responses.
Classical synthetic disease-modifying antirheumatic drugs (csDMARDs) include methotrexate,
sulfasalazine, leflunomide, antimalarial drugs (chloroquine, hydroxychloroquine); CsA = cyclosporine;
ADA = adalimumab; ABA = abatacept.

Patients positive for HLA-DRB1*04 (especially with HLA-DRB1*0401/*0404 genotype) are also
shown to be more likely to be treated with cyclosporine A (CsA), an immunomodulatory agent
occasionally used in severe rheumatoid arthritis (Figure 6). This observation is consistent with the
result of another study, in which CsA was reported as much more effective in the HLA-DRB1*04-positive
as compared to *04-negative group (52.2% vs. 5.9%, respectively) [144,147].
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13.2. TNF- α Blockers

Biological drugs are cornerstones of contemporary RA treatment strategy and TNF- α inhibitors
(i.e., infliximab, adalimumab, etanercept, golimumab, certolizumab pegol) are the most commonly used.
Around 68% of patients treated with anti-TNF-α agents and methotrexate achieve at least moderate
response, but still, around one-third fail to respond [148]. The lack of efficacy can be divided into
primary failure, assessed directly, usually 12 weeks after the start of treatment, and secondary failure,
developing in initial responders during the course of therapy, which is commonly explained by the
formation of anti-drug antibodies. To date, many research efforts have been directed towards elucidating
the potential mechanisms leading to TNF-α resistance. Broadening the knowledge regarding this
phenomenon may provide a better selection of patients to treat with anti-TNF-α drugs. With regard to
the HLA-DRB1 gene, most studies indicate the relationship between the occurrence of alleles as risk
factors for the destructive course of RA and better response to TNF- α drugs. In a study analyzing
a primary response (assessed three to six months after treatment initiation) in sixteen HLA-DRB1
haplotypes defined by amino acids at Positions 11, 71, and 74, in both a infliximab-, etanercept-,
or adalimumab-treated cohort, the VKA haplotype was found to be a predictive genetic biomarker
for a better response [123]. Furthermore, a study by Criswell et al. showed that HLA-DRB1*0404
and *0101 alleles, both of which encode SE, are associated with favorable responses to etanercept at
12 months [149]. Later, this was also confirmed by Murdaca et al. [150] These findings are in line with
results of the OPTIMA study, in which the HLA-DRB1 SE copy number was significantly associated
with clinical efficacy in patients treated with adalimumab at week 26 [151]. An additional link between
HLA-DRB1 and TNF-α responsiveness was provided by Liu et al. In subjects treated with adalimumab,
the carriage of HLA-DRB1*03 allele conferred an increased risk of developing anti-drug antibodies,
whereas the carriage of the HLA-DRB1*01 was found to be protective [152]. The studies on associations
between HLA-DRB1 variations and response to treatment have been summarized in Table 3.

13.3. Abatacept

Biologic agents utilized in RA include not only TNF-α inhibitors, but also abatacept (a protein
fusing the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 [CTLA-4]).
The immunophenotyping of lymphocyte populations elucidated that the increased expression of the
chemokine receptor CXCR4 on memory CD4+ T cells significantly correlated with better response to
CTLA4-Ig treatment. Moreover, a higher frequency of memory CXCR4+CD4+ T cells was connected
to SE-positivity [53]. Consistent with these results, recent analysis of head-to-head data indicated that
patients positive for SE alleles benefit more from abatacept than adalimumab. Briefly, after 24 weeks of
abatacept exposure in SE-positive patients, the proportion of subjects who achieved ACR 20, 50 and
70 responses were significantly higher compared to the adalimumab group [153]. These results are in
line with the particular effectiveness of abatacept in the SE-positive group demonstrated in a previous
Japanese study (Figure 6) [154].
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Table 3. Studied concerning associations between HLA-DRB1 and treatment response.

Allele/Genotype Treatment Response f
Number of

Patients
(Male/Female)

Number of Patients
Positive for

Respective Variant

Number of Patients
Anti-CCP-Positive
at Diagnosis (%)

Additional
Demographic Data Reference

HLA-DRB1*0405 Inadequate response to
csDMARDs 0.0003 124 (29/95) 64 85.5

Japanese population;
mean disease

duration 4.2 months;
current/former
smokers 19.3%

[143]

HLA-DRB1*0401/*0404 favorable response to CsA 0.016 54 (12/42) 4 unknown
Spanish population,

Mean disease
duration 12.1 years

[147]

HLA-DRB1*0401
favorable primary
response to TNF-α

inhibitors
0.007 1846 (432/1414) 1188 83 Data not shown [123]

HLA-DRB1*03 high risk of secondary
failure to ADA 0.006 634 37 unknown Data not shown [152]

HLA-DRB1*01 low risk of secondary
failure to ADA 0.012 365 Data not shown unknown Data not shown [152]

HLA-DRB1*07 low risk of secondary
unresponsiveness to ADA 0.018 365 Data not shown unknown Data not shown [152]

HLA-DRB1 SE
higher efficacy response

with ABA vs ADA at
week 24

Estimate of difference
(95% CI) for DAS28

(CRP): 27.4
80 61 unknown Mean disease

duration 5.5 months [153]

HLA-DRB1 SE favorable response to
ABA at week 24 <0.0001 72 (49/23) 47 89

Japanese population;
mean disease

duration 10.4 years
[154]

csDMARDs = classical synthetic disease-modifying antirheumatic drugs; CsA = cyclosporine; ADA = adalimumab; ABA = abatacept.
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14. The Challenges Affecting the Implement HLA-DRB1 Genotyping in Clinical Practice

14.1. HLA Genotyping

The genotyping for several HLA alleles is already used in practice in the context of selecting
treatment. Testing for the HLA-B*58:01 allele prior to initiation of the allopurinol, due to the confirmed
association with the elevated risk for allopurinol hypersensitivity syndrome in Asian populations,
has been taken into consideration in the 2012 American College of Rheumatology Guidelines for
Management of Gout. Additionally, in the Clinical Pharmacogenetics Implementation Consortium
(CPIC) Guidelines, pre-emptive genotyping for HLA-B*57:01 in the case of abacavir and HLAB*15:02
in Asians, in the case of carbamazepine, is recommended [155–158].

To date, the genotyping of HLA has been applied neither in the diagnostics nor in the selection of
moment and type of RA treatment. This is linked to the multigenetic character of the disease, lack of
knowledge about the probable genetic linkages between causal alleles from different loci, as well as the
extensive polymorphism of the HLA region, in particular the HLA-DRB1 gene, implicating a number
of rare pathogenic alleles with variable penetrance.

In the majority of to-date research concerning the role of HLA-DRB1 risk alleles, HLA typing
at the amino-acid level (four-digit) was performed, with the use of polymerase chain reaction
(PCR) sequence-specific oligonucleotide (SSO) probing or Sanger sequencing–based typing (SBT).
Nevertheless, over the last few years, high-resolution HLA typing using next generation sequencing
(NGS) technology and whole genome/exome sequencing (WGS/WES) data, is becoming more and more
accessible, enabling highly accurate, allele-level HLA typing. The hyperpolimorphism and sequence
similarity in the HLA region might hinder WGS-based HLA genotyping result interpretation. In order
to mitigate this effect, NGS is accompanied with novel software tools, aligning sequence reads with
alleles registered in the database, e.g., HLA-VBSeq, PHLAT, HLAminer, HLAscan enable the accurate
causal inference of HLA genotypes [159,160].

14.2. Non-Mendelian Inheritance Pattern of RA–A Problem to Solve

In complex diseases like RA, the identification of rare functional variants with incomplete
penetrance may be an essential issue to find common risk haplotypes.

The advent of NGS technology and WGS/EGS has provided new possibilities for the identification
of new rare disease-causing genes and their variants, as well as determining whether the gene
is inherited dominantly or recessively, in pedigrees with a disease following typical Mendelian
inheritance. In the case of patients with highly penetrant forms of RA, WGS with variant calling enables
the identification of causal alleles, even by the analysis of single individuals. However, the integration
of WGS data with linkage analysis may further facilitate the mapping of genes responsible for RA
in this group [161,162]. In RA, a rare, non-synonymous variant of the PLB1 gene has already been
identified using this type of research [163]. Similarly, single rare risk variants were identified in other
autoimmune diseases, e.g., systemic lupus erythematosus (SLE) and psoriasis [164,165].

The majority of patients with RA show complex and non-Mendelian inheritance patterns,
even despite having familial clustering features. The identification of rare and low-penetrant
causal variants in outbred populations is problematic and may require large patient collections
to achieve sufficient statistical power [166]. However, in a cohort of unrelated individuals, WGS with
identity-by-descent (IBD) mapping, a statistical method based on an analysis between pairs of
unrelated individuals to measure the extent of haplotype sharing, may be useful to identify at-risk
haplotypes. The selection of patients with haplotypes expected to contain causal variants highly
improves the detection of variants with incomplete penetrance. Novel statistical methodologies,
including non-parametric linkage analysis methods, enable a further assessment of rare variants in
complex pedigrees, regardless of the mode of inheritance and estimated mutation penetrance [163].
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14.3. Complex Pharmacogenetics of Anti-TNF Treatment Response

The phenomenon of resistance to the drug is both a crucial clinical problem which may result in the
persistent high disease activity and the unnecessary risk of side-effects, as well as a pharmacoeconomic
issue, exposing the health system to potential avoidable losses. A multitude of modern methods
of RA treatment, which currently include drugs from the groups of anti-TNF-α and IL-6 blockers,
B cell-depleting anti-CD20 antibody, as well as Janus kinase (JAK) inhibitors, foster the need of
personalized therapy. The development of genotype-matched algorithms may be a key step in the
further improvement of the risk–benefit ratio and cost-effectiveness of RA treatment. Anti-TNF-α
inhibitors are the most commonly used biological drugs, hence the resistance to them has been the
most widely analyzed.

The majority of existing analyses regarding the effectiveness of the anti-TNF-α treatment in RA
have focused on the effects of a single SNP. Apart from the above-mentioned HLA-DRB1 variants,
the influence of multiple genes’ polymorphisms on the effectiveness of applying anti-TNF-α has
been described. They were within the following loci: TNF, TNFR1B (tumor necrosis factor receptor
2), interleukin-6 (IL-6), interleukin-10 (IL-10), TRAF1 (TNF Receptor Associated Factor 1), nuclear
factor κB (NF-κB), encoding TLR signaling pathways (TLR2, TLR4, TLR5, CHUK, MyD88, IRAK3),
Fc receptors for IgG immunoglobulins (FCGR2A, FCGR3A), NLRP3-inflammasome (NLRP3, CARD8),
PTPRC (encoding protein tyrosine phosphatase), PDE3A–SLCO1C1 (encoding intracellular cyclic
nucleotide signals regulator), CD84 (encoding B cell receptor), DHX32 (encoding putative RNA
helicase), RGS12 (encoding regulator of G protein signaling), MICA (MHC class I polypeptide-related
sequence A) [150,167–174]. Despite the fact that all anti TNF-α agents target the same cytokine, there are
differences in the effectiveness of particular drugs in the various group of patients. Examples of these
are the results of the several analyses of the role of TNF gene promotor polymorphism at Position –308,
which showed that the –308GG genotype responded better to etanercept therapy than the –308AA
genotype, which has not been observed among patients treated with infliximab. On the contrary,
the better response to infliximab was associated with polymorphism at Position 238 [150,168,175,176].
However, in the extensive study including a total of 930 patients, such observations were not
reproduced [122]. Interestingly, in a study by Padyukov et al., TNFA–308GG was not associated
with better response to etanercept, however, the combination of TNFA–308GG with IL-10-1082AA
genotypes showed better responsiveness [177].

In the light of above-mentioned facts, the observed associations between single SNPs and TNF-α
blocker responsiveness should be interpreted with caution, as the candidate genes may form unclear
clusters. Moreover, HLA-DRB1 susceptibility SNPs presumably constitute only a small part of the
overall contribution for anti-TNF-responsiveness. Only an analysis of all the haplotypes, also covering
candidate variants of HLA-DRB1, will enable us to use the knowledge about the role of various SNPs
in clinical practice, including the choice of treatment with anti-TNF-α.

15. The Bumpy Road to Diagnostic Utility of HLA-DRB1

As we mentioned before, the occurrence of the HLA-DRB1 SE allele may trigger the formation
of N-glycosylation sites in ACPA-IgG [30]. The presence of N-Linked Glycans in ACPA-IgG is
already considered a promising biomarker of pre-clinical RA, as they could be detected up to 15 years
before the first symptoms. Moreover, the intensity of ACPA-IgG N-glycosylation increases over time.
The identification of patients with SE alleles could justify screening for N-Linked Glycans in this group
to assess the risk of developing RA [30,31].

In a previous large Mendelian randomization study, which tested SNPs of various genes
associated with IgG N-glycosylation, the only one associated with RA was rs9296009. In addition,
modest association between rs9296009 and response to etanercept (measured by change in DAS28)
was found. This SNP is present in the PRRT1 locus, located on short arm of chromosome 6 at positions
6p21.1–21.3, in linkage disequilibrium with rs660895 and rs6910071, both tagging HLA-DRB1*0401.
The HLA-DRB1 variants were not included in the analysis [178]. In light of the above-mentioned
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facts, we conclude that HLA-DRB1 is the most likely to have a causal variant for extensive IgG
N-glycosylation, which indicates the need for further studies. WGS-based HLA-DRB1 genotyping in
a selected group of individuals with high ACPA-IgG variable domain (V-domain) glycosylation levels
would be helpful.

The pinpointing of the HLA-DRB1 allele, which is responsible for pathogenicity of ACPA, may be
a critical step to develop genetic test that can predict RA. It should be also noted that causal genes
are likely to be clustered, therefore identifying the common risk chromosome 6 haplotype could
be necessary. The potential genetic test could be useful, especially in an early phase of the disease
as a valuable tool to complement and increase sensitivity of the currently used 2010 ACR/EULAR
classification criteria, which score joint symptoms, serology (including RF and/or ACPA), symptom
duration (whether <six weeks or >six weeks) and acute-phase reactants (CRP and/or ESR).

16. Concluding Remarks

Increases in the knowledge regarding the genetic variants within the HLA-DRB1 gene that
significantly influence the risk of developing RA gives insight for a more comprehensive understanding
of the interaction between B and T cells, which induce the T-cell response. In recent years, it has
been clearly demonstrated that pathogenetic variations in HLA-DRB1 are not limited only to alleles
encoding amino acid Positions 70–74, constituting SE, since Positions 11 and 13 are no less important,
with this revelation aiding in the creation of new classification-ordering alleles. We know more and
more about the complex interaction between the HLA-DRB1 SE and environmental risk factors, such as
alcohol and smoking, and about the phenomenon of microchimerism, which can be the source of
HLA-DRB1 risk variants among women with RA. Moreover, a number of variants of the HLA-DRB1
gene have been identified, which may shape response rates to individual drugs. Recent reports indicate
that the preferential use of abatacept in patients with HLA-DRB1 SE may be an excellent example of
such individualized therapy.

However, at present, the HLA-DRB1 allele typing is not widely used for both clinical and public
health purposes. Nonetheless, the new era of NGS-based genome sequence analysis, accompanied
by linkage analyses and evolving bioinformatic tools, opens the new, fertile avenue to identify rare,
low-penetrant alleles, as well as common risk haplotypes. The HLA-DRB1 gene, which exerts the
largest genetic contribution to RA in humans, will undoubtedly be crucial for the development of
genotype-matched diagnostic and treatment protocols in RA patients.
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