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Camptothecin (CPT), a natural product and its synthetic derivatives exert potent anticancer activity by selectively
targeting DNA Topoisomerase I (Top1) enzyme. CPT and its clinically approved derivatives are used as Top1 poi-
sons for cancer therapy suffer frommany limitations related to stability and toxicity. In order to envisage struc-
turally diverse novel chemical entity as Top1 poison with better efficacy, Ligand-based-pharmacophore model
was developed using 3D QSAR pharmacophore generation (HypoGen algorithm) methodology in Discovery stu-
dio 4.1 clients. The chemical features of 29 CPT derivatives were taken as the training set. The selected
pharmacophore model Hypo1 was further validated by 33 test set molecules and used as a query model for fur-
ther screening of 1,087,724 drug-likemolecules from ZINC databases. Thesemolecules were subjected to several
assessments such as Lipinski rule of 5, SMART filtration and activity filtration. The molecule obtained after filtra-
tion was further scrutinized by molecular docking analysis on the active site of Top1 crystal structure (PDB ID:
1T8I). Six potential inhibitory molecules have been selected by analyzing the binding interaction and Ligand-
Pharmacophore mapping with the validated pharmacophore model. Toxicity assessment TOPKAT program
provided three potential inhibitory ‘hit molecules’ ZINC68997780, ZINC15018994 and ZINC38550809. MD
simulation of these three molecules proved that the ligand binding into the protein-DNA cleavage complex is
stable and the protein-ligands conformation remains unchanged. These three hit molecules can be utilized for
designing future class of potential topoisomerase I inhibitor.
© 2019 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Topoisomerases are ubiquitous enzymes essential for resolving the
topological problems associated with DNA supercoiling during replica-
tion and transcription which can be one of the important targets for an-
ticancer and antibacterial drugs development [1,2]. To reduce the
torsional stress of the supercoiled DNA, human Topoisomerase I
(Top1) cleaves the phosphodiester bond on a single DNA strand by nu-
cleophilic attack on catalytic tyrosine 723 and form a ‘cleavage complex’
in which 3′ end of the broken DNA strand is covalently linked to the en-
zyme [3–5]. Top1 is one of the important targets for cancer chemother-
apy as it relives the DNA torsional strain and stops the cell division
process. As in post mitotic cells, gene transcription and DNA replication
and repairing process are regulated predominantly by Top1 enzyme. In-
hibition of Top1 can be a choice for controlling the nuclear process in
cancer cell growth regulation [6–8]. The religation process of DNA by
Research Network of Computational a
Top1 occurs much faster than the rate of DNA cleavage and the process
is assured by the total concentration of the covalent 3′-phosphotyrosyl
Top1-DNA duplex complex [2]. There are two types of Top1 inhibitors;
suppressor and poison. Suppressor inhibits topoisomerase by
interacting with the protein and not allowing it to function properly.
Whereas Top1 poisons stabilize the DNA-Top1 ‘cleavable complex’
and prevent the religation of DNA strand and make a ternary complex
of DNA-Top1-poison, resulting in the apoptosis of the cancer cell.
Camptothecin (CPT) is a cytotoxic quinoline alkaloid that was isolated
from stem and bark of Camptothecin acuminate [4],which selectively tar-
gets topoisomerase IB by binding and stabilizing the cleavage complex
of the top1-DNA reaction. Various analog of CPT, such as Topotecan
and Irinotecan [Fig. 1] are clinically used as Top1 poison for the cancer
therapy [10,11]. CPT and its analogs suffer from certain limitations
such as instability of the hydroxy lactone ring [2], dose-limiting side ef-
fect, multidrug resistance, solubility and severe side effects [6]. Thus,
there is a scope for the discovery of structurally novel Top1 poison
with improved efficacy.
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Fig. 1. Camptothecin and its clinically approved analogs.
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The main objective of the present study was to discover newmolec-
ular entity that acts as a Top1 poison with improved efficacy. We initi-
ated our study by pharmacophore modeling and virtual screening
technique. A study byMalgorzata et al. [7] revealed twopharmacophore
structures by both structure-based and ligand-based approach, where
27 CPT derivatives had been considered in training set. The pharma-
cophore model was not validated by any test set molecules. National
Cancer Institute (NCI) database containing only 265,242 numbers of
molecules was used for virtual screening on Discovery Studio with
only Lipinski's Rules of 5 as filtration criteria. It would have been judi-
cious to use more filters as well as determine ‘hit molecules’ from the
database containing a molecular library with diverse biological activity
to identify novel chemotypes that can inhibit Top1. In the present man-
uscript, we have initiated the study with structurally diverse molecules
from the ZINC database with various biological activities. Also, we've
subjected the molecular library through a rigorous set of filters.

In a separate study by Sanal et al. [8] pharmacophore had been built
up by ‘Common Features Pharmacophore’ techniqueswhere the common
features are present only in the active compounds. The limited number
of training set molecules mostly active and moderately active com-
pounds are taken into consideration. The technique has its own limita-
tions with the uptake of a limited number of molecules apart from the
biological IC50 values which should be validated under same assay con-
dition. In the present manuscript, we have developed our
pharmacophore by utilizing 3D-QSAR Pharmacophore (HypoGen algo-
rithm) technique by summarizing the structural features of total 62
CPT derivatives with diverse molecular structural patterns with a basic
CPT scaffold. The 62 CPT derivatives are designed in seven different clas-
ses of molecules like 7-Aryliminomethyl CPT derivatives, 7-Cycloalkyl
CPT derivatives, 7-Alkynyl CPT derivatives,7-Ethyl-9-Alkyl CPT deriva-
tives; Nitrogen based CPT derivatives, 7-alkenyl CPT derivatives and
phosphodiester and phosphotriester derivatives. The biological activi-
ties of the input 62 ligands were screened in a single cancer cell line
(A549). The correlation between estimated activity and experimental
activity was 0.917678 for the training set and for test set it was
0.874718. The selected pharmacophore (Hypo1) had been taken as a
3D Query for the subsequent virtual screening against drug-like mole-
cules from the ZINC database containing 1,087,724 molecules. For sub-
sequent filtration, three conditions had been employed; a) Lipinski's
Rules of five where druggability of the compounds and ADME was set
as a primary filtration criteria of the screened hit molecules, b) SMART
filtrationwas appliedwhere unrequired functional groupswere filtered
out and c) Next, filtration criteria was restricted to estimated activities
not be N1.0 μM. The study puts forth six prospective molecules through
extensive molecular docking analysis and meticulous visual inspection
of the receptor protein (PDB ID: 1T8I) co-crystalized with CPT. Toxicity
assessment by TOPKAT program provided three potential ‘hit
molecules’. Through molecular dynamics (MD) simulation, we vali-
dated the stability of the ligand binding mode and the protein-ligands
conformation. These three hit molecules ZINC68997780,
ZINC15018994 and ZINC38550809 can be utilized for designing future
class of potential topoisomerase I inhibitor.

2. Materials and Method

Computational drug design involves structure-based drug design
and ligand-based drugs design. One of the important ligand-based
pharmacophore modeling approaches is three dimensional (3D)
QSAR strategy [15,16]. The availability of the vast molecular library
and their corresponding IC50 values in various cancer cell lines
have enabled us to focus on 3D-QSAR based ligand pharmacophore
modeling. The 3D-QSAR strategy is different from the Common Fea-
ture Pharmacophore approach as there is no limitation on the num-
ber of training set compounds and strategy does not require
experimental biological activity values in similar bioassay condition.
Based on the previously published literature, libraries of 62 mole-
cules with Top1 inhibitory activity were extracted [17–22] for the
generation of primary data-set of the 3D QSAR pharmacophore
modeling study. Compounds were divided into test set and training
set based on distribution of biological activities and chemical fea-
tures. In order to achieve a significant pharmacophore model, the
following criteria was maintained during the selection of test set
and training set compounds. 1) All 62 compounds having a good
range of experimental activities against A549 cancer cell lines should
bind on the active site of Top1 protein-DNA cleavage complex. 2) The
widely populated dataset was classified into four categories accord-
ing to biological activity data as most active, active, moderately ac-
tive and inactive. These molecules were distributed in the training
set and test set. The IC50 values restraint for the most active set are
b0.1 μM, active sets consist of compounds with IC50 values ranging
between 0.1 μM to 1.0 μM, moderately active set of molecules have
IC50 values ranges between 1.0 μM to 10.0 μM and rest of the com-
pounds were placed in inactive category [11]. 3) A maximum
number of most active and active compounds along with few mod-
erately active and inactive compounds were taken into the training
set compounds. The rest of the molecules were taken into test set
for validation. 4) All the biologically relevant data were obtained
from a homogeneous procedure against a single cancer cell line.
5) Experimental inhibitory activities of all 62 compounds mentioned
in the data sets were collected from the same biological assays and
biological assessment [12,13]. 4) Chemical substitution pattern on
A, B and E ring of camptothecin derivatives were also considered
for composition of the two sets. To ensure the statistical relevance,
a training set of 29 diverse compounds [17–22] (Fig. 2) with the ex-
perimental IC50 values between 0.003 μM to 11.4 μM were selected
from the above mentioned categories. For the validation of the gen-
erated pharmacophore, the rest 33 compounds were clustered as a
test set [17,18,20–22] (Supplementary Fig. S2) [14].

2.1. Compound Preparations

The two dimensional (2D) structures of the selected molecular
datasets were drawn using ChemDraw Ultra and sequentially con-
verted into their three dimensional (3D) form by Accelrys Discovery
Studio 4.1 (DS). Any further structural errors had been minimized by
incorporating them in Marvin view application. Using the Clean-2D
and Clean-3D approaches we recalculated the co-ordinates of the
atom and bond order to the most appropriate location and saved in
Sybyl Mol2 format. Hydrogen was added to the training and test
set molecules and optimized using the CHARMM force fields. Every
compound was further minimized using the smart minimizer exe-
cuting 2000 steps of steepest descent along with conjugate gradient
algorithmswhichmaintained the RMS gradient of 0.001 kcal mol−1.



Fig. 2. Training set molecules along with their corresponding IC50values.
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Fig. 2 (continued).
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Table 1
Experimental and estimated activity of individual training set compounds.

Comp
No.

IC50 value (μM) Errorsa Fit
valueb

Activity scalec

Experimental Estimated Experimental Estimated

1 0.05 0.042 −1.2 6.68 ++++ ++++
2 0.066 0.042 −1.6 6.68 ++++ ++++
3 0.024 0.042 +1.7 6.68 ++++ ++++
4 0.36 0.042 −8.7 6.68 +++ ++++
5 0.11 0.043 −2.6 6.67 +++ ++++
6 0.003 0.042 +14 6.68 ++++ ++++
7 0.04 0.043 +1.1 6.67 ++++ ++++
8 0.011 0.042 +3.8 6.68 ++++ ++++
9 0.031 0.042 +1.3 6.68 ++++ ++++
10 0.092 0.066 −1.4 6.48 ++++ ++++
11 0.055 0.14 +2.6 6.14 ++++ +++
12 0.088 0.16 +1.9 6.09 ++++ +++
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A diverse set of maximum 255 different conformers was developed
for each compound within an energy range of 20 kcal mol−1
above the global energy minimum. These conformers were utilized
for pharmacophore hypothesis generation, fitting of the compound
into the model hypothesis and for predicting the activity of the
newly found compounds [25–27].

2.2. Generation of Pharmacophore Models

Two types of methodologies are reported in the literature for the
generation of ligand-based pharmacophore model [16]. Common
Features Pharmacophore Modeling [7] utilizes the common chem-
ical features present on the most active compounds and 3D QSAR
pharmacophore Modeling [17] is based on the chemical features pres-
ent on the most active and inactive compounds along with their corre-
sponding biological activity. In the present manuscript, we have
performed 3D QSAR pharmacophore methodologies to generate the
pharmacophore models which can be correlated with the specific
chemical features of the molecules significant for the necessary biolog-
ical activity. Feature Mapping protocol in DS was employed for seeking
the different chemical features present on the training set molecules.
The analysis of the training set compounds by Create 3D-Fingerprints
protocol in DS revealed that Hydrogen Bond Acceptor (HBA), Hydrogen
Bond Donor (HBD), Positive Ionizable (PI), Negative Ionizable (NI), Hy-
drophobic (HY) and Ring Aromaticity (RA) features admirably mapped
on the structural/chemical features of all training set molecules [29,30].
Based on the results, NIwas found to be significantly lessmapped on the
selected structures when compared to the other features. Thus, HBA,
HBD, HY, PI and RA were selected for the 3D-QSAR Pharmacophore Gen-
eration protocol. The IC50 values of individual training set compounds
were selected as an active property and energy threshold was main-
tained at 20 kcal mol−1 during the pharmacophore generation. Mini-
mum Interfeature Distance was changed from 2.97 to 2.0 [19] and
maximum excluded volume was set to zero. The uncertainty value
was set at two, which is defined by DS as a ratio of the reported value
to the minimum and maximum values [11]. The uncertainty value im-
plies that the model can accommodate variation in experimental IC50

values and the predicted IC50 values up to two times. The developed
pharmacophore model was selected from the 10 different hypotheses
based on the highest correlation coefficient, lowest total cost and root
mean square deviation (RMSD).

2.3. Pharmacophore Validation

Cost analysis, Test set analysis, Fischer's randomization test are the
three methods utilized for validation of the resultant pharmacophore.
Fig. 3. Energy minimization curve of protein after 0.1 ns steps run.
The quality of the model is described in terms of fixed cost, total cost
and null cost under cost analysis methodological aspect. Null cost and
fixed cost designated in bit units are considered as a key parameter for
the quality of the pharmacophore model. Null cost signifies the maxi-
mum cost value of the training set compounds. The Fixed cost is also
been referred to as the ideal model cost. For developing a robust
pharmacophore model, total cost should be close to the fixed cost and
more distant from a null cost. The best model was assigned in light of
the distinction between two cost values; such as null cost and total
cost. The cost distinction N60 bits infers significant correlation. The
model should fall in 70–90% prediction range if their cost difference is
under 40 to 60 regions and ultimately if the cost difference is b40 bits
then it will be problematic to evaluate the model [9].

Fischer's randomization technique acts as a fundamental role in
making a correlation between the structural and biological activity in
training set compounds. The validation of the selected pharmacophore
hypothesis in this randomization technique is carried out by selecting
95% confidence levels and it produced 19 random spreadsheets
[15,32]. The validation was done by randomizing the training set com-
pounds. For effective pharmacophore generation, the randomized data
set should produce comparable or better cost values, better RMSD and
significant correlations [15]. The third approach applied to validate the
pharmacophore model is the test set analysis method. In this method,
it effectively anticipates the activity of the test set molecules having a
decent correlation coefficient with cross-validating 95% confidence
level.We used the Ligand PharmacophoreMapping protocolwithflexible
search alternative in DS for overlapping the validated pharmacophore
with the active molecules [20] and also predicted the estimated activity
(Table 3) that should be as close to the experimental biological acti-
vity of the molecules. The validated pharmacophore model could be
13 0.255 0.14 −1.8 6.15 +++ +++
14 3.25 1.4 −2.3 5.15 ++ ++
15 2.62 2.3 −1.1 4.94 ++ ++
16 0.431 2.3 +5.3 4.94 +++ ++
17 4.38 2.3 −1.9 4.94 ++ ++
18 3.15 4.2 +1.3 4.67 ++ ++
19 11.40 4.9 −2.3 4.61 + ++
20 11.39 7.6 −1.5 4.42 + ++
21 2.84 4.9 +1.7 4.61 ++ ++
22 2.30 4.9 +2.1 4.61 ++ ++
23 4.7 2.9 −1.6 4.84 ++ ++
24 2.9 2.9 −1 4.84 ++ ++
25 4.6 2.9 −1.6 4.84 ++ ++
26 1.1 0.042 −1.9 6.68 ++ ++++
27 0.8 0.42 −1.9 5.68 +++ +++
CPT 0.047 0.043 −1.1 6.67 ++++ ++++
TPT 0.036 0.042 +1.2 6.68 ++++ ++++

a Error factor calculated as the ratio of the measured activity to the estimated activity;
positive value indicates that the estimated IC50 is higher than the experimental IC50; a neg-
ative value indicates that the estimated IC50 is lower than the experimental IC50 value.

b Fit value indicates how well the features in the pharmacophore map with the chem-
ical features present in the compound.

c Activity scale:++++, IC50 ≤ 0.1 μM (most active); +++,IC50 0.1 to 1.0 μM (active);
++, IC50 1.0 to 10.0 μM (moderately active); +, IC50 N 10.0 μM (inactive).



Table 2
Statistical results of the top 10 pharmacophore hypotheses generated by HypoGenalgorithm.

Hypo. no. Total cost Cost difference RMSD Correlation Max. Fit Features

1 127.392 112.58 1.30358 0.917678 7.12926 HBA, HBA, RA
2 127.773 112.20 1.3012 0.91812 7.43089 HBA, HBA, RA
3 131.285 108.68 1.42158 0.901054 8.13593 HBA, HBA, HYD, HYD
4 131.876 108.09 1.43586 0.898944 8.13208 HBA, HYD, HYD, RA
5 132.748 107.22 1.44849 0.897126 9.01033 HBA, HBA, HYD, HYD
6 135.327 104.64 1.50916 0.887736 7.02354 HBA, HYD, HYD, RA
7 135.394 104.57 1.49535 0.889964 6.29567 HBA, HBA, HYD, RA
8 135.4 104.57 1.51813 0.886273 5.89767 HBA, HYD, RA
9 136.05 103.92 1.53266 0.883943 5.84977 HBA, HYD, RA
10 136.137 103.83 1.52657 0.885001 6.78031 HBA, HYD, RA

Null cost = 239.969, *Fixed cost = 101.975, *Best record in pass = 5, *configuration cost = 16.6621. (RA- Ring aromatic, HBA-Hydrogen bond acceptor, HYD- Hydrophobic).

Fig. 4. The best HypoGen Pharmacophore model, Hypo1. (A) Chemical features present in Hypo 1 (B) 3D spatial arrangement and the distance constraints between the chemical features.
Green colour represents HBA, Brown colour represents Ring aromatic.
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used for searching structurally diverse molecules from themolecular li-
brary database.

2.4. Database Screening

Structurally novel and potential lead molecules identification from
the diverse chemical database could be possible by virtual scree-
ning based on the generated pharmacophore [10]. We initiated the
identification of novel scaffolds as topoisomerase I inhibitor by the
Fig. 5. Pharmacophore mapping of the most active, less active compounds in the training set. (
active compound 19.
pharmacophore-based virtual screening. Validated Pharmacophore
Hypo1wasutilized as a 3Dquery for screening ZincDatabase containing
1,087,724 molecules [18]. We assumed that the possible ‘hit molecules’
should fit with all the possible features of query pharmacophore. To re-
trieve prospective lead molecules from the database, a Search 3D data-
base protocol had been followed along with best/flexible search
option. The identified hit compounds were further subjected to various
constraints such as Lipinski's rule of five, which consists of molecules
with molecular weight b500D, HBD b5, HBA b10 and an octanol/water
A) Hypo 1 mapped on to the most active compound 4, (B) Hypo 1 mapped on to the least



Fig. 6. Correlation graph between experimental and estimated activities in logarithmic
scale for training and test set compounds based on Hypo1.
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partition coefficient (LogP) value b5 [19]. Thereafter, SMART protocol
had been applied for filtering out the molecules with unwanted func-
tional groups. Finally, the filtered molecules were screened by esti-
mated activity b1.0 μM to achieve the possible set of potent molecules.
A

Fig. 7. Pharmacophore mapping of the most active, less active and inactive compounds in the
(B) Hypo 1 mapped on to the least active compound 31. The features are colour-coded with G

Fig. 8. (A) & (B): The difference in correlation and total cost values of hyp
2.5. Molecular Docking Study

Topoisomerase I (PDB ID: 1T8I) carries a narrow rectangular cavity
as an active site where the standard molecule CPT was pre-bonded as
a co-crystal in a planar geometry. Our objectivewas to evaluatewhether
thefiltered hit molecules bind in the active site in a similarmannerwith
requisite geometry as observed with CPT. The active site on 1T8I con-
sists of Arg364, Asp533 amino acids [23] and nucleotide DC112,
DA113, DT10 [20] as important residues. The filtered molecules were
subjected to docking in that active site by LibDock protocol on DS 4.1.
Protein preparation protocol had been followed for preparing the protein
and the filtered molecules were docked into the active sites on the pre-
pared protein. During protein preparation, the water molecules were
removed along with the addition of hydrogen atoms by satisfying
MMFF force fields [22]. The active sites were calculated by Ligplot anal-
ysis program. The coordinates of the active siteswere: 17.2665,−0.172,
and 26.737. The active site was defined as a sphere of 9.5 Å from the
geometric centroid of the co-crystallized ligand. Libdock protocols gen-
erated 10 different poses for each filtered molecules by maintaining
the docking tolerance at 0.25. During docking CAESAR conformational
method had been followed by maintaining a maximum 255 conforma-
tions of each compound within an energy range of 20 kcal mol−1 above
the global energy minimum threshold (Supplementary Table S2). On
each docking 100 hotspots were generated. During the analysis, scoring
function and binding interaction for every single conformational pose
were chosen as a selection criterion [21]. The molecules which show
B

test set along with their fit score. (A) Hypo 1 mapped on to the most active compound 6
reen, hydrogen bond acceptor; Brown Ring aromatic features.

otheses between a Hypo1 spreadsheet and 19 random spreadsheets.



Fig. 9. Schematic representation of the virtual screening process implemented in the identification of Top1 inhibitors.
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interactions with the important active site residues with requisite ge-
ometry along with high docking score were selected as more desirable
hit molecules (Table 4 and Table 5). The following formula [11] was
used to calculate the docking score:

Docking Score (force fields) = − ((receptor interaction energy /
ligand) + ligand internal energy).
2.6. ADMET and Toxicity Prediction

The prediction of drug toxicity andADMEproperties aremajor filtra-
tion criterion for the drug design process. As a result adsorption, distri-
bution, metabolism, excretion and toxicity (ADMET)which is related to
pharmacokinetics are important parameters considered during thedrug
development process [26–28]. Variousmathematical predictive ADMET
pharmacokinetic parameters such as blood-brain-barrier penetration,
human intestinal absorption, aqueous solubility, cytochrome P450
2D6 inhibition, hepatotoxicity, plasma protein binding were calculated
quantitatively for the selected six ligands using ADMETmodules in Dis-
covery Studio v4.1 client. Thereafter, the selected molecules were sub-
jected to various toxicity screening models such as carcinogenicity,
mutagenicity, skin irritancy, biodegradability using DS_TOPKATmodule
of Discovery Studio 4.1 client. Finally, based on toxicity assessment we
have selected three lead molecules ZINC68997780, ZINC38550809 and
ZINC15018994 for MD simulation studies.
2.7. Molecular Dynamics Study

To validate the structural stability and conformational flexibility of
the binding of the lead molecules into the protein-DNA cleavage
complex, protein-ligand complex molecular dynamics was performed
as described by Musyoka et al. [29]. GROMACS AMBER99SB force
field had been selected for parameterization of protein-nucleic acid
dimer complex. Since DNA was not in the intact form in the duplex
structure, performing an all atoms protein-DNA-Ligand ternary com-
plex simulation was challenging. The 5 prime end of the broken DNA
has a nucleotide DT10 that does not contain one oxygen atom (O3’)
attached to tetrahydrofuran which was refined by adding the oxygen
atom at 110o placements. Another modification was performed on
TGP residue at 3 prime end of the broken helix as it is not recognized
by AMBER99SB force field. TGP is a modified form of the guanine
residue where O5’ atom is replaced with S5’. After proper modifica-
tion of atom, TGP is renamed to guanine. AnteChamber Python
Parser interface (ACPYPE) [30] was applied to parameterize the re-
quired topologies, atomic types and charges for the small molecules.
The output files of the ligand and the generated GROMACS compati-
ble files for the proteins were then merged using an ad hoc Python
script and taken as a protein-DNA-ligand complex. The individual
protein-DNA duplex system and protein-DNA-ligand complex were
taken as an initial structure for all atoms MD simulation. Extended
Simple Point Charge (SPC/E) water model was utilized to solvate



Fig. 10. Ligplot analysis result of 1T8I.
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the system. The whole system had been placed at the center of a
cubic box filled with water molecules followed by further charge sta-
bilization using Cl− and Na+. The whole systems were further neu-
tralized by adding nineteen Na+ atoms. Energy minimization was
carried out for 0.1 ns (ns) using a maximum force ≥10.0 kJ/mol to at-
tain the stable state of the system [31]. Energy minimization graph
(Fig. 3) certified that the resultant structure was solvent saturated
and geometrically stabilized.

Thereafter, the whole systems were equilibrated in two phases
under isothermal and isochoric ensemble (NVT) at a constant 300 K
temperature and under NPT ensemble to maintain the stabilized pres-
sure (0 bar) inside the system in a sequential manner. Both the NVT
and NPT systems would follow 50,000 steps that were corresponding
to 0.1 ns. The well equilibrated systemwith constant pressure and tem-
perature was released for position restrained and involved for 10 ns
production run with integrator time steps of 0.002 ps utilizing leap-
frog algorithms. All hydrogen bonds were constrained during equilibra-
tion by applying LINC algorithms [32] whereas, Particle Mesh Ewald
module had been applied for long range ionic interaction [33] with
Fig. 11. (A) Binding interaction of the standard molecule campotethecin on 1T8I, where bl
hydrophobic interaction. (B) Molecular overlay of experimental binding pose of CPT and predi
Fourier grid spacing of 0.16 Å. The entire trajectories were saved for
analysis at a frequency of 0.002 ps during the simulation run.

3. Result and Discussion

3.1. Pharmacophore Model Generation

Structurally diverse 29 training set molecules containing active and
moderately active compounds with their corresponding IC50 values
ranging from 0.003 μM to 11.4 μM were selected to generate a
pharmacophore model (Table 1). Features Mapping protocol was per-
formed on given training set compoundswhere the features like hydro-
gen bond acceptor (HBA), hydrogen bond donor (HBD), ring aromatic
(RA), hydrophobic (HYD), positive ionizable (PI), negative ionizable
(NI) were well distributed on the selected molecules. For pharma-
cophore model generation, we used the HypoGen algorithm 3D-QSAR
Pharmacophore protocol. The statistical parameters such as total cost,
cost differences, RMSD and correlation coefficient of generated
pharmacophore were enlisted in Table 2. A set of 10 pharmacophore
ue dotted line indicates the hydrogen bond and magenta dotted line indicates the π-π
cted binding pose of CPT after docking.
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C D
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Fig. 12. Binding interaction of the hit compounds (A) ZINC68997780, (B) ZINC38550809, (C) ZINC38550756, (D) ZINC15018994, (E) ZINC08832860, (F) ZINC43932053 in the active site of
human Top1 protein. Blue dotted line indicates the hydrogen bond and magenta dotted line indicates the π-π hydrophobic interaction.
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models was generated which contains two HBA and one RA features.
The generated pharmacophore models have total cost range from
127.392 to 136.137, null cost 239.969 and fixed cost 101.975 bits. The
cost difference was calculated by the difference between the null cost
and total cost. For significant pharmacophore model, it is necessary
that the cost difference must be greater and should be in between
total cost and fixed cost value [9,12,13,34]. Among the 10 generated
pharmacophore models, the first model (Hypo1) scored the highest
cost difference 112.58 bits and total cost value is much closer to fixed
cost when compared to other models. The highest cost difference
value of Hypo1 signifies that it can predict the experimental IC50 value
of training set compounds with N90% statistical significance. Other pa-
rameters that are considered to evaluate the generated pharmacophore
models are correlation coefficient and RMSD value. The Hypo1 has the
highest correlation coefficient value 0.917678 and lowest RMS devia-
tion of 1.30358. Large correlation coefficient and low RMSD suggest
that Hypo1 has a better ability to predict the experimental activity of
training set compounds. All the molecules along with their IC50 values
were selected from previously published research articles were di-
vided into four groups of magnitude according to their experimental
activity value (IC50). Four groups of magnitude are categorized in
most active (≤ 0.1 μM, ++++), active (0.1 to 1.0 μm, +++), mod-
erately active (1.0 to 10.0 μm, ++) and inactive (N10.0 μm, +). The
predictive ability of training set compounds were shown in Table 1.
In training set compound 4 (Fig. 5A), compound 5 were estimated
as most active molecules as they are nicely mapped with all the essen-
tial features of the pharmacophore, whereas in case with other mole-
cules some of the essential features are not mapped. Mapping of
Hypo1 with least active molecules (compound 19) is shown in Fig.
5B. All the 10 theoretical pharmacophores were subjected to further
evaluation for their capability to predict the activity of the training
set molecules. Hypo1 has been selected as a signified pharmacophore
model (Fig. 4) over all others pharmacophores since it has the lowest
total score, highest cost difference, low RMSD value and high correla-
tion coefficient. The selected hypo1 consists of two HBA and one RA
features.



Fig. 13. Overlay of lead molecules on the pharmacophore Hypo1. (A) ZINC68997780, (B) ZINC38550809, (C) ZINC38550756, (D) ZINC15018994, (E) ZINC08832860, (F) ZINC43932053.
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3.2. Pharmacophore Validation

The best pharmacophore model (Hypo1) has been validated by
three distinct methods; a) Cost analysis, b) Test set analysis and
c) Fischer's randomization test.
3.2.1. The Cost Analysis Method
The three cost values such as total cost, fixed cost, and null cost were

produced by the HypoGen algorithm in DS. The hypo1 model has the
O

Fig. 14. 2D structures of identified lead m
cost difference 112.58; correlation coefficient value 0.917678 and the
RMSD value 1.30358 bits (Table 2).

3.2.2. Test Set Analysis
The significance of the selected pharmacophore model depends on

its ability to predict the biological activity of test set compounds along
with the training set molecules. Test set containing 33 structurally di-
versemolecules withmost active, active, moderately active and inactive
molecules. To verify the predictability power of pharmacophore model
we used the Ligand Pharmacophore Mapping protocol in DS to map the
olecules with their docking score.
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test set molecules. Estimated activities were calculated for individual
test set compounds in order to correlate them with their experimental
activities by using simple regression analysis.

The obtained correlation coefficient value for test set compounds
is 0.874718 and for training set compounds is 0.917678 (Fig. 6). Test
set of 33 compounds was mapped properly with the generated
pharmacophore. Out of the 33 compounds, the best active com-
pound 6 is nicely mapped on the three essential features. Notably,
the very least active molecule 31 did not map with the two essential
HBA features, which signifies the robustness of the pharmacophore
model (Fig. 7).

3.2.3. Fischer Randomization Test
The experimental activity of training set compounds was scrambled

randomly and used in pharmacophore generation with 95% confidence
level put forth 19 random spreadsheets, whichwere comparedwith the
Fig. 16. Root mean square fluctuations of protein
original generated Pharmacophore (Hypo1). We found that none of the
random generated pharmacophores scored the good statistical value
than Hypo1 [35]. The difference in correlations and costs values be-
tween the HypoGen and Fischer randomizations was shown in Fig. 8.
The three validation strategies employed exhibited that Hypo1 model
has great certainty and can be chosen for further screening of chemical
library with diverse structural entity as Top1 poison.

3.3. Database Screening

The validated Hypo1 model was utilized as a 3D query for virtual
screening of ZINC database with diverse drug-like chemical structure.
ZINC database containing 1,087,724 molecules was selected with BEST
search option to identify the potential hit molecules. To our satisfaction,
723,945 molecules were nicely mapped on all features present in the
Hypo1 model. These molecules were additionally scrutinized using
and selected leads for 10 ns production run.



Fig. 17. Root mean square deviations of protein and selected leads for 10 ns production run.
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Lipinski's rules of five which provided 705,531 molecules. SMARTS fil-
tration reduced the number of molecules to 702,411. Non-essentials
fragments like peroxide, sulfonyl halide, sulfonate ester, cyanide etc.
which may lead to toxicity were filtered out by utilizing SMARTS prop-
erties filtration. As the filtered molecules had a huge range of activity
scale, further screening using Estimated activity b1.0 μM provided
212,670 molecules. These molecules were identified by prioritizing
the estimated activity b1.0 μMand subjected tomolecular docking anal-
ysis using the LibDock algorithm in DS client. Schematic representation
of the pharmacophore generation and virtual screening process has
been depicted in Fig. 9.

3.4. Binding Site Prediction

Based on the co-crystal structure of camptothecin bound to TopI-
DNA complex (PDB ID 1T8I), the binding site of the ligand was pre-
dicted by Ligplot analysis through PDBsum website (https://www.
ebi.ac.uk/pdbsum). Ligplot analysis program revealed that the quin-
oline nitrogen of CPT formed a conserved hydrogen bond with
Arg364. Another hydrogen bonding was observed between the hy-
droxyl group of lactone and Asp533 (Fig. 10). Atomic co-ordinates
of the quinoline nitrogen and lactone hydroxyl groups are obtained
from the Ligplot analysis. The docking was performed using Libdock
algorithm utilizing the active sites atomic co-ordinates i.e.17.2665,
−0.172, and 26.737 from Ligplot analysis.

3.5. Molecular Docking

The Top1 DNA duplex protein (PDB ID 1T8I) has furnished with
three chains, A, B and C where chain A symbolizes the whole protein
and chain B and C denote the bound DNA. The filtered drug-like com-
pounds were docked into the active site of the Top1 protein. The active
site was defined based on the co-crystallized inhibitor, EHD990 (CPT)
(Fig. 11A). The docking was performed using LibDock module imple-
mented inDiscovery studio 4.1 Client.Moleculeswere ranked according
to their docking score, planarity, rigidity, hydrogen bond interactions
and estimated activity. The binding modes, molecular interactions
with the active site, binding energy and docking scoreswere considered
as important components in selecting the best poses of the docked com-
pounds. The standardmolecule CPTwas also docked on the same active
site of the Top1 protein.

Analysis of the docking results and binding pattern of all filtered
molecules put forth 30 molecules which were found to be more active
at binding site in DNA Top1 protein. The docking score and docking in-
teraction of CPT were enlisted in the Table 4. The docking score of the
camptothecin was 107.235. CPT was able to form 3 hydrogen bonding
with Arg364, Asp533, Thr718 and one π-π hydrophobic interaction
with DC112which is shown in Fig. 11A. Themolecules that showed bet-
ter docking score than that of CPT, forming conserved hydrogen
bondingwith important amino acid residues alongwith attaining requ-
isite molecular geometry were considered as the potential ‘hit’ topo-
isomerase I poison. Although many compounds showed proper
interactionwith the crucial amino acidswere not considered for further
analysis as they did not fulfill the planarity criteria. Overall 30 com-
pounds were found to satisfy all the selected criteria. Meticulous visual
inspection and analysis of the binding poses revealed 6 compounds
with better overall docking profile compared to CPT which were listed
in Table 5 and Supplementary Table 2. The estimated activity of selected
the 6 lead molecules ZINC68997780, ZINC38550809, ZINC38550756,
ZINC15018994, ZINC08832860 and ZINC43932053 were 0.065 μM,
0.273 μM, 0.278 μM, 0.37 μM, 0.58 μM and 0.838 μM respectively (Sup-
plementary Table 2). The hit molecule ZINC68997780 (1-(1-(8-
hydroxyquinoline-2-yr)piperidine-4-carbonyl)piperidine-4-
carboxamide) with the docking score of 140.198 was able to form six
hydrogen bond interactions with amino acids Arg364, Arg488, Lys532,
Asp533 and nucleotide DC112, DA113 (Fig. 12A). The binding mode of
the compound in the active site cavity was mapped on the Hypo1
pharmacophoric features (Fig. 13A). The terminal carbonyl group
which mapped as HBA was able to make three hydrogen bonds with
Arg488, Lys532 Asp533 and quinoline moiety which was mapped
as RAmade two hydrogen bondingwith DA113 and Arg364 and hydro-
phobic interactions with DC112. ZINC38550809 (4-(4-ethylbenzo[d]
thiazol-2-yl)-N-(3-methoxyphenyl)piperazine-1-carboxamide) with
the docking score of 126.907 was able to make three hydrogen bond-
ing with Arg364, Asp533 and Thr718 and one π-π hydrophobic
interactions with nucleotide DC112 (Fig. 12B). The binding

https://www.ebi.ac.uk/pdbsum
https://www.ebi.ac.uk/pdbsum


Fig. 18. Hydrogen bond stabilization over 10 ns production run. A) Hydrogen bonding for ZINC68997780. B) Hydrogen bonding for ZINC38550809. C) Hydrogen bonding for
ZINC15018994.
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conformation of ZINC38550809 and pharmacophore overlay was per-
formed where benzthiazole nitrogen is nicely mapped on one HBA
and the sulfur atom was mapped as another HBA (Fig. 13B).
ZINC38550756 (N-(3-methoxyphenyl)-4-(6-nitrobenzo[d]thiazol-2-
yl)piperazine-1-carboxamide) with the docking score of 125.689 was
able to make two hydrogen bonding with Arg364, Asp533 and one hy-
drophobic interaction with nucleotide DC112 (Fig. 12C). The binding
pose of ZINC38550756 nicely mapped on the Hypo1 pharmacophore
shown in Fig. 13C. ZINC15018994 (2-((5-(benzofuran-2-yl)-4-methyl-
4H-1,2,4-triazol-3-yl)thio)-N-((1R,2S)-2-methylcyclohexyl)acet-
amide) had the docking score of 124.684was able tomake three hydro-
gen bond interactions with Arg364, Asp533, Thr718 (Fig. 12D). The
pharmacophore overlaying study on the binding pose of the compound
(Fig. 13D) showed the carbonyl function was mapped with one HBA
that could make a hydrogen bond interactions with Thr718 and phenyl
ring of benzofuranmoietymapped on RAwas able tomake a hydropho-
bic interaction with DC112. ZINC08832860 (N-((2-(3-chloro-4-
methylphenyl)benzo[d]oxazol-5-yl)carbamothioyl)-2,3 dihydrobenzo
[b][1,4]dioxine-6-carboxamide) with the docking score of 110.721
was able to build three hydrogen bonding with Arg364, Asp533, DG12
(Fig. 12E). The binding pose of ZINC08832860 was well mapped on
the developed Hypo1 pharmacophore (Fig. 13E). The dioxane part
with two oxygens was well mapped on the two HBA. Benzoxazole
part of the molecules overlapped on RA where nitrogen part of that
core made hydrogen bonding with Arg364. ZINC43932053 ((S)-2-((1-
((4-(benzo[d]oxazol-2-yl)phenyl)amino)vinyl)amino)propan-1-ol)
had docking score of 109.541 was able to form four hydrogen bonding
with Arg364, Lys532, Asp533 and Thr718 (Fig. 12F). The binding mode
of ZINC43932053 at the active site showed that HBA mapped on car-
bonyl urea linkage and terminal carbonyl groupwas alsomappedon an-
other HBA features (Fig. 13F). The terminal carbonyl group was able to
make a hydrogen bond with Arg488 and Lys532 and the carbonyl
group of urea linkage formed hydrogen bond interaction with Thr718;
whereas phenyl moiety of the benzoxazole group was able to form hy-
drophobic interaction with DC112.

The collective evolutional study of a pharmacophore, virtual
screening and molecular docking study successfully provided six
prospective molecules which were further evaluated through
ADMET and toxicity prediction followed bymolecular dynamics sim-
ulation studies (Fig. 14).

3.6. ADMET and Toxicity Prediction

Poor pharmacokinetic profile and toxicity complications are
often responsible for the dropouts of the lead molecule during pre-
clinical and clinical trials. Thus, from an economic point of view, it



Fig. 19. Sequence structural pattern overlapping.
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would be beneficial if these issues have been traced at early stages. In
view of this, application of the in-silico methodology for prediction
of the possible toxicity and pharmacokinetic parameters of the hit
molecules would be judicious for the identification of lead molecules
[26,27]. Keeping this in mind, the six molecules obtained after virtual
screening were subjected to various toxicity and ADMET modules.
Fig. 20. Radius of gyration of the protein and c
The toxicity results of such were enlisted in Table 6. Toxicity risk as-
sessment results showed that compound ZINC08832860 might have
carcinogenic property against male mouse while ZINC15018994,
ZINC38550809, ZINC38550756, ZINC43932053 and ZINC68997780
are non-carcinogenic in nature. Interestingly, none of the com-
pounds were found to be carcinogenic against the female mouse.
ompounds over the 10 ns dynamics run.



Fig. 21.MD simulation status of lead compounds ZINC68997780, ZINC38550809 and ZINC15018994 after 10 ns dynamics run. (A) and (B) 2D conformational pose at before and after MD
simulation of compound ZINC68997780 in the binding pocket respectively. (C) Molecular overlay of compound ZINC68997780 before (green) and at the end (brown) of the simulation
run. (D) and (E) 2D conformational pose before and after MD simulation run of compound ZINC38550809 in the binding pocket respectively. (F) Molecular overlay of compound
ZINC38550809 before (green) and at the end (brown) of the simulation run. (G) and (H) 2D conformational pose before and after MD simulation run of compound ZINC15018994 in
the binding pocket respectively. (I) Molecular overlay of compound ZINC15018994 before (green) and at the end (brown) of the simulation run.
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Similarly, NTP carcinogenicity prediction had been carried out on
both female and male rats. ZINC08832860 and ZINC38550756 are
carcinogenic in nature on the female rat. Ames mutagenicity had
been performed against all the six potential hits. ZINC38550756 is
mutagenic in nature where the compound ZINC08832860,
ZINC15018994, ZINC38550809, ZINC43932053 and ZINC68997780
are non-mutagenic. Any skin irritancy had not been shown by any
these potential hits. Except for ZINC15018994 and ZINC38550756,
all the hit compounds produced developmental reproductive tox-
icity. No potential hits were biologically degradable under aerobic
condition. Rat oral maximum lethal dose was also calculated for
individual hit compounds those are enlisted in the Table 6. The
toxicity associated with ZINC08832860 may be due to the chela-
tion property associated with carbamothioyl acetamide features
present in the molecules. Whereas, the aromatic nitro group pres-
ent in ZINC38550756 is responsible for the mutagenic and carci-
nogenic property. During the drug development, these structural
features can be modulated to overcome these toxicity-related
issues.

Based on the toxicity profiling, ZINC68997780, ZINC38550809, and
ZINC15018994were assessed byADMET studies in Discovery Studio cli-
ent [24]. The three molecules were further analyzed by molecular
dynamics (MD) studies to determine ligand binding stability in
the Top1-DNA cleavage complex. The results of the evaluation were
summarized in Table 8 and discussed along with their corresponding
biplot curve (Fig. 15). Results also revealed that ZINC68997780,
ZINC15018994, ZINC38550809 maintain Lipinski's rule of five for possi-
ble oral bioavailability (Table 7).



Table 3
Experimental and estimated activity of individual test set compounds.

Comp
no.

IC50 value (μM) Errorsa Fit
valueb

Activity scalec

Experimental Estimated Experimental Estimated

1 0.12 0.14 1.2 7.28 +++ +++
2 0.015 0.14 9.6 7.28 ++++ +++
3 0.071 0.16 2.3 7.23 ++++ +++
4 0.039 0.17 4.2 7.22 ++++ +++
5 0.056 0.17 3 7.22 ++++ +++
6 0.051 0.17 3.3 7.21 ++++ +++
7 0.01 0.0099 −1 8.44 ++++ ++++
8 0.046 0.028 −1.6 7.99 ++++ ++++
9 0.094 0.17 1.8 7.21 ++++ +++
10 0.28 0.17 −1.7 7.21 +++ +++
11 0.088 0.17 1.9 7.21 ++++ +++
12 1 0.17 −6 7.22 +++ +++
13 1 0.17 −5.7 7.2 +++ +++
14 0.49 2 4 6.14 +++ ++
15 4.7 5.5 1.2 5.7 ++ ++
16 3.4 1.9 −1.8 6.16 ++ ++
17 2.7 1.4 −1.9 6.29 ++ ++
18 0.39 1.3 3.4 6.32 +++ ++
19 21 12 −1.7 5.37 + +
20 0.81 1.3 1.6 6.34 +++ ++
21 2.5 1.3 −2 6.34 ++ ++
22 0.49 1.4 2.9 6.3 +++ ++
23 5.3 0.91 −5.8 6.48 ++ +++
24 29 9.2 −3.2 5.48 + ++
25 8.1 22 2.7 5.1 ++ +
26 16 22 1.4 5.11 + +
27 49 8.2 −6 5.53 + ++
28 1.2 1.9 1.6 6.16 ++ ++
29 49 16 −3 5.22 + +
30 4.8 8.6 1.8 5.51 ++ ++
31 3.1 1.9 −1.7 6.17 ++ ++
32 0.047 0.15 3.2 7.26 ++++ +++
33 3.2 0.2 −16 7.15 ++ +++

a Error factor calculated as the ratio of the measured activity to the estimated activity;
positive value indicates that the estimated IC50 is higher than the experimental IC50; a neg-
ative value indicates that the estimated IC50 is lower than the experimental IC50 value.

b Fit value indicates how well the features in the pharmacophore map with the chem-
ical features present in the compound.

c Activity scale:++++, IC50 ≤ 0.1 μM(most active);+++, IC50 0.1 to 1.0 μM(active);
++, IC50 1.0 to 10.0 μM (moderately active); +, IC50 N 10.0 μM (inactive).
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The biplot curve consisted of two ellipses containing of 95% and 99%
confidence levels for blood-brain barrier penetration and human intes-
tinal absorption models (Fig. 15). The polar surface area (PSA) has an
important role for human intestinal absorption and membrane perme-
ability [27]. The curve showed that PSA has an inverse relationship with
intestinal absorption and membrane crossing. Due to higher PSA,
ZINC68997780 and ZINC15018994 have a high tendency towards
more intestinal absorption and very low blood-brain barrier penetra-
tion in comparison to ZINC38550809. ZINC15018994 have good aque-
ous solubility whereas ZINC68997780 and ZINC38550809 are less
soluble in water. Importantly, all the hit molecules are not inhibitors
of cytochrome P450 2D6.

3.7. Molecular Dynamics Simulation

Molecular dynamics is the pivotal theoretical approach which
can be utilized to gainmolecular insight into the stability of the bind-
ing pose of the screened molecules in the active site. To determine
Table 4
Docking interaction of Camptothecin with Topoisomerase1.

Compound Name H-bond monitoring

Camptothecin A:ARG364:HH22 –L:Camptothecin:N20
L:Camptothecin:H27 - A:THR718:OG1
L:Camptothecin:H31 - A:ASP533:OD2
the quality of the ligand binding towards the Top1-DNA cleavage
complex after docking, the selected molecules ZINC68997780,
ZINC38550809 and ZINC15018994 have been further processed by
all atoms molecular dynamics simulation by GROMACS 5.1.5 in
Intel(R) Xeon(R) CPU E5-2650 v4. The following 3 compounds
along with the protein-DNA duplex were further simulated for
10 ns all atoms MD run for the analysis of RMSD, RMSF, radius of gy-
ration and hydrogen bonding analysis. As the co-crystal ligand,
camptothecin in PDB structure 1T8I forms H-bond interaction with
Arg364, Asp533 and π-π hydrophobic interaction with DC112. MD
study was initiated with preferred orientations of the individual li-
gands as obtained from docking studies. The planner orientation of
the selected three ligands on that domain had been taken as an ini-
tial structure for the MD studies.

After the binding of the compound on the protein-DNA duplex
model, a little fluctuation on the backbone residues had been observed
by Root Means Square Fluctuations (RMSF) on protein residues.
The RMSF values were collected by least square fitting to a starting
structure as a reference frame over 10 ns trajectory run. The RMSF
values of the Top1 protein residues had been compared with that
when no ligand was bound (Fig. 16). The binding of ZINC15018994
and ZINC38550809 into the active site domain causesmore fluctuations
with respect to only protein structure fluctuations. Basically, those fluc-
tuationsweremainly observed on the loop, 7th to 9th helix and 22nd to
25th helical regions (Fig. 19). It can be concluded that during the bind-
ing of the ligand, the main protein backbone conformation does not
change and moreover the active binding domain was approximately
on 7th to 9th helix region. Most importantly a sharp peak is observed
on near residue 650–720. Due to the attachment of the DNA with the
protein, the amino acids which were missing were modified. Due to
this missing portion, more fluctuations are obtained. However, the fluc-
tuations obtained due to missing portion did not interfere with the li-
gand binding. This was also proved by protein backbone curve which
indicates that without the ligand the fluctuations were similar at that
regions. Thus, it can be concluded that the binding of three selected li-
gands do not change protein conformation.

Cα atoms of the protein backbone were fixed by fixing translational
and rotational spinning to the corresponding initial structure for molec-
ular dynamics run during the RMSD calculations of the complex protein
[36] (Fig. 17). Although the RMSD value of protein was found to be high
for ZINC38550809 in comparison to ZINC68997780 and ZINC15018994,
but the deviationwas not significant with respect to the actual Top1 na-
tive protein backbone deviation. The pattern of the Top1 protein and
compounds trajectories were pretty similar (Fig. 17) during the entire
period of 10 nsMD simulations. Thus, it can be stated that the reference
structure of the Top1-DNA complex does not change after binding with
the lead compounds. Also, there were no significant conformational
changes observed of all three compounds before and after bindings
[37] (Fig. 17).

Apart fromMD simulation, hydrogen bond stability was determined
for further validation of the compound stability. Hydrogen bond stabil-
ity has been calculated between all the possible donor and acceptor into
the active site domain of Top1-DNA duplex. The geometric criteria for
hydrogen bond formation between the acceptor and donor were kept
≤3.5 Å and the angle between them were set to 30o. Fig. 18 depicts the
formation of hydrogen bond between the active residues and com-
pounds are properly maintained during the whole scale of production
H-bond distance
(Å)

Docking score

2.15109 107.235
2.24314
1.81828



Table 5
Docking interaction of virtually screened hit compounds.

Compound name H-bond interacting groups H-bond monitoring H-bond distance (Å)

Zinc Drug Like Database
ZINC68997780 Arg364, Arg488, DC112, DA113, Lys532, Asp533 A:ARG364:NH2 – L:ZINC68997780:O1 2.51833

A:ARG364:NH2 – L:ZINC68997780:N11 2.67677
A:ARG488:NH1 – L:ZINC68997780:O27 3.348
L:ZINC68997780:O1 - D:DA113:O4’ 2.8055
L:ZINC68997780:N28 - A:LYS532:O 2.49234
L:ZINC68997780:N28 - A:ASP533:OD2 3.19981
L:ZINC68997780:O1 - D:DC112:O2 3.299

ZINC38550809 Arg364, Asp533, Thr718 A:ARG364:HH22 - L:ZINC38550809:N9 2.56414
L:ZINC38550809:H45 - A:ASP533:OD2 1.54933
L:ZINC38550809:H39 - A:THR718:OG1 2.82579

ZINC38550756 Arg364, Asp533 A:ARG364:HH22 - L:ZINC38550756:N19 2.08367
L:ZINC38550756:H37 - A:ASP533:OD2 1.66704

ZINC15018994 Arg364, Asp533, Thr718 A:ARG364:HH22 - L:ZINC15018994:O20 2.15411
L:ZINC15018994:H41 - A:ASP533:OD2 2.11482
L:ZINC15018994:H32 - A:THR718:OG1 2.54903

ZINC08832860 Arg364, Asp533, DG12 L:ZINC08832860:H44 - A:ASP533:OD2 2.31329
L:ZINC08832860:S32 - C:DG12:O4’ 3.28234
A:ARG364:HH22 - L:ZINC08832860:N11 2.55816

ZINC43932053 Arg364, Lys532, Asp533, Thr718 A:ARG364:HH22 – L:ZINC43932053:N18 2.15339
L:ZINC43932053:H24 - A:LYS532:O 2.21510
L:ZINC43932053:H24 - A:ASP533:OD2 3.06726
L:ZINC43932053:H32 - A:THR718:OG1 2.86654

Table 7
Drug likeness properties of selected lead for oral bioavailability by Lipinski's rule of five.

Molecule Molecular
weight
(g/mol)

Log
P

H-bond
donors

H-bond
acceptors

Rule of 5
violations

ZINC68997780 382.464 1.75 3 7 0
ZINC15018994 384.505 4.20 1 6 0
ZINC38550809 396.516 4.74 1 6 0
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MD run trajectories. Maximum five hydrogen bonds had been
observed for ZINC68997780 with Top1 protein-DNA duplex (Fig. 18A).
Compound ZINC15018994 also maintained three hydrogen bonds
within the active site's domain (Fig. 18C).

Along with the stable hydrogen bond formation, RMSD of these two
compounds ZINC68997780 and ZINC15018994 had maintained less
RMSD near to 1.5 nm in comparison to the ZINC38550809, the reason
for that is the binding of these two compounds to active amino acids
was located on the mostly loop region and some of that present on
the 17th and 25th helix (Fig. 19).

Thereafter, we evaluated the radius of gyration (Rg) for all three com-
pounds along with the Top1 protein (Fig. 20). The result indicates the
harmonious swirl of the protein-ligand complex system throughout the
trajectories. All the three compounds were having fewer swirls in com-
parison to the protein itself. This clearly indicates that all the interactions
between active residues and compounds are conserved in their confor-
mational docking poses throughout the whole series of trajectories.

Molecular dynamics trajectory analysis clearly revealed that binding
pose of the individual ligand retained similar to their initial pose
throughout the whole 10 ns dynamics trajectories (Fig. 21). It is note-
worthy to mention that after dynamics run the binding pockets of the
compounds remains same as before. The other residues of the binding
pockets are also important for making the binding cavities as well as
the non-bonded interaction (Fig. 21A, B, D, E, G and H).

4. Conclusion

In conclusion, the study provided development of ligand-based
pharmacophore model by 3D-QSAR Pharmacophore Generation
Table 6
Toxicity Predictions of the lead molecules by TOPKAT.

Toxicity Parameters ZINC08832860 ZINC15018994

NTP carcinogenicity male Rat Non-Carcinogen Non-Carcinogen
NTP carcinogenicity female Rat Carcinogen Non-Carcinogen
NTP carcinogenicity Call (Male mouse) Carcinogen Non-Carcinogen
NTP carcinogenicity Call (Female mouse) Non-Carcinogen Non-Carcinogen
AMES Mutagenicity Non-Mutagen Non-Mutagen
Developmental Toxicity Potential (DTP) Toxic Non-Toxic
Rat oral LD50(in g/kg) 0.584905 0.553094
Skin irritation None None
Probability of Bio- degradability Non-Degradable Non-Degradable
protocol in Discovery Studio 4.1 client. For training set, 29 diverse
CPT derivatives were considered for the development of the new
pharmacophores model. The best quantitative pharmacophore
(Hypo1) has been selected from 10 other pharmacophores based
on the highest cost difference (112.58) and best correlation coeffi-
cient (0.917678), lowest total cost value (127.392). The Hypo1
model consists of two HBA and one RA. The selected pharma-
cophore has been cross-validated by test set predictions, Fischer ran-
domization test and cost analysis. The test set modules containing 33
various CPT derivatives have been utilized for evaluating the predic-
tive ability of Hypo1model. The resulting correlation coefficient (R2)
between the estimated activity and experimental activity for the 33
test set compounds was observed as 0.874718 and for 29 training
set compounds, R2 value was 0.917678. The validated Hypo1 model
was used as a 3D query for the virtual screening of 1,087,724 drug-
like molecules from ZINC database. By applying various constraint
number of molecules funnel down to 212,670 hits, which were
docked on the active sites of Topo1 (PDB ID: 1T8I) by LibDock
ZINC38550809 ZINC38550756 ZINC43932053 ZINC68997780

Non-Carcinogen Carcinogen Non-Carcinogen Non-Carcinogen
Non-Carcinogen Carcinogen Non-Carcinogen Non-Carcinogen
Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen
Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen
Non-Mutagen Mutagen Non-Mutagen Non-Mutagen
Toxic Non-Toxic Toxic Toxic
0.625799 0.562206 1.08561 0.154681
None None None None
Non-Degradable Non-Degradable Non-Degradable Non-Degradable



Table 8
ADMET descriptors of the selected lead candidates.

Molecule AbsorptionLevel Solubility Solubility level Hepato toxicity PSA ADMET_BBB CYP2D6 AlogP98

ZINC68997780 0 −5.665 2 1.04041 99.923 −1.168 −8.93326 1.836
ZINC15018994 0 −3.343 3 0.192557 78.536 0.041 −5.35195 4.663
ZINC38550809 0 −5.991 2 −1.54694 57.007 0.385 −10.527 4.24
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protocol on DS. Depending on the molecular interaction, molecular
planarity and structural rigidity themolecules were selected. Finally,
six molecules were selected by extensive molecular docking analysis
through meticulous visual inspection on the receptor protein (PDB
ID: 1T8I). ZINC68997780 (140.198), ZINC38550809 (126.907),
ZINC38550756 (125.689), ZINC15018994 (124.684), ZINC08832860
(110.721), ZINC43932053 (109.541) are the selected ZINC com-
pounds along with their docking score and their interaction with
the active site residues were compared with the standard CPT ligand
(Fig. 10). The six molecules were subjected to toxicity assessment
studies under TOPKAT program. Based on the toxicity results
ZINC68997780, ZINC15018994 and ZINC38550809 were selected
for further ADMET studies and MD simulation. Based on the RMSD
and RMSF curve of MD analysis, these selected compounds were
found to be stable and the protein-ligands conformation remains un-
changed (Figs. 16, 17, 21). The stability of the binding mode was val-
idated by determining hydrogen bond stability. Hydrogen bonding
distribution over 10 ns run also concluded the stability of
rigid bindings. Based on our findings, the three hit molecules
ZINC68997780, ZINC15018994 and ZINC38550809 can be utilized
for designing future class of potential Top1 inhibitor.

Supporting Information includes the structure of test set and train-
ing set compounds; docking analysis and Randomization test results
and videos of 10 ns MD simulation of compounds ZINC68997780,
ZINC15018994 and ZINC38550809 with protein. Supplementary data
to this article can be found online at 10.1016/j.csbj.2019.02.006.
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